THE REACTIONS OF CARBONYL YLIDES WITH
AZODICARBOXYLIC ESTERS

Helmut Hamberger, Rolf Huisgen, * Volker Markowski, and
Scarlett Sustmann

Institut für Organische Chemie der Universität München,
Karlstr. 23, D-8000 München 2, Germany

Dedicated to Ken'ichi Takeda on the Occasion of His
Seventieth Birthday

The carbonyl ylides, generated by thermal electrocyclic
ring opening of 2,3-diaryl-2,3-dicyanooxiranes, combine
with azodicarboxylic esters to give primary cycloadducts
which eliminate aroyl cyanide and produce α-cyanoarylidenehydrazine–N^β, N^β-dicarboxylic esters. Whereas the di-
methyl esters are thermostable, the diethyl esters under-
go a fragmentation to ethyl α-cyanoarylidenehydrazine–N^β-
carboxylate besides ethylene and carbon dioxide.

Azomethine ylides, which occur in a thermal equilibrium
with suitably substituted aziridines, undergo 1,3-dipolar cyclo-
additions to azodicarboxylic esters to yield stable 1,2,4-triazol-
olidine derivatives.1 Analogously, the substituted oxiranes 1 en-
tertain thermal equilibria with small concentrations of the car-
The reactions of \(\text{la} \) and \(\text{b} \) with dimethyl azodicarboxylate at 120-130°C provided compounds \(\text{C}_{12}\text{H}_{11}\text{N}_{3}\text{O}_{4} \) (54\%, mp 114.5-116°C) and \(\text{C}_{12}\text{H}_{10}\text{N}_{4}\text{O}_{6} \) (50\%, mp 118.5-120°C), respectively. The expected cycloadducts, the 1,3,4-oxdiazolidines 2, probably suffered elimination of acryl cyanide. It has been demonstrated that the cycloaddition of the azomethine imines \(\text{4} \) to carbonyl compounds is reversible. Thus, the 1,3-dipolar cycloreversion of 2 should yield the azomethine imines 5 or their stabilization products.

Azomethine imine \(\text{N}^{\alpha},\text{N}^{\beta}\)-dicarboxylic esters which result from interaction of diazoalkanes with azodicarboxylic esters, can undergo a reversible cyclization to 1,3,4-oxdiazolines of type 6 and an irreversible acyl shift to hydrazone-\(\text{N}^{\beta},\text{N}^{\beta}\)-dicarb-
oxylic esters,6,7 \(Z \) in our example. The properties of the products are indeed in agreement with the hydrazone \(Z \).

The equivalence of the ester singlets in the nmr spectrum (CDCl\(_3\), \(\tau \) 6.05 for \(Z_a \) and 6.00 for \(Z_b \), is consistent with the hydrazone formulae or the diaziridine structure \(S \), but not with \(Z \) or \(S \). The carbonyl frequencies (KBr) are unusually high: 1796 cm\(^{-1}\) for \(Z_a \) and 1773 cm\(^{-1}\) for \(Z_b \); the bond system of \(Z \) corresponds to a diacylimide. The uv spectra (ethanol) allow us to discard \(S \) in favor of \(Z \): \(\lambda_{\text{max}} \) (log \(\varepsilon \)) = 275 (3.91) for \(Z_a \), 323 (3.91) and 275 nm (4.07) for \(Z_b \). The uv maxima depend only slightly on solvent polarity.

The reaction of \(\alpha \)-diazophenylacetonitrile with dimethyl azodicarboxylate at 70°C produced a specimen identical with \(Z_a \): the low yield (2\%) limits conclusions. Stronger chemical evi-
dence for 7b comes from the 92% conversion to the monoester 2 (mp 194-199°C dec.) in refluxing methanol (48 hr). The ir spectrum of 2 (KBr) shows bands at 3125 for NH, 2215 for C≡N and 1724 cm⁻¹ for C=O; the acidic NH appears in the nmr at δ -0.5. The uv band of 2 at 321 nm (log ε 4.35) undergoes a bathochromic shift by 89 nm on deprotonation to the orange anion (410 nm, log ε 4.35) with NaOC₂H₅/C₂H₅OH.

\[
\begin{align*}
\text{NC} & \text{C=N-N} \quad \text{H} \\
\text{(4)-NO₂ C₆H₄ CO₂CH₃} \\
\end{align*}
\]

\[
\begin{align*}
\text{H₂C} & \text{C} \quad \text{O} \quad \text{H₂C} + \text{CO₂} \\
\text{NC} & \text{C=N-N} \quad \text{H} \\
\text{Ar} & \text{CO₂C₂H₅} \\
\end{align*}
\]

10

11

a: Ar = C₆H₅

b: Ar = C₆H₄NO₂⁻(4)

Whereas the dimethyl ester 7a is stable at 180°C, the corresponding diethyl ester 10a, produced from 1a and diethyl azodicarboxylate at 180°C, undergoes elimination of CO₂ and ethylene affording 11a (mp 94-96°C) in 51% yield. Fragmentations in the pyrolysis of ethyl esters were formulated via cyclic electron shifts as early as 1938. The p-nitrophenyl compound 10b (mp 64-66°C) was accessible from 1b and diethyl azodicarboxylate at 140°C in 60% yield; at 180°C it was likewise converted to
llb (mp 194-186°C dec.). The 262 peak corresponding to the cation of llb is the base peak in the mass spectrum of 10b.

REFERENCES

Received, 12th July, 1976