SYNTHESIS AND ACTIVITY OF A TETRAHYDROFOLATE INHIBITOR OF THE ENZYME
\textit{N}^\text{5}-\textit{FORMYL-}H_4-\text{FOLATE-MET-tRNA}^\text{Met} \text{ TRANSFORMYLASE}

Ka-Kong Chan*, Perry Rosen*, and Anthony Specian, Jr.
The Department of Chemistry Research
Hoffmann-La Roche Inc., Nutley, New Jersey 07110, U.S.A.

Herbert Weissbach* and Carlos Spears
Roche Institute of Molecular Biology
Hoffmann-La Roche Inc., Nutley, New Jersey 07110, U.S.A.

Abstract - The \textit{N}^-\text{formylmethionine-tRNA}^\text{Met} is involved in the initiation of protein biosynthesis in procaryotic organisms and is formed via the transfer of a formyl group from \textit{N}^\text{5}-\text{formyltetrahydrofolic acid} to the amino group of methionine in Met-tRNAMet. Based on a proposed intermediate for this formylation step, a transition state analog was designed and synthesized and was shown \textit{in vitro} to be an excellent inhibitor of the transformylase reaction.

The enzyme Met-tRNAMet transformylase from \textit{E. coli} has been described1 and shown to catalyze the transfer of a formyl group2 from \textit{N}^\text{5}-\text{formyltetrahydrofolic acid} (2) to the free amino group of methionine in Met-tRNAMet (1), (Scheme I). The resulting \textit{N}^-\text{formylmethionine-tRNA}^\text{Met} (4) is involved in the initiation of protein biosynthesis in procaryotic organisms.3 The significance of this transformylation process for bacterial gene expression makes the inhibition of this process an interesting target for the potential development of antibacterial agents. The transfer of the formyl group from 2 to 1 is unique for bacterial protein synthesis but it should be recognized that both 1 and 2 have functions in mammalian biochemical transformations4 although the transformylase enzyme is lacking from eukaryotic cell extracts.5 Therefore to reduce the possibility of toxicity, any analog designed to inhibit this process should closely resemble the transition state involved in the formyl transfer reaction catalyzed by the transformylase. Although a stable \textit{f}Met-tRNAMet enzyme has been isolated, there is no evidence of a formyl transfer to the enzyme yielding an acid stable formylated enzyme.6 Our results suggest that a formyl transfer may in fact take place directly from compound 2 to 1 implying the intermediacy of a structure.
Scheme I

1. Transformylase

2. tRNA

3. CH₃SCH₂CH₂CH

4. tRNA
such as 3\(^7\) in the bacterial system. With this in mind, we envisaged a compound such as 15 as a possible stable transition state analog, which, although lacking a tetrahedral equivalent to the \(\alpha\)-amino alcohol of intermediate 3, might still function as an inhibitor of this one carbon transfer reaction.

The preparation of several \(N^a\)- and \(N^a,N^{10}\)-disubstituted tetrahydrofolic acid analogs have been described,\(^8\) whereas only one unstable \(N^a\)-substituted analog has been reported.\(^9\) Because tetrahydrofolic acid 5\(^{10}\) is known to undergo rapid air oxidation,\(^{11}\) we decided to choose the more stable \(N^a\)-methyltetrahydrofolic acid (6)\(^{12}\) (racemic at C6) as our starting material for the preparation of the target intermediate molecule 12 (Scheme II). Because the \(N^a\)-methyl-dL-L-Hb-folate has previously been shown to be an effective inhibitor of the transformylation reaction (although noncompetitive with the formyl donor),\(^{13}\) it was anticipated that substitution at \(N^a\) with a methyl group would not interfere with the inhibition properties of the target compound 15. Due to the insolubility of 6\(^{14}\) the acid was first converted to its dl-n-butyl ester 7 (1.5N HCl-\(\text{BuOH}, 80^\circ\text{C}, 16\) h) in 29% overall yield from folic acid. Treatment of 7 with \(N,N\)-dimethylformamide dimethylacetal\(^{14}\) (DMF, 25°C, 4 h, argon) proceeded smoothly to yield the more soluble derivative 8\(^{15}\) in 83% yield (mp 104-108°C) after florisil column chromatography.

Treatment of the \(N^a\)-methyltetrahydrofolate 8 with the methionyl synthon 9\(^{16}\) (3 eq., DME, 85°C, 18 h, argon) produced the \(N^{10}\)-methionyl derivative 10 (64% yield) and a minor amount of the \(N^{10}\)-methionyl analog 11\(^{15}\) (11%) (separated by silica gel column chromatography). The t-butyl ester of compound 10 was then selectively cleaved (CF\(_3\)COOH, 25°C, 1 h) to produce the desired carboxylic acid derivative 12 (90% yield, as mono TFA salt). The final phase of the synthesis was accomplished (Scheme III) by coupling the acid 12 with the readily available puromycin aminonucleoside\(^{17} 13\) in the presence of \(N\)-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline\(^{18}\) (EEDQ) (DMF, 40°C, 16 h, argon). Thus the tetrahydrofolate transition state analog 14 was obtained in 32% yield after purification by silica gel column chromatography. It has been demonstrated that the antibiotic puromycin is capable of inhibiting protein synthesis due to the fact that it can successfully compete with the aminoacyl-tRNA for the ribosome.\(^{19}\) The puromycin aminonucleoside 13 was, for this reason, considered an appropriate substitute for adenosine and would allow for the selective acylation of the C3 amino group necessary for the construction of the potential transformylase inhibitor 15.

The water soluble trisodium salt 15 was prepared from the ester 14, (6 eq. 0.35N aqueous NaOH in 1:1 DME/H\(_2\)O, 25°C, 20 h) purified via silica gel chromatography (eluent 3:1 propanol/water) and lyophilized to give a white solid homogeneous by tlc (cellulose, 1:2 1% aqueous sodium bicarbonate/propanol). The structure of 15 rests on the method of synthesis, the \(^1\)Hnmr (in D\(_2\)O/CO\(_2\)OH) \& 2.07 (s, 3H, SCH\(_3\)), 2.53 (s, 3H,NCH\(_3\)), 3.44 [s, N(CH\(_3\))\(_2\)], 3.2-3.7 [m, NCH; NCH\(_2\), overlapping N(CH\(_3\))\(_2\)].
3.78, 4.02 (br., J gem=12 Hz, CH₂OH) 4.44 (m, 2H), 4.65-4.7 (m) 6.11 (br, s, 1H, NCHOC), 7.49-
7.92 (AA'BB', 4H), 8.18 (s, 1H), 8.34 (s, 1H), the uvmax (H₂O) 215 nm (sh ε 42,300), 275 (30, 100)
and amino acid analysis: Found Met (1.0), Glu(1.1).
The fact that 15 can serve as an inhibitor of the transformylase was demonstrated in vitro. In
these experiments transformylase activity was assayed essentially as described by Dickerman et
al. Compound 15 was found to be an excellent inhibitor (~70% inhibition of transformylase activ-
ity at a concentration of 10⁻⁶ M) while the reference compound Ca leucovorin had an inhibitory
activity of ~50% at 1 x 10⁻⁴ M. More detailed enzymatic studies will be required to determine the
mode of inhibition by compound 15 and whether it is truly functioning as a transition state
inhibitor.

ACKNOWLEDGEMENT
We are indebted to Professor E. C. Taylor for his advice and consultation.

REFERENCES
1. (a) H. W. Dickerman and H. Weissbach, 'Methods in Enzymology', L. Grossman and K. Mol-
B. Redfield, and H. Weissbach, J. Biol. Chem., 1967, 242, 1522. (c) J. Trupin, H. W. Dick-
de Gruyter and Co., Berlin, 1975, p. 27 and references therein.
490 (b) M. L. Bender, 'Mechanisms of Homogeneous Catalysis from Protons to Proteins' Wiley Inter-

9. V. A. Grupta and F. M. Huennekens, Biochemistry, 1967, 6, 3268.

15. All new compounds were homogeneous by tlc and gave satisfactory 'H nmr, uv, and ir data.

16. N-Imidazocarbonylmethionine t-butyl ester (9) was prepared from L-methionine t-butyl ester hydrochloride and N,N'-carbonyldiimidazole (Et3N/CH2Cl2, 25°C, 2 h, argon), 'H nmr (CDCl3) 1.48 (s, 9H), 2.09 (s SCH2), 2.15 (m, CH2), 2.59 (t 2H), 4.64 (m, 1H), 7.51 (br, s, 1H), 7.46 (br s,1H), 7.67 (m, NH), 8.20 (br's, 1H).

17. Puromycin aminonucleoside (PAN) was purchased from American Cyanamid, Pearl River, N.Y. For preparation of this aminonucleoside, see B. R. Baker, J. P. Joseph and J. H. Williams, J. Am. Chem. Soc., 1955, 77, 1.

Received, 19th May, 1986