SYNTHESIS OF ROSETHIOPHENE, A NEW FLAVOUR COMPOUND

Zeinhom Mostafa Ismail and H. Martin R. Hoffmann*
Department of Organic Chemistry University of Hannover
Schneiderberg 1B, D-3000 Hannover, FRG

Abstract - Rosethiophene[3-methyl-2-(3-methyl-2-butene1)thiophene] (2b) has been prepared by two routes and converted into the homogeranium precursor (8).

The presence of sulfur in a molecule or the replacement of oxygen by sulfur is often assumed to have unpleasant olfactory consequences. We have recently synthesized rosefuran (2a) and some analogues via regiocontrolled prenylation of 3-methylfuran (1a). We have now explored the prenylation of 3-methylthiophene (1b) and obtained the previously unknown rosethiophene (2b) and its isomer (3b) in a regiocontrolled reaction (2b:3b = 88:12), traces of the diprenylated product (4) were also formed.

As the total yield of prenylation of (1b) was not promising (ca. 20%), we have prepared (2b) by another route.

2-Bromo-3-methylthiophene (5) was metalled with n-butyllithium at low temperature, and the resulting carbanion was quenched with 1-bromo-3-methyl-2-butene (6), giving rosethiophene (2b) in good yield.

-325-
Rosethiophene (2b), which has not yet been found in nature\(^3\), appears to have little interest as a perfumery compound, but it is an interesting flavour compound (citrus, grapefruit, lime). It is noteworthy that another sulfur compound, i.e. 1-p-menthene-8-thiol, is a most powerful flavour compound which occurs naturally in grapefruit\(^4\).

(2b) was used as a starting material for the synthesis of (8). Metallation succeeded above 0\(^\circ\)C and was regioselective, giving only the sulfur stabilized anion, which was carboxylated to give (7a) and then reduced to the alcohol (8), which is a potential precursor of homogeraniol (9)\(^{3a,5}\).

A solution of 12.3 g (69.6 mM) of (5) in abs. ether (50 ml) was introduced under argon into a 250 ml threenecked flask equipped with a thermometer, dropping funnel and magnetic stirrer. The solution was cooled to -70\(^\circ\)C and n-BuLi (48 ml, 72 mM) in hexane was added dropwise at such a rate that the temperature did not exceed -68\(^\circ\)C. After complete addition the temperature was kept at -70\(^\circ\)C for 30 min and then a solution of (6) (10.3 g, 69.1 mM) in abs. ether (30 ml) was added dropwise within 20 min. The reaction mixture was left at -70\(^\circ\)C for 2 h and allowed to reach 25\(^\circ\)C overnight. After cautious addition of water, the organic layer was separated and the aqueous layer was re-extracted with ether. The combined organic phase was washed with aq. \(\text{NaHCO}_3\), water and dried (\(\text{Na}_2\text{SO}_4\)). After evaporation of the solvent the residue was distilled giving (2b) (8.62 g, 51.9 mM) as a colorless oil of bp 70\(^\circ\)C/2.5 torr. IR (neat) 2980 m, 2920 m, 2860 m, 1960 w, 1450 m, 1380 m, cm\(^{-1}\). 90 MHz \(^1\)H NMR (CDCl\(_3\))\(^6\) 1.72 (br. s, 6 H, 2 Me), 2.15 (s, 3 H, Me), 3.38 (d, \(J = 7\) Hz, 2 H), 5.16 - 5.44 (t of quin, \(J = 7\) Hz, \(J = 1.5\) Hz, olef. H), 6.75 - 6.96 (dd, AB system, \(J = 5\) Hz, 2 H, arom). \(^{13}\)C NMR (CDCl\(_3\))\(^6\) 137.8 s, 132.5 s, 131.9 s, 129.9 d, 122.7 d, 121.0 d, 26.8 d, 25.5 q, 17.6 q, 13.4 q.

ACKNOWLEDGEMENT

We thank DRAGOCCO for the sensory evaluation and GC/MS measurements, Dr. E. Hofer for assistance with NMR spectra and the Deutsche Forschungsgemeinschaft for financial support.
REFERENCES

 1982, 23, 2305.
3. a) M. M. Emel'yanov, A. V. Lozanova, A. M. Moiseenkov, V. A. Smit, and A. V. Semenovskii,
 1983, 61, submitted procedure 2223.

Received, 24th September, 1985