HYPERVALENT IODINE OXIDATION OF FLAVONOLS USING [HYDROXY(TOSYLOXY)IODO]-
BENZENE IN METHANOL

Robert M. Moriarty, Om Prakash, Hikmat A. Musallam, and Vijendra K. Mahesh

Chemistry Department, University of Illinois at Chicago Box 4348, Chicago, Ill. 60680, U.S.A.
Department of the Army, Walter Reed Army Institute of Research, Walter Reed Army Medical Center, Washington, DC 20307, U.S.A.
Chemistry Department, University of Roorkee, Roorkee, India

Abstract - Hypervalent iodine oxidation of various flavonols (1a-1f) and α-naphthoflavonol (3) using [hydroxy(tosyloxy)iodo]benzene (HTIB) in methanol leads to the formation of 2,3-dimethoxy-3-hydroxyflavanones (2a-2f) and 2,3-dimethoxy-3-hydroxy-α-naphthoflavanone (4) respectively. HTIB resembles periodic acid in its oxidative behavior towards flavonols.

A number of papers dealing with photooxygenation, superoxide anion and base catalysed oxygenation reactions of flavonols (1) have appeared. The object of these oxygenation reactions was to demonstrate a non-enzymatic model reaction for the biological oxygenation of 1, while other oxidation reactions were carried out with a view towards establishing the behavior of various oxidizing agents upon the flavonol nucleus (1). These observations, coupled with the fact that oxidation of various chalcones, olefins and acetophenones with [hydroxy(tosyloxy)iodo]benzene (HTIB) in methanol leads to rearranged products, prompted us to investigate the oxidation behavior of 1 with HTIB in methanol.

We now find that the reaction of 1 with a slight excess of HTIB in methanol occurs spontaneously and the corresponding 2,3-dimethoxy-3-hydroxyflavanones [methyl 3-hemiacetals of 2-methoxy 3,4-flavandione (2)] are formed in high yield. α-Naphthoflavonol (3) also undergoes same type of oxidation and 4 is formed in good yield.
Formation of hemiacetals of type 2 has been previously reported from the oxidation of 1 with periodic acid in methanol by Smith et al. These workers showed that flavonol behaves like o-methoxyphenol (5) in periodic acid oxidation. We also interpret our results on the basis of the mechanism proposed by Smith et al., for the periodic acid oxidation. The first step is the formation via ligand transfer of intermediate [A]. In a subsequent step nucleophilic attack of methanol occurs at C(2) along with reduction cleavage of the -O-I(III) bond and acetal 6 is formed. Acetal 6 readily forms hemiacetal 2 with methanol under the reaction conditions. The stereochemistry of the hemiacetals (2a-f, 4) has not been assigned.
Becker also obtained hemiacetal 2a from oxidation of 1a with 2,3-dichloro-5,6-
dicyano-1,4-benzoquinone in methanol and explained the formation of 2a by a radical
mechanism.

Thus, the present study reveals that flavonols under hypervalent iodine oxidation
using HTIB in MeOH behave like a phenol rather than an α,β-unsaturated ketone or
1,2 diketone which could lead to rearranged products. In this sense HTIB re-
sembles periodic acid in its oxidation characteristics. This is an important addi-
tion to our growing knowledge of the oxidative capacity of organic hypervalent io-
dine reagents. Periodic acid is a relatively mild and selective oxidizing agent.

It is interesting to note that in the present case, HTIB does not attack the rela-
tively activated aromatic rings.

The properties (mp and ir spectral data) of the products (2a-3) are available in
literature and are in agreement with our data. However, mps of the products are
variable and depend on the rate of heating. 1HNMRs of all the compounds were de-
termined and found to be in agreement with the assigned structure. The nmr spectra
of all the hemiacetals showed two characteristic singlets due to two methoxy group
protons (δ 3.0). Data on 2 and 4 are given in Table 1. New compounds 2e-2f, and 4
were confirmed by correct elemental analyses.

EXPERIMENTAL

Melting points were determined with a Thomas-Hoover capillary melting point
apparatus and are uncorrected. 1HNMR spectra were recorded at 60MHz as CDC13 solu-
tions with TMS as internal reference. Chemical shifts are given in ppm(δ). Hydro-
xyl signals were identified by deuteration.

[(Hydroxysyloxy)iodobenzene (HTIB).

HTIB is prepared by the reaction of iodobenzene diacetate and p-toluenesulfonic
acid according to conditions of Neiland, Karele and Koser and Wettach.

Flavonols (1a-1f).

Flavonol (1a) is commercially available (Aldrich) and other flavonols (1b-1f) are
synthesized according to the Alger-Flynn-Oyamada reaction with minor modifi-
cations involving H2O2 oxidation of various α-hydroxychalcones. Thus, 1b had mp
181-182°C (lit. mp 181°C); 1c had mp 234-235°C (lit. mp 235°C); 1d had mp
195-195.5°C (lit. mp 195°C); 1e had mp 203°C (lit. mp 203°C); 1f had mp
199-200°C (lit. mp 198°C).
α-Naphthoflavonol (3).

Compound (3) is available from our recent study on the hypervalent iodine oxidation of α-naphthoflavone with iodobenzene diacetate in methanolic potassium hydroxide and subsequent acidic hydrolysis of crude dimethylacetal thus obtained gives pure crystalline product 3, mp 214-215°C.12

Oxidation of Flavonols with [Hydroxy(tosyloxy)iodobenzene (HTIB)] in Methanol.

General Procedure

To a solution or suspension of flavonol (1, 3) (2.0 mmol) in methanol (20ml) was added solid [hydroxy(tosyloxy)iodobenzene (2.2 mmol) rapidly and the mixture was shaken. All the reactants dissolved and a colorless crystalline product separated out after about 5 min. Filtration followed by washing with cold methanol (5–10ml) gave almost pure product (2, 4). Recrystallization was carried out from methanol. Compounds 2b and 2d did not separate out of the solution from the reaction mixture. Concentration of the reaction mixture solution in vacuo followed by addition of methanol yielded crystalline products.

Table 1

<table>
<thead>
<tr>
<th>Compd.</th>
<th>mp ºC (Lit.mp)</th>
<th>Yielda,b</th>
<th>C2-OCH3,</th>
<th>C3-OCH3,</th>
<th>1HNMR data</th>
<th>Aromatic Protons</th>
</tr>
</thead>
<tbody>
<tr>
<td>2a</td>
<td>144-146 (1465a; 151-1525b)</td>
<td>65</td>
<td>2.99,3.07</td>
<td>4.73</td>
<td>6.98-8.05</td>
<td></td>
</tr>
<tr>
<td>2b</td>
<td>139-142 (142-144.5b)</td>
<td>72</td>
<td>3.00,3.09</td>
<td>3.90</td>
<td>4.45</td>
<td>6.46-8.00</td>
</tr>
<tr>
<td>2c</td>
<td>162-163 (162-1645b)</td>
<td>75</td>
<td>3.02,3.08</td>
<td>3.85</td>
<td>4.12</td>
<td>6.90-8.18</td>
</tr>
<tr>
<td>2d</td>
<td>167-169 (169-1725b)</td>
<td>68</td>
<td>3.02,3.11</td>
<td>3.89, 3.92</td>
<td>4.30</td>
<td>6.60-8.02</td>
</tr>
<tr>
<td>2e</td>
<td>168-71C</td>
<td>77</td>
<td>3.03,3.09</td>
<td>3.95</td>
<td>4.38</td>
<td>7.02-8.10</td>
</tr>
<tr>
<td>2f</td>
<td>156-159C</td>
<td>73</td>
<td>3.00,3.07</td>
<td>4.00</td>
<td>7.04-8.05</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>140-141C</td>
<td>71</td>
<td>3.00,3.05</td>
<td>4.85</td>
<td>7.31-8.62</td>
<td></td>
</tr>
</tbody>
</table>

a. All compounds lost methanol upon heating, turned yellow at characteristic temperatures and finally melting over a range.

b. Based on isolated crystalline products with respect to amount of flavonol used. The actual yields of the products (from nmr and tlc) were more than 95%.

c. Analyses. 2a, Calcd for C18H20O7; C, 63.32; H, 5.59. Found C, 63.05; H, 5.68. 2f, Calcd for C17H5ClO5; C, 60.98; H, 4.48; Cl, 10.61. Found C, 60.48; H, 4.40; Cl, 10.39. 4, Calcd for C21H18O5; C, 72.00; H, 5.14. Found C, 72.35, H, 5.04.

ACKNOWLEDGEMENT

We wish to thank the USAMRDC Contract# DAMD-17-85-C-5190 and the Petroleum Research Fund Contract# PRF-14773-AC1 for support of this work.
REFERENCES


Received, 3rd February, 1986