SYNTHESIS OF GUAIPYRIDINE, EPIGUAIPYRIDINE, AND RELATED COMPOUNDS

Junko Koyama, Teruyo Okatani, Kiyoshi Tagahara, and Yukio Suzuta
Kobe Women's College of Pharmacy, Kobe 658, Japan
Hiroshi Irie
Faculty of Pharmaceutical Sciences, Nagasaki University, Nagasaki 852, Japan

Abstract — Synthesis of sesquiterpene alkaloids, guaipyrldine, epiguaiopyridine, and related compounds, was accomplished by application of a method for constructing cycloalkenopyridines by thermal rearrangement of oxime O-allyl ethers.

Previously we reported the synthesis of guaipyrldine (1) and epiguaiopyridine (2), and related compounds using Diels-Alder reaction of 1,2,3-triazine with enamines. In this paper, we report the synthesis of these sesquiterpene alkaloids and related compounds by application of a new synthetic method for constructing cycloalkenopyridine ring system.

3-Isopropenyl-6-methylcycloheptanone (3) was treated with O-(α-methyallyl)hydroxylamine (4) in ethanol in the presence of sodium acetate to give oxime O-allyl ether (5) as an oil in 75% yield (mixture of anti and syn form). Thermolysis of oxime O-allyl ether (5) in a sealed glass tube under air at 180°C (bath temperature) for 40 h yielded the pyridine compounds, which were separated by preparative thin layer chromatography on silica gel (40% recovery of the starting material).

The least-polar one was the mixture of diastereoisomers, guaipyrldine (1) and epiguaiopyridine (2) (10%). The middle one was the diastereoisomeric mixture of 2,8-dimethyl-5-isopropenylcyclohepta[b]pyridine (6) (14%). The other one was the mixture of 4,5-dimethyl-8-isopropenylcyclohepta[b]pyridine (7) and 4,8-dimethyl-5-isopropenylcyclohepta[b]pyridine (8) (10%). The mixture of (7) and
(8) was separated into three peaks by HPLC. The first and second peaks were diastereoisomers of (7) and the third peak was the mixture of diastereoisomers of (8). The structure of (7) and (8) were elucidated by NMR spectrum. 5-Methyl and 4-methyl protons of (7) showed the signals at δ [1.25 and 1.31] and [2.35 and 2.36], while 8-methyl and 4-methyl protons of (8) showed at δ [1.00 and 1.04] and 2.37.

Spectroscopic properties of (1), (2), and (6) showed good agreement with those described in the literature.

REFERENCE AND NOTES
5. ν CHCl₃: 1640 cm⁻¹ (C=N); MS m/z: 235.1907 (M⁺, calcd for C₁₅H₂₅N₂O, 235.1934).
6. Pure products were obtained by gas chromatography (not preparative) from the mixtures.
HETEROCYCLES, Vol 26, No. 4, 1987

7. Guaipyridine (I) and epiguaipyridine (2) could separate by preparative HPLC.

8. ν_{CHCl_3}: 3080, 3060, 1640, 1590, 1560, 1380 cm$^{-1}$; MS m/z: 215.1674 (M$^+$, calcd for C$_{15}$H$_{15}$N, 215.1673).

9. HPLC was performed on a Shimazu LC-3A liquid chromatograph system: Cosmosil 5C$_18$ (8mm × 250mm); solvent, CH$_3$OH-H$_2$O (3:1 v/v); flow rate, 1.7 ml/min.; uv-detector; retention time, peak 1=28.4 min., 2=32.0 min., 3=35.0 min. (7:3:6)

10. NMR (CDCl$_3$) δ: (7) peak 1: 1.31 (3H, d, J=7Hz, CH$_3$), 1.82 (3H, s, CH$_3$), 2.35 (3H, s, 4-CH$_3$), 4.72-4.80 (2H, m, >C=CH$_2$), 6.97 (1H, d, J=5Hz, 3-H), 8.20 (1H, d, J=5Hz, 2-H). peak 2: 1.25 (3H, d, J=7Hz, CH$_3$), 1.76 (3H, s, CH$_3$), 2.36 (3H, s, 4-CH$_3$), 4.64-4.78 (2H, m, >C=CH$_2$), 6.98 (1H, d, J=5Hz, 3-H), 8.24 (1H, d, J=5Hz, 2-H).

(8): 1.00 and 1.04 (1:3) (3H, d, J=6.5Hz, CH$_3$), 1.84 (3H, s, CH$_3$), 2.37 (3H, s, 4-CH$_3$), 4.72-4.84 (2H, m, >C=CH$_2$), 6.96 (1H, d, J=5Hz, 3-H), 8.20 and 8.24 (1H, d, J=5Hz, 2-H).

Received, 23rd December, 1986