A ONE-STEP SYNTHESIS OF PYRIMIDO[4',5'-c]ISOQUINOLINE RING SYSTEM BY
REACTION OF 6-(N-METHYLFFURFURYLAMINO)URACILS WITH DMAD¹

Michihiko Noguchi,* Seiji Nagata, and Shoji Kajigaeshi
Department of Industrial Chemistry, Faculty of Engineering,
Yamaguchi University, Tokiwadai, Ube 755, Japan

Abstract—Several pyrimido[4,5-c]isoquinoline derivatives were obtained
from the reaction of 6-(N-methylfurfurylamino)uracils 1 and DMAD in
refluxing ethanol. The formation of the pyrimidoisoquinoline system was
due to a sequence of the initial Diels-Alder reaction of the furan moiety of
1 and DMAD, and the successive intramolecular Michael addition.

Synthesis of the derivatives containing a pyrido[2,3-d]pyrimidine ring system and their
potentialities for antitumor² and antibacterial agents³ have attracted our attention, because this
ring system is widely found in biologically active compounds.⁴

Previously, we reported a facile synthetic approach to pyrazolopyridopyrimidine derivatives by an
intramolecular 1,3-dipolar addition reaction of pyrimidine system¹ In the course of our
synthetic study of pyrido[2,3-d]pyrimidines, which is made of a pyridine ring construction onto
pyrimidine system, we wish to communicate here the reaction of 6-(N-methylfurfurylamino)uracils
1 with dimethyl acetylenedicarboxylate (DMAD) giving pyrimido[4,5-c]isoquinoline derivatives.
Thus, the Diels-Alder reaction between a furan moiety of 1 and DMAD took place to afford an
oxanorbornadiene system, and the successive Michael addition of enamine part onto the
oxanorbornadiene system resulted in a pyrimido[4,5-c]isoquinoline system formation.

When 1,3-dimethyl derivative 1a was allowed to react with DMAD (1.1 mol equiv.) in refluxing
ethanol for 2 days, two isomeric 1:1 adducts 2a and 3a were obtained in both 19% yields together
with the starting materials. From their analytical⁵ and spectral data⁶, the structures of 2a and
3a were deduced to be 5,6,6a,9,10,10a-hexahydro-6a,9-epoxy-2,4-dimethyl-10,10a-bis(methoxy-
carbonyl)pyrimido[4,5-c]isoquinolone-1,3(2H,4H)-dione.

Although their configurations of the 10a-position were obscure, the two were corresponding to the
stereoisomers about the 10-position, which were assigned on the basis of the values of the
coupling constant between 9- and 10-H.
Table 1. Reaction of 1a with DMAD in Several Solvents

<table>
<thead>
<tr>
<th>Solvents</th>
<th>1a/DMAD</th>
<th>2a</th>
<th>3a</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>Recovered 1a</th>
</tr>
</thead>
<tbody>
<tr>
<td>ethanol</td>
<td>1/1</td>
<td>19</td>
<td>19</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>48</td>
</tr>
<tr>
<td>1-pentanol</td>
<td>1/1</td>
<td>17</td>
<td>13</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>59</td>
</tr>
<tr>
<td>acetonitrile</td>
<td>1/1</td>
<td>4</td>
<td>--</td>
<td>14</td>
<td>10</td>
<td>8</td>
<td>20</td>
</tr>
<tr>
<td>dioxane</td>
<td>1/1</td>
<td>4</td>
<td>--</td>
<td>14</td>
<td>21</td>
<td>8</td>
<td>37</td>
</tr>
<tr>
<td>dioxane</td>
<td>1/2</td>
<td>4</td>
<td>--</td>
<td>9</td>
<td>35</td>
<td>14</td>
<td>21</td>
</tr>
<tr>
<td>toluene</td>
<td>1/1</td>
<td>2</td>
<td>--</td>
<td>11</td>
<td>44</td>
<td>--</td>
<td>26</td>
</tr>
</tbody>
</table>

It turned out that the reaction of 1a with DMAD was sensitive to the solvents employed. The reaction proceeded in a more complicated manner in other solvents than alcohols: heating of 1a and DMAD in acetonitrile or dioxane afforded the Diels-Alder adduct 47, 1:2 adduct 58, and 5-(2-propioyloxy)uracil derivative 69 together with 2a as a minor product (Table 1).

In an attempt to obtain a better understanding for the pathway and solvent dependency of the reaction, the chemical conversions of 4 were investigated. The results revealed that 4 was a key intermediate in this reaction. Heating of 4 in ethanol gave a mixture (molar ratio: 12/1) of 2a and 1a10, in which the Michael addition of the C-5 of 4 onto the electron-deficient ene moiety in the oxanorbornadiene system and the retro Diels-Alder reaction took place, respectively. On the contrary, the heating in dioxane gave only 1a together with the unreacted 4. The pathway leading to 5 was also investigated. Treatment of 2a with DMAD in refluxing dioxane or ethanol gave a complex mixture of products, including another type of 1:2 adduct of 1a and DMAD.
other hand, the reaction of 4 with DMAD in refluxing dioxane afforded 5 in 83% yield, whereas the reaction in refluxing ethanol gave 2a predominantly (Scheme 1).

As evident from these findings, the formation of pyrimido[4,5-g]isoquinolines from 1a and DMAD was ascribed to be a sequence of two reactions, the Diels-Alder and Michael addition reactions. The reaction proceeded efficiently in protic solvents such as ethanol. Therefore, we next performed Scheme 2.
the reaction of 3-methyl-(lb) and 3-phenyluracil derivative (lc) with DMAD in ethanol to afford the expected 2'' and 3'1 in high total yields (Scheme 2).

ACKNOWLEDGEMENT

We wish to thank Professor Masashi Tashiro, Institute of Applied Material Study, Kyushu University, for the elemental analyses. We are also grateful to Drs. Keiji Saito and Tsuyoshi Arai, UBE Scientific Analysis Laboratory, for the measurements of 'H and 13C nmr spectra.

REFERENCES AND NOTES

5. All new compounds in this communication gave satisfactory analytical values.

6. 2a: mp 173-174 °C; ir(KBr): 1720, 1700, 1680 cm⁻¹ (CO); ¹H nmr(CDCl₃) δ: 2.98(s, 3H, N-CH₃), 3.32(d, 1H, 10-H, J=4 Hz), 3.35, 3.42(2s, 3H each, N-CH₃), 3.60, 3.77(2s, 3H each, OCH₃), 3.49, 3.96(2d, 1H each, 6-H, J=15 Hz), 5.08(dd, 1H, 9-H, J=4, 2 Hz), 6.18(1H, d, 7-H, J=6 Hz), 6.96(dd, 1H, 8-H, J=6, 2 Hz); ¹³C nmr(CDCl₃) δ: 28.1, 34.5, 43.6(N-CH₃), 49.9 (6-C), 52.2, 52.7(OCH₃), 56.6(10-C), 58.1(10a-C), 80.6(9-C), 89.6(8a-C), 99.4(10b-C), 132.2, 140.8(7- and 8-C), 152.8, 154.6, 162.3, 171.2, 171.4(C=O and 4a-C); ms m/z: 391(M⁺).

3a: mp 174-176 °C; ir(KBr): 1720, 1700, 1680 cm⁻¹ (CO); ¹H nmr(CDCl₃) δ: 3.00, 3.20, 3.41(3s, 3H each, N-CH₃), 3.52, 3.60(2s, 3H each, OCH₃), 3.90(br s, 1H, 10-H), 3.80, 3.96(2d, 1H each, 6-H, J=15 Hz), 5.00(br s, 1H, 9-H), 6.10(d, 1H, 7-H, J=6 Hz), 6.60(br d, 1H, 8-H, J=6 Hz); ms m/z: 391(M⁺).

7. 4: mp 162-164 °C; ir(KBr): 1710, 1700, 1630 cm⁻¹ (CO); ¹H nmr(CDCl₃) δ: 2.78, 3.34, 3.38(3s, 3H each, N-CH₃), 3.77, 3.80(2s, 3H each, OCH₃), 3.70, 3.92(2d, 1H each, -CH₂-, J=15 Hz), 5.33(s, 1H, 5-H), 5.71(d, 1H, 4'-H, J=2 Hz), 7.00(d, 1H, 2'-H, J=6 Hz), 7.23(dd, 1H, 3'-H, J=2, 6 Hz); ¹³C nmr(CDCl₃) δ: 27.9, 32.8, 42.5(N-CH₃), 51.6(-CH₂-), 52.3, 52.4(OCH₃), 84.3 (4'-C), 89.3(1'-C), 97.6(5-C), 143.5, 144.9(2'- and 3'-C), 153.0, 153.2(5'- and 6'-C), 160.5, 162.8, 163.0, 163.2, 164.1(C=O and 4a-C); ms m/z: 391(M⁺).
8. 5: mp 248-250 °C; ir(KBr): 1740, 1660 cm⁻¹ (CO); ¹H nmr(CF₃COOD) δ: 3.28, 3.34(2s, 9H total), \(>\text{N-CH₃}\), 3.50(d, 1H, 7-H, J=4 Hz), 3.72, 3.78, 3.84(3s, 12H total, OCH₃), 3.90, 4.42(2d, 1H each, 11-H, J=4 Hz), 5.27(dd, 1H, 8-H, J=4, 2 Hz), 6.18(d, 1H, 10-H, J=6 Hz), 7.09(dd, 1H, 9-H, J=2, 6 Hz); ¹³C nmr(CF₃COOD) δ: 30.6, 41.5, 43.8(N-CH₃), 49.8(11-C), 55.2, 55.8, 56.0, 56.2(OCH₃), 60.6(7-C), 77.3(6a-C), 82.0(8-C), 88.0(10a-C), 91.9(4a-C), 106.4(6-C), 144.2, 147.2(9- and 10-C), 159.5(5-C), 160.7(12a-C), 166.1, 167.2, 168.4, 168.8, 170.6, 172.7(C=O).

9. 6: mp 203-204 °C; ir(KBr): 1740, 1720, 1670 cm⁻¹ (CO); ¹H nmr(CDC13) δ: 3.25, 3.28, 3.37(3s, 3H each, \(>\text{N-CH₃}\), 3.97(s, 3H, OCH₃), 5.10(s, 1H, -CH₂-), 6.4, 7.4(m, 3H total, furan ring protons); ms m/z: 359(M⁺).

A formation of products similar to 6 was reported in the reaction of 6-aminouracils with DMAD.¹³

10. The accurate pathway leading to 3a is not attained so far. However, we suppose that the conversion of 4 to 2a or 3a would be highly dependent upon the conditions.

11. 2b: mp 204-205 °C; ir(KBr): 3200(NH), 1730, 1700, 1640 cm⁻¹ (CO); ¹H nmr(CDCl₃) δ: 3.15, 3.24(2s, 3H each, \(>\text{N-CH₃}\), 3.57, 3.73(2s, 3H each, OCH₃), 3.80(d, 1H, 10-H, J=4.5 Hz), 3.59, 4.18(2d, 1H each, 6-H, J=14 Hz), 5.05(dd, 1H, 9-H, J=4.5, 1.5 Hz), 6.04(d, 1H, 7-H, J=6 Hz), 6.65(dd, 1H, 8-H, J=6, 1.5 Hz), 9.7(br s, 1H, >NH).

Product 2c was not isolated as a pure form. However, the structure was confirmed by ¹H nmr spectrum in CDCl₃ δ: 1.96(s, 3H, \(>\text{N-CH₃}\), 3.62, 3.67(2s, 3H each, OCH₃), 3.63, 4.06(2d, 1H each, 6-H, J=14 Hz), 3.82(d, 1H, 10-H, J=4 Hz), 5.06(dd, 1H, 9-H, J=4, 1.5 Hz), 6.36(d, 1H, 7-H, J=6 Hz), 6.77(dd, 1H, 8-H, J=6, 1.5 Hz), 7.0-7.6(m, 5H, phenyl), 10.2(br, 1H, >NH).

12. 3b: mp 215-217 °C; ir(KBr): 3250-2950(NH), 1760, 1720, 1640 cm⁻¹ (CO); ¹H nmr(CDCl₃) δ: 2.97(s, 3H, \(>\text{N-CH₃}\), 3.54, 3.62(2s, 3H each, OCH₃), 3.51, 4.17(2d, 1H each, 6-H, J=14 Hz), 3.79(s, 1H, 10-H), 3.60, 4.19(2d, 1H each, 6-H, J=14 Hz), 4.94(d, 1H, 9-H, J=1.5 Hz), 6.18(d, 1H, 7-H, J=6 Hz), 6.78(dd, 1H, 8-H, J=6, 1.5 Hz), 10.3(br, 1H, >NH).

3c: mp 243-245 °C(dec.); ir(KBr): 3200-3000(NH), 1730, 1700, 1640 cm⁻¹ (CO); ¹H nmr(CDCl₃) δ: 2.97(s, 3H, \(>\text{N-CH₃}\), 3.54, 3.62(2s, 3H each, OCH₃), 3.51, 4.17(2d, 1H each, 6-H, J=14 Hz), 3.79(s, 1H, 10-H), 4.95(d, 1H, 9-H, J=1.5 Hz), 6.02(dd, 1H, 8-H, J=6, 1.5 Hz), 7.0-7.5(m, 5H, phenyl), 10.3(br, 1H, >NH).

Received, 29th May, 1987