A NEW REARRANGEMENT IN THE METHYLATION OF 2-(DIETHYLMINO)-3-(ETHOXYCARBONYL)-5-PHENYLAZEPINYL ANION

Johannis W. Streef* and Henk C. van der Plas

Laboratory of Organic Chemistry, Agricultural University, De Dreijen 5, 6703 BC Wageningen, The Netherlands

Yun Y. Wei, Jean P. Declercq, and Maurice Van Heerseche

Laboratoire de Chimie Physique et de Cristallographie, Université Catholique de Louvain, Bâtiment Lavoisier, Place Pasteur 1, B-1348 Louvain-la-Neuve, Belgium

Abstract - Treatment of the anion of 2-(diethylamino)-3-(ethoxycarbonyl)-5-phenyl-3H-azepine with methyl iodide leads to the formation of 2-(diethylamino)-7-(ethoxycarbonyl)-7-methyl-3,4-dihydro-3,4-methano-4-phenylpyridine, the structure of which was confirmed by an X-ray analysis of its picrate. The mechanism of this rearrangement reaction will be discussed.

Our general interest in the reactivity of azepinyl anions induced us to investigate the behaviour of anion 2, obtained from 2-(diethylamino)-3-(ethoxycarbonyl)-5-phenyl-3H-azepine (1) by treatment with lithium 2,2,6,6-tetramethylpiperidide in THF, towards alkylating agents. In this paper we wanted to publish a new rearrangement reaction, which took place on reacting 2 with methyl iodide. In this reaction a product was isolated (50% yield), which according to mass spectrometric data and microanalysis of its picrate showed to have the empirical formula C₂₀H₂₆N₂O₂, indicating that a methyl group has been introduced into 2.

¹H- and ¹³C-NMR data gave clear indications that this product is not the 3-methylnazepinyl derivative 3, as evidenced by the absence of the characteristic chemical shift of H-4 of the azepine ring around 5.3-5.5 ppm as well as the absence of the C-4 doublet around 108-113 ppm (J = 150-165 cps) and the C-2 singlet at 140-150 ppm in the proton-coupled ¹³C-spectrum. Instead, the ¹H-NMR spectrum features among other peaks an absorption at 3.33 ppm and the ¹³C-spectrum shows a singlet at 45.3 ppm and a doublet at 30.2 ppm. These NMR data seem to suggest that we deal here with a valence tautomer of 3, probably an azanorcaradiene, containing the pyridine ring, fused with a three-membered carbocycle. In order to establish the structure of this valence isomer more firmly we carried out an X-ray analysis. From this analysis it became evident that this compound is indeed an azanorcaradiene, i.e. 2-(diethylamino)-7-(ethoxycarbonyl)-7-methyl-3,4-dihydro-3,4-methano-4-phenylpyridine (4). The formation of 4 from 2 indicates that during treatment of 2 with methyl
iodide a new rearrangement has taken place. This unexpected result induced us to investigate whether the structure of our starting material 1 was correct: an X-ray analysis confirmed its structure.

Scheme 1

The formation of 4 from 1 can be explained if one assumes that two sequential 1,2-carbanionic shifts occur: the first 1,2-carbanion shift, possibly occurring pericyclically, converts anion 2 into 5, followed by a second shift converting 5 into 7, probably via 6. Methylation of 7 yields 4.

Scheme 2
This result seems to indicate that probably the bicyclic system 7 is an intermediate in the formation of 3-alkoxy(or alkyl)carbonylmethyleneepyrindines from 3-alkoxy(or alkyl)carbonyl-3H-azeepines under basic conditions.5,6

Crystallographic Determination of Structure 4

The reflections were collected on a Syntex P2₁ diffractometer using graphite-monochromatized moKα radiation (λ = 0.7107 Å) and the ω scan technique up to 2θ = 47°. The structures were solved by direct methods using the MULTAN 80⁷ computer system and refined by the SHELX 76⁸ programme. Coordinates and molecular dimensions are available from the Cambridge Crystallographic Data Center, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW.

Crystal Data of the Picrate of 4

C₂₀H₂₆N₂O₂.C₆H₅N₃O₇, triclinic, space group P₁₁; cell dimensions a = 7.705(2), b = 11.596(4), c = 16.538(7)Å, α = 104.95(3), β = 101.68(3), γ = 93.21(2); V = 1388.9(9)Å³; Z = 2. 4091 measured and 1446 observed reflections. Final R: 0.113.

EXPERIMENTAL

Preparation of 4

All glassware used was dried at 100-140°C prior to use. The experiment was performed under nitrogen. 2,2,6,6-Tetramethylpiperidine (TMP, Aldrich) was stored over molecular sieves (A4) previously dried at 300°C. Tetrahydrofuran (25 mL) was distilled from calcium hydride under nitrogen into a 250 mL three-necked flask containing 1 (1.26 mmol, 0.394 g). The flask was placed in a bath at 20°C and TMP (0.5 mL, 0.42 g, 3.0 mmol) was added using a syringe. After 5 min. stirring 1.32 M n-butyllithium in hexane (1 mL, 1.3 mmol), was added, again using a syringe. A black-violet colour was formed; After 30 min. 2 mL of methyl iodide was added at once. After 180 min. at 20°C ethanol was added, the solvent was evaporated off and the product was isolated in
50-60\% yield by preparative TLC (silica gel/petroleum ether (60/80°C)-ethyl acetate-methanol (ratio 10:9:1, \(R_F = 0.37 \)).

4, oil; ir (chloroform): 1725 cm\(^{-1}\) (C = O); \(^1\)H NMR (deuteriochloroform):

\(\delta 7.18 (s, 5H, Ph); 6.62 (d, J_{5,6} = 6.9 Hz, 1H, H-6); 5.02 (d, J_{5,6} = 6.9 Hz, J_{3,5} = 0.7 Hz, 1H, H-5); 3.95-3.30 (m, 6H, CH\(_2\)); 3.33 (s, J_{3,5} = 0.7 Hz, 1H, H-3); 1.30-0.80 (m, 12H, CH\(_3\)); \)

\(^{13}\)C NMR (deuteriochloroform): \(\delta 172.9 (C - O); 157.2 (C-2); 141.6 (C-Ph); 136.1 (J = 174 Hz, C-6); 128.2, 128.2, 126.9 (C-Ph.m.p.); 105.5 (J = 168 Hz, C-5); 60.9 (OCH\(_2\)); 45.3 (C-4); 42.3 (NCH\(_2\)); 30.2 (J = 165 Hz, C-3); 24.1 (C-7); 13.8, 10.7 (CH\(_3\));

Picrate, mp 138.0-139.5°C (ethanol, -30°C); \(^1\)H NMR (acetone-\(d_6\)): \(\delta 8.70 (s, 2H, H-Ph picric acid); 7.35 (s, 5H, H-Ph); 6.58 (d, J_{5,6} = 7.8 Hz, 1H, H-6); 5.60 (d, J_{5,6} = 7.8 Hz, J_{3,5} = 0.9 Hz, 1H, H-5); 4.15-3.75 (m, 6H, CH\(_2\)); 3.78 (s, J_{3,5} = 0.9 Hz, 1H, H-3); 1.57-1.23 (m, 9H, CH\(_3\)); 0.93 (t, 1H, CH\(_3\)).

ACKNOWLEDGEMENT

We are indebted to Drs. C.A. Landheer and to Mr. C. Teunis for the mass spectrometric measurements, to Mr. A. van Veldhuizen for the \(^{13}\)C spectrometric measurement and to Mr. H. Jongejan for carrying out the microanalysis.

REFERENCES AND NOTES

1. Part 5 on azepines from this laboratory. See for part 4 ref. 2.

Received, 13th October, 1986