SYNTHESIS OF α-METHYLENE-γ-BUTYROLACTONES

Jadab C. Sarma and Ram P. Sharma*
Division of Natural Products Chemistry
Regional Research Laboratory (CSIR), Jorhat-6, Assam, India

Abstract - Synthesis of α-methylene-γ-butyrolactone moiety present in numerous natural products displaying a wide range of biological activity has been reviewed here embracing the period from 1980 to the middle of 1985.

The wide range of biological activity (e.g. antitumor1, carcinogenic2,3, microbial growth inhibitor4, schistosomicidal5, allergic contact dermatitis6-11 antifeedant5-12, vertebrate poisoning13,14, plant growth inhibitors15 and antiinflammatory16) displayed by a large number of compounds possessing α-methylene-γ-butyrolactone moiety has attracted the attention of synthetic organic chemists for the synthesis of this moiety during the past two decades. Several reviews have already appeared17, the present article deals with the literature accumulated during the last five years.

1. In a preformed γ-lactone moiety the formyl group has been introduced using sodium hydride and ethyl formate and the resulting enolate (1) on refluxing with formaldehyde for 3 h furnishes the α-methylene-γ-lactone (2a), in 98% yield18. The reaction with benzaldehyde and propionaldehyde results in the formation of a mixture of the corresponding α-trans and α-cis (substituted ylidene)-γ-butyrolactones (2b).

\[\text{Scheme 1} \]
2. Tade et al.19 have employed the strategy for the synthesis of α-methylene-γ-butyrolactones which requires the introduction of carbonyl group at the last stage. Thus they have developed a new method for the synthesis of 3-methylene oxolanes (4) through the reductive cyclization of 2-[(2-propynyl)oxy] ethyl bromides (3) by a cobalt complex.

![Scheme 2](image)

3. The allylic methanesulfonic ester (5) is converted \textit{in situ} to the vinyl bromide (6) by treatment with nickel carbonyl which undergoes carbylation to give the α-methylene-γ-lactone (7)20.

![Scheme 3](image)
4. Palladium-catalyzed carbonylation of homopropargyl alcohols (8) is one of the most useful and well-documented transition metal catalyzed synthesis of α-methylene-γ′-butyrolactones21, but Stille and Martin have reported the same could be obtained in high yield from the palladium-catalyzed carbonylation reaction of alkyl-substituted 3-bromo-but-3-en-1-ols (9) as shown in scheme 422 below. Optically active epoxides furnish the corresponding lactones in an optically pure state.

\[
\begin{align*}
&\text{(8)}
\end{align*}
\]

5. 2-Carbethoxy-allylation of carbonyl compounds is one of the widely used procedure for the construction of α-methylene-γ′-butyrolactone moiety23. Sakurai \textit{et al.}24 while demonstrating the use of allylsilanes have developed a new method for the preparation of 2-alkoxycarbonylallytrimethylsilanes which has been employed for the introduction of 2-alkoxycarbonylallyl group into electrophilic centres in a single step by reaction with acetals or carbonyl compounds.
In a similar method reported by Okuda et al., allylic chromium species derived from the reaction of ethyl α-(bromomethyl)acrylate with Cr(II) reagent is condensed with aldehydes to obtain α-methylene-γ-butyrolactones.

Yamamoto et al. have made use of the preformed lactone moiety for the preparation of (Z) and (E)-alkylidene-γ-butyrolactone moiety. Titanium (IV) chloride mediated reaction of 4,5-dihydro-2-(trimethylsiloxy)-3-(trimethylsilyl) furan (10) with acetaldehyde gave diastereomerically pure (3S*, 1'R*)-4,5-dihydro-3-(1'-hydroxyethyl)-3-(trimethylsilyl)-2(3H)-furanone (11) which afforded selectively either (Z)- or (E)-α-ethylidene-γ-butyrolactone (12) under appropriate reaction conditions.
7. An α-acrylic ester cation equivalent (13) has been employed in the construction of α-methylene-γ-butyrolactone moiety.

Cyclohexanone lithium enolate reacts at -78°C with the suspension of (13) in THF solution to give diastereomeric adducts (14) which under suitable reaction conditions can be transformed into cis and trans-α-methylene-γ-butyrolactones (15) and (16) as shown in the scheme.
Otera et al. have employed acid-catalyzed thioallylic rearrangement as the key step in the construction of \(\delta \)-methylene-\(\gamma \)-lactone moiety. \(\beta \)-Siloxyketones (17) were converted into \(\delta \)-methoxyallyl sulfides (18) through the Peterson olefination whose hexane solution when refluxed in the presence of silica gel gave (19). On subsequent treatment of (19) with 30% \(\text{H}_2\text{SO}_4 \) followed by Jones oxidation furnished (20) whose desulfonylation was effected with DBU in ether to give the desired compound (21).
Stereoselective radical cyclization of (22) is the key feature in the method developed by Moriya et al.29 for the synthesis of α-methylene-γ-lactone moiety. The bromoacetals (22) were prepared by the reaction of butoxyallene with excess allylic alcohols in presence of NBS. The vinyl radical (23) was generated by tri-n-butyltin hydride.
The utility of allylsilanes in the preparation of α-methylene-γ-butyrolactones has been demonstrated by Itoh et al.30 2-Bromoallyltrimethylsilane (24) was converted into a Grignard reagent which on reaction with epoxides (25) provides 2-(2-hydroxyethyl)allylsilanes (26) which could be easily elaborated to the diols (27) and then to the lactones (28) as shown in the scheme 10.
Ichihara et al.31 have successfully demonstrated the use of retro-Diels-Alder reaction in putting the exomethylene group in a γ-butyrolactone as shown in scheme 11.

\begin{scheme}
\begin{center}
\begin{tikzpicture}

\node (a) at (0,0) {\text{BrCH$_2$COOMe}};
\node (b) at (2,0) {\text{COOMe}};
\node (c) at (4,0) {\text{Br}};
\node (d) at (2,-2) {\text{COOMe}};
\node (e) at (0,-2) {\text{COOMe}};
\node (f) at (2,-4) {\text{CHO}};
\node (g) at (2,-5) {\text{COOH}};
\node (h) at (2,-6) {\text{COOMe}};
\node (i) at (2,-8) {\text{R}};
\node (j) at (2,-10) {\text{R}};

\draw[->] (a) -- (b);
\draw[->] (b) -- (c);
\draw[->] (c) -- (d);
\draw[->] (d) -- (e);
\draw[->] (e) -- (f);
\draw[->] (f) -- (g);
\draw[->] (g) -- (h);
\draw[->] (h) -- (i);
\draw[->] (i) -- (j);

\end{tikzpicture}
\end{center}
\end{scheme}
12. Helquist et al.32 have demonstrated the utility of \(\beta \)-amino ester enolate such as (29) which can be alkylated with a variety of allylic halides to furnish protected acrylate esters (30) which may be conveniently converted into \(\alpha \)-methylene-\(\gamma \)-lactones.

\[
\begin{align*}
\text{Me}_2\text{N} & \quad \text{COOMe} \\
\text{(i) Li, THF, } & \quad \text{Li, THF, } \text{Me}_2\text{N, THF, } -78^\circ\text{C} \\
\end{align*}
\]

(29)

\[
\begin{align*}
\text{R}_1 & \equiv \text{CH-CH=CH} \\
\text{R}_2 & \equiv \text{CH-1} \\
\end{align*}
\]

\[
\begin{align*}
\text{Li} & \equiv \text{Li, THF, } -78^\circ\text{C} \\
\text{Me}_2\text{N} & \equiv \text{Me}_2\text{N, THF, } -78^\circ\text{C} \\
\end{align*}
\]

(30)

(iii) KOH, MeOH, H\textsubscript{2}O

(iv) KIC\textsubscript{2}, NaHCO\textsubscript{3}, H\textsubscript{2}O

13. 1,2-O-Isopropylidene furanose derivatives have been converted into syn or anti forms of \(\alpha \)-methylene-\(\gamma \)-butyrolactones via 2-C-methylene glycofuranosides which are hydrolysed under neutral conditions33.

-450-
14. Many years ago it was reported that cyclocarbonylation of acetylenic alcohols (31) by a stoichiometric Ni(CO)$_4$ reaction leads to poor yields of α-methylene-γ-butyrolactone (32).\cite{34}

Murray et al.\cite{35} report that palladium-catalyzed cyclocarbonylation of acetylenic alcohols provides good yields of the corresponding lactones. The general procedure used for the preparation of ethynyl alcohol is shown in equation (1). These authors have studied various catalytic systems but the best
cyclocarbonylation catalyst system has proved to be palladium chloride, anhydrous stannous chloride and 2 equivalents of a tertiary phosphine in acetonitrile.

\[
\text{Olefin} \xrightarrow{[\text{catalyst}]} \text{Epoxide} \xrightarrow{\text{ethynylation}} \text{Ethynyl alcohol} \xrightarrow{\text{CO}} \alpha\text{-Methylene-}\gamma\text{-lactone..(1)}
\]

\[
Pd(II) + CO + HOCH_2 CH_2 C\equiv CH \rightarrow Pd CO_2 CH_2 CH_2 C\equiv CH + H^+
\]

15. The reaction of lithium enolates derived from \(\beta\)-ketoesters with complexation (33) provides a facile route to 3,4-disubstituted \(\alpha\)-methylene-\(\gamma\)-butyrolactones.\(^{36}\)

\[
\text{OLi} + \text{COOMe} + \text{OEt} \xrightarrow{\text{THF, } -78^\circ C} \text{BF}_4^- \text{Salt (33)}
\]

\[
\text{BF}_4^- \text{Salt (33)}
\]

15. The reaction of lithium enolates derived from \(\beta\)-ketoesters with complexation (33) provides a facile route to 3,4-disubstituted \(\alpha\)-methylene-\(\gamma\)-butyrolactones.\(^{36}\)

\[
\text{BF}_4^- \text{Salt (33)}
\]

15. The reaction of lithium enolates derived from \(\beta\)-ketoesters with complexation (33) provides a facile route to 3,4-disubstituted \(\alpha\)-methylene-\(\gamma\)-butyrolactones.\(^{36}\)

\[
\text{BF}_4^- \text{Salt (33)}
\]

15. The reaction of lithium enolates derived from \(\beta\)-ketoesters with complexation (33) provides a facile route to 3,4-disubstituted \(\alpha\)-methylene-\(\gamma\)-butyrolactones.\(^{36}\)

\[
\text{BF}_4^- \text{Salt (33)}
\]
16. Another application of allylsilanes for the preparation of \(\alpha \)-methylene-\(\gamma \)-lactones has been cited by Fujita et al.37 2-Substituted allylsilane (34) on treatment with iodosobenzene and BF\(_3\) etherate in dioxane furnishes the conjugated enal (35) in good yield, from which \(\alpha \)-methylene-\(\gamma \)-butyrolactone was synthesised as shown in the scheme 16.

\[
\begin{align*}
\text{AcO} & \quad \text{SiMe}_3 \\
\text{Ph} & \quad \text{C}_6\text{H}_5\text{I} = \text{O} \\
\text{BF}_3 - \text{OEt}_2 & \quad \text{dioxane} \\
\text{Ph} & \quad \text{CHO}
\end{align*}
\]

(Scheme 16)

17. Palladium-catalyzed intramolecular carboalkoxylation of homoallylic chloroformates furnished \(\alpha \)-methylene-\(\gamma \)-lactones in poor to moderate yields38. The starting material (36) can be made from the homoallylic alcohols and phosgene.
18. α-Methylene-γ-butyrolactones have been prepared through isoxazolines as shown in scheme 18.\(^{39}\) Cycloaddition reaction of the nitrile oxide (37) with the appropriate alkene furnishes the isoxazoline product (38) which is cleaved by hydrogenolysis and the resulting β-hydroxyketone on methylation provides homoallylic alcohol (39). Cleavage of the tetrahydropyranyl group followed by manganese dioxide oxidation of the diol furnishes α-methylene-γ-lactone (40).

\[R \quad + \quad ON^+ \quad \rightarrow \quad \text{N} \quad \text{C} \quad \text{LOTHP} \quad \text{R} \quad \text{R} \quad \text{N} \quad \text{O} \quad \text{THP} \]

\[\text{(37) \quad \rightarrow \quad \text{(38)} \quad \text{(39)} \quad \text{(40)} \]

(i) H_2, Raney Ni
(ii) H_2, $\text{C} = \text{P}$, Φ_3
(iii) p-TsOH, MeOH
(iv) MnO_2, CH_2Cl_2

SCHEME 18

19. New chiral reagents such as 2-$\text{[(tributylstannyl) methyl] propenamides}$ have been used for asymmetric synthesis of γ-alkyl-α-methylene-γ-butyrolactones.\(^{40}\) Reaction of N-$\text{[(S)-$\alpha$-methylbenzyl]-2-[(tributylstannyl) methyl] propenamide}$ ((S)-(1)-41) with isovaleraldehyde in the presence of 4 equivalents of $\text{BF}_3 \text{OEt}_2$ furnished γ-hydroxy-α-methyleneamide (42) in 80% yield, which on acidic hydrolysis furnished γ-isobutyl-α-methylene-γ-butyrolactone (43) in 81% yield.
REFERENCES

Received, 21st August, 1985