SYNTHESIS OF 5-[1-(3-METHYLCARBONYL)-O-METHYLPSEUDOURIDE]URACIL: A NOVEL
METHOD FOR THE CONVERSION OF AN \(H\,H'-\)DISUBSTITUTED THIOUREA INTO AN
O-METHYL-\(H\,H'-\)DISUBSTITUTED PSEUDOUREA

Ji-Wang Chen, Dean Sylvester Wise, Jr., and Leroy B. Townsend
Department of Medicinal Chemistry, College of Pharmacy and Department of
Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1065, USA

Abstract - Treatment of 5-[1-(3-methoxycarbonyl)thioureido]uracil with
dicyclohexylcarbodiimide in methanol has resulted in the formation of
5-[1-(3-methoxycarbonyl)-O-methylpseudouride]uracil.

A literature survey has revealed that several methods are available for the preparation of
O-alkylpseudoureas from carboximidates.\(^1\,^2\) In the absence of catalysis, however, the reaction
of carboximidates with alcohols proceeds poorly and only under very drastic conditions, i.e.,
pressure and/or at high temperature.\(^3\) It has been reported\(^4\) that alcohols in the presence of
sodium alkoxide, react exothermally with carboximidates to afford the corresponding O-alkyl
pseudoureas in near quantitative yields. Synthesis of O-alkyl pseudoureas using carboximide
also has been accomplished with copper or zinc salts as catalysts.\(^5\,\,^6\) However, to the best of
our knowledge, the facile addition of alcohols to carboximidates without the use of a catalyst or
the aid of a sodium alkoxide, which should be of value with base sensitive compounds, has not yet
been reported.

The equilibrium established between a reaction of dicyclohexylcarbodiimide (DCC) and a thiourea
derivative\(^7\), with the subsequent ring cyclization reaction of these ortho-substituted thiourea
adducts to afford the various heterocyclic systems\(^8\), has been studied. Recently, we reported
on the use of DCC to accomplish the cyclodesulfurization of a 2.4-diamino-5-[1-(3-methoxycar-
bonyl)thioureido]pyrimidin-6-one in dimethylformamide (DMF) to furnish the oxazolo[5,4-d]-
pyrimidine ring system\(^9\). To explore the scope of this synthetic methodology, we elected to
synthesize methyl oxazolo[5,4-d]pyrimidin-6-one-2-carbamate (2) by reacting 5-[1-(3-methoxy-
carbonyl)thioureido]uracil (1)\(^10\) with DCC in DMF at room temperature. However, due to the
insolubility of 1 in DMF, the reaction was not successful.

A subsequent reaction of compound 1 with DCC was performed in methanol at reflux temperature
to obtain a good yield of a single product which initially appeared to be the desired product 2.
This product gave \(^1\)H NMR, \(^13\)C NMR, UV spectral data and elemental analysis as follows: \(^1\)H
NMR (DMSO-\(d_6\)): \(\delta\) 3.6 (s, 3 H, CH\(_3\)), 3.8 (s, 3 H, CH\(_3\)), 7.58 (s, 1 H, \(=\text{C}-\text{H}\)), 10.2 (s, 1 H,
NH, D\(_2\)O exchangeable). 11.28 (br, 2 H, D\(_2\)O exchangeable): \(^13\)C NMR (DMSO-\(d_6\)): \(\delta\)
149.9 (C-2), 160.6 (C-4), 111.3 (C-5), 131.9 (C-6), 163.0 (C=O), 160.8 (C=O), 52.3 (COOCH\(_3\)),
55.1 (O-CH₃); UV (pH) λₘₐₓ nm (ε x 10⁴): (pH 7) 288 (1.1); (pH 1) 261 (0.85); (pH 11) 291 (1.0); Anal. Calcd. for C₆H₇N₄O₅ (242.19): C, 39.67; H, 4.16; N, 23.13; Found: C, 39.90; H, 4.21; N, 23.37; and while it was obvious that these data did not support structure 2, they did seem to be compatible with a simple methanol adduct of the desired compound 2.

This seemed like a reasonable assumption since there have been many reports that Michael additions occur quite often as an intermediate step in a variety of phenomena involving pyrimidines. If a Michael addition had occurred at C-6 of compound 1, the resulting compound would be expected to possess characteristics similar to those previously reported for the addition of methanol to the 5,6-double bond of 5-diazouracil. In the ¹H NMR spectra, this 5-diazouracil methanol adduct has demonstrated an upfield chemical shift (δ 5.72) for the C-6 proton. However, the ¹H NMR spectrum of our compound revealed that a downfield chemical shift
(Δ 7.58) had occurred for the C-6 proton. This suggested that the C-6 proton of the uracil moiety in our target compound was still incorporated in a conjugated aromatic (uracil) electronic system. The 13C NMR chemical shift observed for the uracil ring carbons of our final product remained unchanged from the shifts observed for the ring carbons of 1 and are in agreement with values previously reported. Also, the mass spectrum showed an ion at $M^+ - 32$ which is characteristic for the loss of methanol, and the ions at m/z 69 and 110 can be attributed to subsequent fragmentation of the $M^+ - 32$ fragment. On the basis of these data, vide infra, we have assigned the structure of our product as 5-[(3-methoxycarbonyl)-O-methylpseudoureido]-uracil (2).

We have now reported the first addition of an alcohol to a carbodiimide intermediate which had been generated in situ from an adduct prepared by the reaction of a thiourea derivative with DCC. This synthetic method is currently being applied to the synthesis of various 5-substituted uracils and their corresponding nucleosides in our laboratory.

ACKNOWLEDGMENTS

This work was supported by PHS research grant CA 28381 awarded by the National Cancer Institute, DHHS and by funds from the Filariasis component of the UNDP/World Bank/WHO Special Program for Research and Training in Tropical Diseases (I.D. 840398 & 840124). We acknowledge the NIH Biomedical Research Support (RR 01437) for funds toward the purchase of an IBM WP-270SY nmr spectrometer. We thank Ms Deanna VanSickle for her assistance in the preparation of this manuscript.

REFERENCES

10. 5-[(3-Methoxycarbonyl)thioureido]uracil (1) was prepared in 94% yield by a condensation of 5-aminouracil (0.44 g, 3.5 mmoles) with methoxycarbonyl isothiocyanate11 (methoxycarbonyl isothiocyanate was prepared by adding methyl chloroformate (0.53 mL, 6.9 mmole) to a suspension of potassium thiocyanate (0.67 g, 6.9 mmole) in acetonitrile (15 mL) with stirring at 70°C for 30 min) in acetonitrile at reflux temperature for 2 hours. 1H NMR (DMSO-d\textsubscript{6}): δ 3.4 (s, 3 H, CH\textsubscript{3}), 8.9 (d, 1 H, J = 6 Hz, = C-H) 10.9 (d, 1 H, J = 6 Hz, NH, D\textsubscript{2}O exchangeable), 11.4 (s, 1 H, NH, D\textsubscript{2}O exchangeable), 11.65 (s, 1 H, NH, D\textsubscript{2}O exchangeable), 11.75 (s, 1 H, NH, D\textsubscript{2}O exchangeable). 13C NMR (DMSO-d\textsubscript{6}): δ 149.4 (C-2), 160.7 (C-4) 113.7 (C-5), 131.1 (C-6), 176.1 (C=S), 153.9 (C=O), 53.0 (OCH\textsubscript{3}). UV (pH) \(\lambda_{\text{max}}\) nm (\(\epsilon \times 10^4\)): (pH 7) 259 (2.2): 311 (1.0): (pH 10) 259 (2.0): (pH 11) 260 (1.6). IR (KBr): 1780 (C=O) cm-1. Anal. Calcd. for C\textsubscript{7}H\textsubscript{8}N\textsubscript{4}O\textsubscript{4} (244.22): C, 34.43; H, 3.30; N, 22.94. Found: C, 34.54; H, 3.36; N, 23.11.

15. The exocyclic pseudourea moiety of compound 3 may exist in two tautomeric forms
\[-\text{NHC(OCH}_3\text{)}=\text{NCO}_2\text{CH}_3\text{ and/or } -\text{N}\text{=C(OCH}_3\text{)}\text{NCO}_2\text{CH}_3\].

Received, 20th May, 1985