LINCOMYCIN ANALOGUES. II. CHAIN-EXTENSION OF METHYL-6-ALDEHYDO-3,4-D-ISOPROPYLIDENE-1 THIO-\beta-D-GALACTO-1,5-PYRANOSIDE

Jean M. J. Tronchet
Institute of Pharmaceutical Chemistry, Geneva University, 30, quai E. Ansermet, CH - 1211 Geneva, Switzerland
Mohamed A. M. Massoud*
Pharmaceutical Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt

Abstract—Synthesis of methyl 2,3,4,6-tetra-0-acetyl-1-thio-\alpha-D-galactopyranoside and its \beta-anomer (\(\mathfrak{z}\) and \(\mathfrak{t}\)) from the 2,3,4,6-tetra-0-acetyl-\alpha-D-galactopyranosyl bromide via the isotiocarbenium salt in HMPT involved a considerable increase in the proportion of the \alpha-anomer. Deacetylation of (\(\mathfrak{z}\) and \(\mathfrak{t}\)) with sodium methoxide yielded \(\mathfrak{z}\) and \(\mathfrak{t}\) respectively. Conversion of (\(\mathfrak{z}\)) into the corresponding 3,4-isopropylidene derivative (8) followed by oxidation with Collin reagent gave the aldehydo-sugar (9) which when reacted with a stabilised phosphorane led in excellent yield to the \(\overline{\beta}\)-unsaturated bromo-sugar (9).

The total synthesis of methyl \(\alpha\)-thiolincomycin (I), the sugar moiety of lincomycin, was reported by Magerlein starting with methylthio-\(\alpha\)-D-galactopyranoside (obtained in very low yield in the acid-catalysed reaction of D-galactose with methanethiol) which is converted to the corresponding 6-deoxy-6-nitrothiosugar (II) followed by the chain-extension. Other methods of syntheses involved the chain extension of the aldehydo-sugar (III) and introduction of the methylthio-group at C-1 at the final step through the acid catalysed reaction. Bannister indicated the conversion of the methylthio-\(\beta\)-D-galactopyranoside analogues of(I) into the corresponding \(\alpha\)-anomer.

In previous paper we reported the chain extension of (III) through Wittig reaction using stabilised phosphoranes which would provide the same carbon skeleton of the sugar moiety of lincomycin modified at C-8. This paper describes the synthesis of the methylthio-\(\alpha\)-D-galactopyranoside and their \(\beta\)-anomer and also the conver-
sion of the latter into the methylthio derivative of (III).

The application of the procedure of Cerny and Pačak11 on 2,3,4,6-tetra-O-acetyl-\(\alpha\)-D-galactopyranosylbromide12 (I) using dry hexamethylphosphoramic triamide (HMPT) as solvent via the isothiouronium bromide (Z) gave a mixture of two products (t.l.c.), a major one (ethyl acetate - hexane 1:2) of \(R_f\) 0.34 and a minor one of \(R_f\) 0.38. The chromatographic separation of both products with a long column of "silica gel 60F 254 Merck" gave the faster moving component (I), mp 101-102°C, in 8% yield, followed by a mixture of both products in 50% yield and finally the slower moving one in 41% yield. The latter was identified as the methylthio-\(\beta\)-D-galactopyranoside (Y) by its mp 107-108°C and [\(\alpha\)]\textsubscript{D} +3° (in chloroform) which have been reported13. The ratio of I (\(\approx\) 12%) were determined by examining the integration area of H-C5 in the \(^1\text{H}-\text{nmr}\) spectrum of the mixture. The two products (I and Y) are consistent with the molecular formula C\textsubscript{15} H\textsubscript{22} O\textsubscript{9} S obtained by satisfactory elemental analysis, mass spectra and supported by \(^1\text{H}-\text{nmr}\)14. The mass spectra of both products indicate the first elimination of the methylthio group giving (IV) like the tetra-acetylglucosides followed by the characteristic fragmentation of (IV)15. Hydrolysis of (I or Y) with sodium methoxide in anhydrous methanol13 gave the corresponding deacetylated derivatives (Z and Z)16 identified as the \(\alpha\)- and \(\beta\)-methylthiogalactopyranosides, respectively, through their mp and [\(\alpha\)]\textsubscript{D} which were consistent with reported data2, 13. Therefore, (I) was assigned as the methyl 2,3,4,6-tetra-O-acetyl-\(\alpha\)-D-galactopyranoside. It is noteworthy that the use of HMPT (dipolar-aprotic solvent) would decrease the activation energy of the reaction17, stabilise a carbocation intermediate by solvation18, and render the thiourea (non charged nucleophile) more free to react as they are less solvated in the HMPT, thus promoting the formation of \(\alpha\)-anomer.
Protection of (6) via the 3,4-isopropylidene formation using dry acetone, powdered anhydrous cupric sulfate and conc. sulfuric acid (sp. gr. 1.84) resulted in the elimination of the methylthio group and the formation of 1,2:3,4-di-O-isopropylidene-\(\alpha\)-D-galactopyranose.\(^9\) When the reaction was carried out without the addition of conc. sulphuric acid, (7) was isolated.\(^20\) The assignment of its structure was performed by the \(^1\)H-nmr spectrum, which exhibits two signals at \(\delta = 1.39\) and 1.53 \((2m, 2\times 3H,\,\text{acetone} \, H_{\text{CH}} \times 2)\) and the mass spectrum which gives the characteristic fragmentation of the newly introduced isopropylidene group.\(^21\) Oxidation of (7) with dipyridine-chromium (VI) oxide in CH\(_2\)Cl\(_2\) gave (8) as a syrup in 60% yield. Its ir spectrum showed a band at 3480 cm\(^{-1}\) (OH), at 1730 cm\(^{-1}\) (CHO) and at 1380 cm\(^{-1}\) isopropylidene group. The \(^1\)H-nmr spectrum indicated the presence of the hydroxyl proton at \(\delta = 3.05\) ppm, exchangeable with D\(_2\)O, but there was no aldehyde proton. Addition of the phosphorane (9) in benzene to the molar ratio of (8) gave the bromo-unsaturated methylthiosugar (9) characterised by a band at 1640 cm\(^{-1}\) (C=C-\(\cdot\)) in ir spectrum, the shielded proton at \(\delta = 7.45\) ppm (d, 1H, HC-6) in \(^1\)H-nmr and finally by the two isotopic peaks of equal intensity of bromine in its mass spectrum.\(^24\) The comparison of \(J_{5,6}\) and \(\delta\) HC-6 values in \(^1\)H-nmr with similar analogues\(^10\) indicated the \(\beta\)-relative configuration.

\[\text{CH}_2\text{OH} \quad \overset{\text{O}}{\overset{\text{Sm}}{\overset{\text{OH}}{\text{O}}}} \quad \overset{\text{O}}{\overset{\text{Sm}}{\overset{\text{OH}}{\text{H}}}} \]
ACKNOWLEDGEMENT

We thank Prof. A. Buchs for mass spectra determination and Dr. K. Eder for the microanalysis.

REFERENCES AND NOTES

14. 3: \(^{1}H\)-nmr (CDCl\(_{3}\)) δ: 1.99, 2.05, 2.07 & 2.09 (4s, 4x3H, -OCOCH\(_{3}\)), 2.17 (s, 3H, -SCH\(_{3}\)), 4.15 (d, 2H, -CH\(_{2}\)OCO), 4.57 (m, 1H, HC-5), 5.26 (m, 2H, HC-2 & HC-3), 5.47 (dd, 1H, HC-4), 5.62 (d, 1H, HC-1, J\(_{1,2} = 3.1\) Hz). m/z (rel. int.) : 378 [M\(^{+}\)] (0.7), 331 [M\(^{+}\) - SMe] (33) and 169 [M\(^{+}\) - 209] (100).

4: \(^{1}H\)-nmr (CDCl\(_{3}\)) δ: 1.98, 2.04, 2.08 & 2.17 (4s, 4x3H, -OCOCH\(_{3}\)), 2.21 (s, 3H, -SMe), 4.0 (m, 1H, HC-5), 4.15 (m, 2H, -CH\(_{2}\)OCO), 4.42 (d, 1H HC-1), 5.1 (dd, 1H, HC-3), 5.29 (dd, 1H, HC-2), 5.48 (dd, 1H, HC-4). m/z (rel. int.) : 331 [M\(^{+}\) - SMe] (100).
HETEROCYCLES, Vol. 24, No. 5, 1986

16. δ: 1H-nmr (D₂O) δ: 2.3 (s, 3H, -SMe), 3.9 (m, 2H, -CH₂OH), 4.15 - 4.52 (m, 4H,
HC-2, 3, 4, & 5), 5.6 (d, 1H, HC-1, J₁₂ = 5.6). ms, m/z (rel. int.): 210 [M + H]⁺ (47), 163 [M⁺ - SMe]⁻ (83).

δ: 1H-nmr (D₂O) δ: 2.38 (s, 3H, -SMe), 3.7 - 4.6 (m, 7H, HC-1, 2, 3, 4, 5, and
H₂-C-6), ms, m/z (rel. int.): 210 [M + H]⁺ (8), 163 [M⁺ - SMe]⁻ (14).

20. δ: Colourless syrup, 87% yield, ir (KBr) cm⁻¹: 3460 (-OH), 1370 (isopropylidyne). 1H-nmr (CDCl₃/D₂O) δ: 1.39, 1.54 (2s, 2x3H, O₃C-CCH₃), 2.21 (s, 3H, -SMe),
3.54 (dd, 1H, HC-2, 3.8 (m, 2H, H₂C-6), 4.0 - 4.36 (m, 3H, HC-3, 4, and 5), 4.4 (d, 1H, J₁, J₂ = 10 Hz). ms, m/z (rel. int.): 250 [M⁺]⁻ (7), 235 [M⁺ - Me]⁻ (4),
203 [M⁺ - SMe]⁻ (31).

23. δ: Brown syrup, 1H-nmr (CDCl₃) δ: 1.37 and 1.35 (2s, 2x3H, O₃C-CCH₃), 2.23 (s,
3H, -SMe), 3.09 (m, 1H, -OH), 3.5 - 4.3 (m, 5H, HC-1, 2, 3, 4, and 5).

24. δ: Brown syrup, 76% yield, ir (KBr) cm⁻¹: 3480 (-OH), 1730 (-COOCH₃), 1640
(-C = C-), 1385 (isopropylidene), 692 (=C-Br). 1H-nmr (CDCl₃) δ: 1.36 and
1.54 (2s, 2x3H, O₃C-CCH₃), 2.23 (s, 3H, -SMe), 2.7 (m, 1H, -OH), 3.7 (dd, 1H,
HC-3), 3.87 (s, 3H, -COOCH₃), 4.17 (dd, 1H, HC-4), 4.30 - 4.45 (m, 2H, HC-1 and
HC-2), 4.47 (dd, 1H, HC-5), 7.45 (D, 1H, HC-6). ms, m/z (rel. int.): 369 and
367 [M⁺ - Me]⁻ (6), 337 and 335 [M⁺ - SMe]⁻ (9).

Received, 27th November, 1985