A CONVENIENT ACCESS TO FURO[3,2-h]QUINOLINES
AND TO FURO[3,2-b]PYRIDINES VIA S_{RN} REACTIONS

René Beugelmans and Michèle Bois-Choussy

Institut de Chimie des Substances Naturelles, C.N.R.S.,
91190 Gif-sur-Yvette, France

Abstract - The two steps route to furo[3,2-h]quinolines 4 or to
furo[3,2-b]pyridines 11 involves an S_{RN} reaction between 5-
chloro-7-ido-8-isopropoxyquinoline 1a or 2-bromo-3-isopropoxy-
pyridine 15 and enolates derived from ketones. The substitu-
tion products 3 or 16, lead to the title compounds under acidic
treatment.

In contrast with natural furo[2,3-b]quinolines or with other furoquinolines in which the pyri-
dine ring is fused to the furan, isomeric furoquinolines containing the benzofuran moiety have
been less documented. This fact, together with a recent report on a four steps-synthesis
of furo[3,2-b]pyridine, a member of a large class of heterocycles, prompted us to publish
our new and straightforward access to the title heterocycles.

Our approach to the furoquinoline system IIIa (Y = CH; Z = N) and furopyridine IIIb (Y = N)
(Scheme I) involves the heterocyclisation of 8-(ortho-alcoxyhetaryl)ketones II obtained by reac-
ting properly substituted substrates I, with various enolates $R_2CH=CHO R_1$ under S_{RN}
conditions.
Synthesis of Furao[3,2-h]quinolines

As a convenient model for 1, we selected the 5-chloro-7-iodo-8-hydroxyquinoline (Clioquinol) recently shown in our laboratory to easily undergo substitution by sulfonions on position 7 via an S_{RN1} reaction. \(^1\) The free phenolic function, being not compatible with the S_{RN1} mechanism \(^12\) had to be protected and all reactions were thus performed on 8-isopropoxy or on 8-methoxy derivatives which are stable under the basic conditions of the S_{RN1} reaction.

![Scheme 2](image)

Enolates derived from various ketones $2a$-e, treated in liquid ammonia with $1a$ under illumination afforded $3a$-e in 36-80\% yield (Table 1). That the mechanism of the aromatic nucleophilic substitution was indeed S_{RN1} was shown by classical criteria: A model reaction between $1a$ and $2a$ was significantly inhibited i) in the dark, because of the lack of activation energy to initiate the chain process. ii) when 1,4-dinitrobenzene (10\%) was added to the photostimulated reaction medium, since this electron acceptor does not allow the chain propagation.

The primary S_{RN1} reaction products $3a$-d being themselves enolisable ketones may behave as nucleophiles toward $1a$ in a subsequent S_{RN1} reaction to give low yields of $5a$-d; moreover $3a$ may undergo an aldol reaction under the basic conditions and gave 6 (10\%). Both reactions (Scheme 3) have precedents in the literature on S_{RN1} reactions. \(^13\), \(^14\)

![Scheme 3](image)

The first of these side products $5a$ (9\%) was purified for structural determination while the others were isolated and characterized by their mass spectrum: $5b$ (9\%), 540-538 (M$^+$); $5c$ (5\%), 550-548 (M$^+$); $5d$ (9\%) 590-588 (M$^+$).
Table 1

<table>
<thead>
<tr>
<th>Substrate Ketone</th>
<th>Ketone enolate</th>
<th>SN1 conditions</th>
<th>SN1 product</th>
<th>Corresponding furoquinoline</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>CH₃-CO-CH₃</td>
<td>NH₃</td>
<td>hv; 1h</td>
<td>R₁ = CH₃, R₂ = H</td>
</tr>
<tr>
<td></td>
<td>CH₃-CO-C₆H₄</td>
<td>NH₃</td>
<td>hv; 1h</td>
<td>R₁ = C₆H₄, R₂ = H</td>
</tr>
<tr>
<td></td>
<td>CH₃-CO-C₆H₄O</td>
<td>NH₃</td>
<td>hv; 1h</td>
<td>R₁ = C₆H₄O, R₂ = H</td>
</tr>
<tr>
<td></td>
<td>CH₃-CO-C₆H₄OCH₃</td>
<td>NH₃</td>
<td>hv; 1h</td>
<td>R₁ = C₆H₄OCH₃, R₂ = H</td>
</tr>
<tr>
<td></td>
<td>CH₃-CO-C₆H₄OCH₃</td>
<td>Me₂SO</td>
<td>dark; 0.5h</td>
<td>R₁ = CH₃, R₂ = CH₃</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NH₃</td>
<td>hv; 1h</td>
<td>R₁ = CH₃, R₂ = CH₃</td>
</tr>
<tr>
<td>13</td>
<td>CH₃CH₂COCH₂CH₃</td>
<td>NH₃</td>
<td>hv; 1h</td>
<td>R₁ = CH₃CH₂, R₂ = CH₃</td>
</tr>
</tbody>
</table>

a hv: irradiation with Hanovia 450 W medium pressure mercury lamp.
b Yields for pure products after isolation.
The photostimulated reaction of 1a with the 6-methoxy-1-tetralone derived enolate 2e, which is known to be an efficient nucleophile in some S_{RN}^1 reactions, afforded as major product 8-isopropoxyquinoline 7 resulting from the reductive elimination of both (7)-I and (5)-Cl and a modest yield (35%) of 2-[7-(8-isopropoxy)quinolin-3-yl]-6-methoxy-1-tetralone 14e. The 7-chloro-quinolyl analog 3e was nevertheless obtained (36%) when the reaction was performed in Me$_2$SO as solvent in the dark; under photostimulation, only 5-chloro-8-isopropoxyquinoline 8 was obtained.

The competition between substitution and reduction was often observed in S_{RN}^1 reactions involving enolates such as 2e where B hydrogen atoms are available, but we are not aware of precedent concerning a solvent effect on the reduction pathway taking place on dihalo aromatic compounds. Although the double S_{RN}^1 reaction was known to occur on dihalobenzene treated with various ketone enolates, we observed it neither on the 5-chloro-7-iodo-8-isopropoxyquinoline 1a nor on the 5,7-dichloro-8-isopropoxyquinoline 2. These substrates carrying either Cl or I on position 7, when treated with 2b underwent monosubstitution only and gave identical yields 70% of 3b. In contrast, a model experiment carried out on 5,7-dibromo-8-methoxyquinoline 10 led to the doubly substituted product 11 (60%) together with 12 (15%) whose formation is similar to that of 5 (see above). Finally we have observed that the presence of an halogen on position 5 was not necessary for the S_{RN}^1 reaction to occur as exemplified by the substitution products 14e,f issued from reactions between 7-iodo-8-isopropoxyquinoline 13 and enolates derived from 2e,f (Table 1).

The treatment of the 8(ortho-isopropoxyhetaryl) ketones 3a-e with HBr 45%/AcOH at 100°C quantitatively led to the furo[3,2-b]quinolines 4a-e. The treatment of the aforementioned ketones by iodosilanes, which in our hands had promoted quantitatively both the OH deprotection and the heterocyclisation to benzo[b]furans was not here as much efficient, leading only to partial cyclisation.
Synthesis of Furo[3,2-b]pyridines

Hydroxypyridines ortho substituted by a proper leaving group are the starting materials on which the S_{RN1} substitution reaction had to be performed for synthesizing furopyridines by the above method (scheme 1). To illustrate the feasibility of this reaction, we selected compound 15 which can be easily prepared from the commercially available 2-bromo-3-hydroxypyridine. The treatment of 15 by enolates derived from 2,4 under standard S_{RN1} conditions (photostimulation, in liquid ammonia) gave high yields of the corresponding 8-(ortho-isopropoxypyridyl)ketones 16b,g. The substitution product 16d was obtained in near quantitative yield (98%) just by changing liquid ammonia at -33°C for Me$_2$S0 at room temperature. The acetophenone derived enolate 2f, previously reported not to react with 2-bromopyridine 21 happened to be an efficient nucleophile toward 15 in Me$_2$S0 to give 16f (Table 2).

The acidic treatment of 16b,d,f,g led quantitatively to the corresponding furopyridines 17b,d,f,g.

![Scheme 5](attachment:image.png)

Table 2.

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Ketone enolates</th>
<th>S_{RN1} conditions: solvent</th>
<th>S_{RN1} product</th>
<th>Corresponding furopyridine</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>(\text{CH}_3\text{-CO-C(CH}_3\text{)}_3)</td>
<td>(\text{NH}_3); 0.25h</td>
<td>16b (70%)</td>
<td>17b</td>
</tr>
<tr>
<td>15</td>
<td>(\text{CH}_3\text{-COOC}_6\text{H}_5\text{-OCH}_3)</td>
<td>(\text{NH}_3); 7h</td>
<td>16d (30%)</td>
<td>17d</td>
</tr>
<tr>
<td>15</td>
<td>(\text{CH}_3\text{-CO-C}_6\text{H}_5)</td>
<td>Me$_2$S0; 6h</td>
<td>16f (70%)</td>
<td>17f</td>
</tr>
<tr>
<td>15</td>
<td>(\text{C}_2\text{H}_5\text{-CO-C}_2\text{H}_5)</td>
<td>(\text{NH}_3); 1h</td>
<td>16g (86%)</td>
<td>17g</td>
</tr>
</tbody>
</table>

a) hv: irradiation with Hanovia 450W medium pressure mercury lamp. b) Yields for pure 8-(ortho-isopropoxypyridyl)ketones after isolation. c) OCH$_3$ partially hydrolyzed in the reaction with HBr 45% at 100°C. d) Unchanged substrate recovered ~60%.
This study showing that furopyridines and furoquinolines are obtained from halopyridine and halooquinolines carrying an hydroxy function ortho to the leaving group enlarges thus the scope of the S^1_{RN} based methodology for heterocyclic synthesis.

EXPERIMENTAL

Melting points are uncorrected and were measured on a Reichert melting point apparatus. Low-resolution mass spectra were obtained on an AEI MS 50 spectrometer; 1H nmr spectra (in CDCl$_3$) were recorded with Perkin-Elmer R 12 or Varian EM 360 instrument; chemical shifts from tetramethylsilane are given in δ. Purifications were achieved by column chromatography (C.C.) or by preparative thin-layer chromatography (P.T.L.C.).

Starting Materials

5-Chloro-7-ido-8-hydroxyquinoline 1, 5,7-Dichloro-8-hydroxyquinoline, 5,7-Dibromo-8-hydroxyquinine and 2-Bromo-3-hydroxypyridine are commercially available; 7-Iodo-8-hydroxyquinoline was prepared by iodation of 8-Hydroxyquinoline. The corresponding ethers were obtained by treating those materials (10 mmol) dissolved in DMF (20 ml) with CO$_2$K$_2$ (2.5 g) and 2-bromopropene (2 ml) or iodomethane (1.25 ml) and heating at 80°C for 2 h. Classical work up and purification (C.C.) on silica gel, elution with CH$_2$Cl$_2$, afforded 1^9_9, 9, 10, 13, 15.

5,7-Dichloro-8-isopropoxyquinoline 2

Mp 43-45°C, nmr δ 1.40 (d, 6H, J = 6.6 Hz), 5.15 (sept, 1H, J = 6.6 Hz), 7.50 (dd, 1H = H$_3$, J$_{3,4} = 9$ Hz, J$_{2,3} = 4.6$ Hz), 7.65 (s, 1H = H$_6$), 8.55 (dd, 1H = H$_4$, J$_{3,4} = 9$ Hz, J$_{2,4} = 1.9$ Hz), 9.00 (dd, 1H = H$_2$, J$_{2,3} = 4.6$ Hz, J$_{3,4} = 9$ Hz, J$_{2,4} = 1.9$ Hz), * m/z 259-257-255 (M$^+$) 217-215-213. Anal.Calcd for C$_{12}$H$_{11}$Cl$_2$NO: C, 56.30; H, 4.29. Found: C, 56.36; H, 4.15.

5,7-Dibromo-8-methoxyquinoline 10

Mp 104-105°C, nmr δ 4.15 (s, 3H), 7.50 (dd, 1H), 7.95 (s, 1H), 8.45 (dd, 1H), 8.95 (dd, 1H), ms m/z 319-317-315 (M$^+$), 288-286-284, 207-205. Anal.Calcd for C$_{10}$H$_{12}$Br$_2$NO: C, 37.90; H, 2.20. Found: C, 38.13; H, 2.18.

5-Iodo-8-isopropoxyquinoline 13

Mp 103-106°C, nmr δ 1.60 (d, 6H), 4.80 (sept, 1H), 6.90 (d, 1H), 7.50 (dd, 1H), 8.0 (d, 1H), 8.30 (dd, 1H), 8.90 (dd, 1H), ms m/z 313 (M$^+$) 298, 271, 255. Anal.Calcd for C$_{12}$H$_{12}$INO: C, 46.04; H, 3.83. Found: C, 46.22; H, 3.75.

2-Bromo-3-isopropoxyquinidine 15

Liquid. nmr δ 1.40 (d, 6H, J = 6.6 Hz), 4.60 (sept, 1H, J = 6.6 Hz), 7.25 (m, 2H = H$_4$ + H$_5$), 8.0 (dd, 1H = H$_6$), ms m/z = 217-215 (M$^+$), 175-173.

General Procedure

To liquid ammonia (50 ml) under argon in a 100 ml three-necked Pyrex flask fitted with a dry ice condenser were added the ketone (4 mmol), freshly sublimed t-C$_4$H$_9$OK (4 mmol), and the substrate (1 mmol). The flask was illuminated with 450 W pressure mercury lamps (Hanovia). The course of the reaction was monitored by analyzing aliquots (TLC) and after consumption of the substrate the reaction was quenched by adding NH$_4$Cl. After evaporation of the solvent, water

* J Values measured for derived products are not significantly different and are not worth further mentioning.
2,3-[1,2-(3,4-Dihydro-6-methoxy-naphthyl)-5-chlorofuro[3,2-h]quinoline 4e

Mp 190-194°C, nmr δ 3.0 (s, 4H), 3.80 (s, 2H), 6.80 (s, 2H), 7.50 (dd, 1H), 7.70 (s, 1H), 7.85 (d, 1H), 8.6 (dd, 1H), 9.05 (dd, 1H), ms m/z 337-335 (M⁺), 322-320. Anal. Calcd for C₂₀H₁₄ClNO₂: C, 71.56; H, 4.17; N, 4.17. Found: C, 71.29; H, 3.94; N, 4.12.

1,1-Di(7-(5-chloro-8-isopropoxy)-quinolyl)-2-propanone 5a

Mp 166-167°C, nmr δ 1.30-1.40 (d, 12 H), 2.40 (s, 3H), 5.70 (sept, 2H), 6.50 (s, 1H), 7.45 (s, 2H), 7.50 (dd, 2H), 8.55 (dd, 2H), 9.0 (dd, 1H), ms m/z 500-498-496 (M⁺), 655-453, 439-437, 413-411.

1-[7-(5-Chloro-8-isopropoxy)-quinolyl]-4-hydroxy-4-methyl-2-pentanone 6

Mp 83°C, nmr δ 1.25-1.40 (d, s, 12H), 2.65 (s, 2H), 3.90 (s, 2H), 5.35 (sept, 1H), 7.40 (s, 1H), 7.50 (dd, 1H), 8.55 (dd, 1H), 9.0 (dd, 1H), ms m/z 337-335 (M⁺), 322-320, 295-293.

8-Isopropoxyquinoline 7

Viscous. Nmr δ 1.55 (d, 6H), 4.85 (sept, 1H), 7.01 (dd, 1H), 7.40 (m, 3H), 8.15 (dd, 1H), 9.0 (dd, 1H), ms m/z 187 (M⁺), 172, 145.

5-Chloro-8-isopropoxyquinoline 8 (11t, 1) 7,7-Dipivaloylmethyl-8-methoxyquinoline 11

Mp 133°C, nmr δ 1.25 (m, 18H), 4.0 (broad s, 5H), 4.10 (s, 2H), 7.0 (s, 1H), 7.30 (dd, 1H), 7.95 (dd, 1H), 8.80 (dd, 1H), ms m/z 355 (M⁺), 340, 296, 270, 256. Anal. Calcd for C₂₂H₂₀NO₃: C, 74.38; H, 8.16; N, 3.94; O, 13.51. Found: C, 74.15; H, 8.30; N, 4.02; O, 13.70.

1,1-Di[(7-(5-pivaloylmethyl-8-methoxy)-quinolyl)-3,3-dimethyl-2-butane 12

Viscous. Nmr δ 1.30 (s, s, 2H), 4.2-4.4 (s, s, 10H), 7.05 (s, 1H), 7.3-7.6 (m, 4H), 8.2 (dd, 1H), 8.6 (dd, 1H), 9.0 (dd, 2H), ms m/z 610 (M⁺), 525, 427.

2-[7-(8-Isopropoxy)-quinolyl]-6-methoxy-1-tetralone 16e

Mp 120°C, nmr δ 1.45 (d, 6H), 2.45 (s, 3H), 3.0 (m, 2H), 3.8 (s, 3H), 4.30 (m, 1H), 4.75 (sept, 1H), 6.7-7.4 (m, 5H), 8.0 (m, 2H), 8.9 (dd, 1H), ms m/z 361 (M⁺), 346, 319. Anal. Calcd for C₂₃H₂₃NO₃: C, 76.47; H, 6.37; N, 3.67; O, 13.29. Found: C, 76.15; H, 6.68; N, 3.67; O, 13.59.

2-[7-(8-Isopropoxy)-quinolyl]-3-pentanone 16f

Viscous. Nmr δ 1.0 (t, 3H), 1.45 (broad d, 9H), 2.30 (q, 2H), 4.25 (q, 1H), 4.80 (sept, 1H), 7.0 (d, 1H), 7.25 (d, 1H), 7.40 (dd, 1H), 8.30 (dd, 1H), 8.90 (dd, 1H), ms m/z 271 (M⁺), 256, 214.

3-Isopropoxy-2-pivaloylmethylpyridine 16b

Viscous. Nmr δ 1.3 (m, 15H), 4.05 (s, 2H), 4.55 (sept, 1H), 7.10 (m, 2H), 8.15 (dd, 1H), ms m/z 235 (M⁺), 220, 178, 150.

2-isobutyryluro[1,2-b]pyridine 17b

Liquid. Nmr δ 1.40 (s, 9H), 6.55 (s, 1H), 7.10 (dd, 1H), J = 5 Hz and J = 8 Hz), 7.60 (dd, 1H), J = 8 Hz), 8.40 (dd, 1H), J = 5 Hz), ms m/z 175 (M⁺), 160. Anal. Calcd for C₁₁H₁₃NO: C, 75.45; H, 7.42; N, 7.99; O, 9.14. Found: C, 75.0; H, 7.46; N, 8.18; O, 9.40.

3-Isopropoxy-2-p-methoxyphenacylpyridine 16d

Viscous. Nmr δ (enol form) 1.25 (d, 6H), 3.80 (s, 3H), 4.40 (sept, m, 2H), 6.8-7.1 (m, 4H), 7.40 (s, 2H), 8.1 (t, 1H), ms m/z 285 (M⁺), 226, 153, 107.

2-p-Methoxyphenacyluro[1,2-b]pyridine 17d

Mp 100-103°C, nmr δ 3.90 (s, 3H), 7.15 (m, 4H), 7.85 (m, 3H), 8.55 (dd, 1H), ms m/z 225 (M⁺), 210. Anal. Calcd for C₁₄H₁₄NO₂: C, 74.68; H, 4.88; N, 6.22; O, 14.21. Found: C, 74.36; H, 5.18; N, 6.09; O, 14.15.
3-Isopropoxy-2-phenacylpyridine 16f
Viscous. Nmr δ (enol form) 1.20 (m, 6H), 4.40 (s, sept, 2H), 6.9 (m, 2H), 7.25 (m, 3H), 7.80 (m, 3H), ms m/z 255 (M⁺), 212, 196, 105, 77.

2-Phenylfuro[3,2-b]pyridine 17f
Mp 87-90°C, nmr δ 7.35 (m, 2H), 7.60 (m, 3H), 8.0 (m, 2H), 8.70 (dd, 1H), ms m/z 195 (M⁺), 167.
Anal. Calcd for C₁₇H₁₅NO: C, 80.01; H, 4.61; N, 7.17; O, 8.21. Found: C, 79.95; H, 4.91; N, 6.93; O, 8.21.

2-{2-(2-Isopropoxy pyridyl)-3-pentanone 16g
Liquid. Nmr δ 1.0 (t, 3H), 1.30 (m, 6H), 1.40 (d, 3H), 2.40 (q, 2H), 4.20 (q, 1H), 4.55 (sept, 1H), 7.05 (m, 2H), 8.0 (t, 1H), ms m/z 221 (M⁺), 165, 123, 106.

2-Ethyl-3-methylfuro[3,2-b]pyridine 17g
Liquid. Nmr δ 1.35 (t, 3H), 2.40 (s, 3H), 2.90 (q, 2H), 7.40 (dd, 1H), 7.90 (dd, 1H), 8.65 (dd, 1H), ms m/z 161 (M⁺), 146. Anal. Calcd for C₁₀H₁₁NO: C, 74.55; H, 6.83; N, 8.69; O, 9.93. Found: C, 74.34; H, 7.15; N, 8.63; O, 9.88.

REFERENCES

Received, 3rd March, 1987