SYNTHESIS OF BI- AND TRICYCLIC MESOIONIC [1,2,4,6]THIATRIAZINE-1,1,3-TRIOXIDES

Jae Sung Kang and Dong Young Oh

Korea Advanced Institute of Science and Technology
P.O. Box 150 Chongyangni, Seoul 131, Korea

Abstract - The reaction of N-substituted aminoheterocycles with chlorosulfonyl isocyanate (CSI) or pentachlorophenyl N-chlorosulfonylcarbamate (PCPCSC) affords bi- and tricyclic mesoionic [1,2,4,6]thiatriazine-1,1,3-trioxides in the presence of ethyldiisopropylamine.

Numerous examples of six-membered mesoionic compounds are found in the literature and reviewed. Malonyl dichlorides, their ester derivatives, carbon suboxide, ethoxy- or phenoxy carbonyl isocyanate and their thio derivatives are very useful reagents for the syntheses of mesoionic compounds. Since CSI has two functional groups of NCU and SUZCI, it can be used as cyclizing reagent for mesoionic compounds, but has received scant attention. We wish to report the syntheses of mesoionic compounds from the reaction of CSI or PCPCSC with N-substituted aminoheterocycles.
2-Benzylaminopyridine reacted with PCPCSC in chloroform at room temperature producing mesionic 1-benzylpyrido[1,2-b][1,2,4,6]thiatriazine-2,4,4-trioxide (4). Karady and co-workers6a already reported compound 4 which was synthesized from the reaction of 2-benzylaminopyridine and CSI in the presence of a tertiary amine base. Structure 4 was assigned by the comparison with authentic sample.7

2-Alkylaminothiazoles reacted with CSI producing the intermediate 6 which cyclized on the addition of a tertiary base to afford mesionic 1-alkythiazolo[2,3-c][1,2,4,6]thiatriazine-2,2,4-trioxides (7). The structure of 7 was assigned by the study of 1H NMR and IR of intermediate 6a and 1H NMR of intermediate 3. Presence of exocyclic imine bond was verified on the base of 1H NMR chemical shift and imino stretching band in IR of 6a.

![Structure Diagram]

\(R: a=\text{CH}_2\text{Ph} \\
b=\text{Et} \)

1H NMR data (CDCl\textsubscript{3}, 60 MHz)

<table>
<thead>
<tr>
<th></th>
<th>3</th>
<th>6a</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCH\textsubscript{2}</td>
<td>5.30 s</td>
<td>7.87 d, (J=5) Hz</td>
</tr>
<tr>
<td>NCH\textsubscript{2}</td>
<td>4.64 s, 4.74 s</td>
<td>6.58 d, (J=5) Hz</td>
</tr>
</tbody>
</table>

PCPCSC resulted in mesionic compound 8, which is the regioisomer of 7, with 2-alkylaminothiazoles in the presence of a tertiary amine base. The structure of 8 are assigned by comparison with the 1H NMR chemical shifts of 7.
Mesoionic compound 12 was obtained from the reaction of 2-ethylamino-6-methoxybenzothiazole with CSI or PCPCSC in the presence of a tertiary base. Product structure from A path (9-10-12) was assigned by 1H NMR chemical shift of intermediate 10. 1H NMR chemical shift of methylene groups in exocyclic and endocyclic imine intermediate 10 are 3.50 ppm and 4.25 ppm, respectively, but this intermediate 10 has N-CH$_2$ resonance at 3.50 ppm. Product structure of B path (9-11-12) was determined by comparison with the data of the product from A path.
Pentachlorophenoxy group is the good leaving group.9 PCPCSC cyclized with at room temperature, but ethyl- or phenyl N-chlorosulfonylcarbamate did not afford mesoionic compound at reflux condition in ethyl acetate or xylene.

\section*{EXPERIMENTAL}

Melting points are uncorrected. IR and 1H-NMR spectra were recorded on Perkin-Elmer Model 283 B grating infrared spectrometer and Varian T-60A or Varian FT-8UA Spectrometer, respectively. Mass spectra were taken at an ionizing voltage of 70 eV on a Hewlett-Packard 5985 GC/MS instrument.

\textbf{General Procedure (method A)}

An equimolar amount of N-substituted aminoheterocycle was added to the solution of CSI in chloroform at room temperature. After 2 h an equivalent of ethyldiisopropylamine was injected and stirred at room temperature for 6 h. White solid was collected by filtration.

\textbf{General Procedure (method B)}

An equimolar amount of PCPCSC was added to the solution of equimolar ethyldiisopropylamine and N-substituted aminoheterocycle in chloroform and stirred for 6 h at room temperature. White solid was collected by filtration.

\textbf{Mesoionic \textit{l-Benzylpyrido}[1,2-b][1,2,4,6]thiatriazine-2,4,4-trioxide (4): Method B. Yield = 46\%}

\begin{tabular}{l}
Mp 166-170\textdegree C (decomp.)

IR(KBr): 1690, 1630, 1510, 1358, 1330, 1230, 1220, 1180, 1000, 780, 690 cm-1.

1H NMR (CDCl\textsubscript{3} + CF\textsubscript{3}COOH): 5.45 (s, 2H), 7.00-8.90 (m, 9H). Ms (m/z): 289 (M+), 183 (M+-SO\textsubscript{2}NC\textsubscript{O})
\end{tabular}

\textbf{Mesoionic \textit{l-Benzylthiazolo}[2,3-c][1,2,4,6]thiatriazine-2,4,4-trioxide (7a): Method A. Yield = 68\%}

\begin{tabular}{l}
Mp 200-203\textdegree C (decomp.)

IR(KBr): 1740, 1575, 1555, 1340, 1205, 1180, 995, 900, 700 cm-1.

1H NMR (CDCl\textsubscript{3} + CF\textsubscript{3}COOH): 7.26(s, 2H), 6.95(d, J=5 Hz, 1H), 7.46(s, 5H), 8.04(d, J=5Hz, 1H)

Ms(m/z): 295(M+), 189(M+-SO\textsubscript{2}NC\textsubscript{O})
\end{tabular}

\textbf{Mesoionic \textit{l-Ethylthiazolo}[2,3-c][1,2,4,6]thiatriazine-2,4,4-trioxide (7b): Method A. Yield = 90\%}

\begin{tabular}{l}
Mp 213-216\textdegree C (decomp.)

IR(KBr): 1720, 1580, 1560, 1390, 1330, 1315, 1310, 1205, 1180, 1090, 1005, 895 cm-1.

1H NMR (CDCl\textsubscript{3} + CF\textsubscript{3}COOH): 1.61(t, J=7Hz, 3H), 4.19(q, J=7Hz, 2H), 7.03(d, J=5Hz, 1H), 8.02(d, J=5Hz, 1H). Ms(m/z): 233(M+), 205(M+-CO), 127(M+-SO\textsubscript{2}NC\textsubscript{O})
\end{tabular}

\textbf{Mesoionic \textit{l-Benzylthiazolo}[3,2-b][1,2,4,6]thiatriazine-2,4,4-trioxide (8a): Method B. Yield = 52\%}

\begin{tabular}{l}
Mp 194-198\textdegree C (decomp.)

IR(KBr): 1700, 1545, 1370, 1215, 995 cm-1.

1H NMR (CDCl\textsubscript{3} + CF\textsubscript{3}COOH):
5.35(s, 2H), 7.20(d, J=5Hz, 1H), 7.41(s, 5H), 7.88(d, J=5Hz, 1H). Ms(m/z): 295(M+), 189(M+-SO₂NCO).

Mesionic 1-Ethylthiazolo[3,2-b][1,2,4,6]thiatriazine-2,4,4-trioxide (8h): Method B. Yield = 65%. Mp 225-227°C (decomp.) IR(KBr): 1710, 1570, 1380, 1355, 1255, 1015, 755 cm⁻¹. 1H NMR (CDCl₃ + CF₃COOH): 1.48(t, J=7Hz, 3H), 4.18(q, J=7Hz, 2H). 7.32(4, J=5Hz, 1H), 7.90(d, J=5Hz, 1H). Ms(m/z): 233(M+), 189(M+-SO₂NCO).

Mesionic 4-Ethyl-7-methoxybenzothiazolo[2,3-c][1,2,4,6]thiatriazine-1,3,3-trioxide[12]: Method A. Yield = 60%. Mp 241-245°C (decomp.) IR(KBr): 1710, 1570, 1580, 1260, 1010 cm⁻¹. 1H NMR (CDCl₃ + CF₃COOH): 1.50(t, J=7Hz, 3H), 4.00(s, 3H), 4.26(q, J=7Hz, 2H), 1.25-8.30(m, 3H). Anal. Calcd for C₁₁H₁₂N₃O₄S₂: C, 42.17; H, 3.54; N, 13.42. Found: C, 41.9; H, 3.25; N, 13.9.

REFERENCES AND NOTES

7. 1660 cm⁻¹ may be the mistyping of 1690 cm⁻¹ in IR of 4.

Received, 21st April, 1986