SYNTHESIS OF ISOXAZOLO[5,4-b]PYRIDINES AND
ISOXAZOLO[5,4-d]PYRIMIDINES FROM 5-AMINOISOXAZOLES

Hiroshi Yamanaka* and Takao Sakamoto
Pharmaceutical Institute, Tohoku University
Aobayama, Sendai 980, Japan

Akira Shiozawa
Research Laboratories of Pharmaceutical Division,
Nippon Kayaku Co., 3-31, Shimo, Kitaku, Tokyo 115, Japan

3-Phenyl-4-formyl-5-aminoisoxazole (III) was
synthesized by the Vilsmeier reaction of 3-phenyl-5-
aminoisoxazole (I) via a stable intermediate, 3-phenyl-
4-formyl-5-dimethylaminomethyleneaminoisoxazole (III).
Condensation of III with β-keto acids and amidine
derivatives afforded isoxazolo[5,4-b]pyridines and
isoxazolo[5,4-d]pyrimidines, respectively.

The compounds containing the ring system of isoxazolo[5,4-
b]pyridine were frequently prepared by the reaction of 5-
aminoisoxazoles with β-dicarbonyl compounds. For instance
Abignente et al.1) reported that 3-methyl-5-aminoisoxazole reacted
with 1,1,3,3-tetraethoxypropane to give 3-methylisoxazolo[5,4-b]-
pyridine, and Markillie et al.\textsuperscript{2} reported the synthesis of 3,4,6-trimethylisoazolo[5,4-b]pyridine.

However, few work on the synthesis of isoazolo[5,4-b]-pyridine derivatives by means of the Friedländer reaction was described in literatures. In this paper, we wish to report the preparation of 3-phenyl-4-formyl-5-aminoisoxazole (III) and the formation of condensed isoxazole ring systems.

When I was heated with the Vilsmeier reagent (POCl\textsubscript{3} + DMF)\textsuperscript{3} at 70° for 20 hr, pale yellow needles, C\textsubscript{13}H\textsubscript{13}O\textsubscript{2}N\textsubscript{3} (II), mp 120-121°, were obtained in 82\% yield. The IR spectrum (CHCl\textsubscript{3}) of II showed absorption bands at 1675, 1635, 1590 and 1570 cm\textsuperscript{-1}. The NMR spectrum (CDCl\textsubscript{3}) of II exhibited signals at \( \delta \) 3.11 (6H, s), \( \delta \) 7.25-7.57 (3H, m), \( \delta \) 7.65-7.93 (2H, m), \( \delta \) 8.57 (1H, s) and \( \delta \) 9.82 (1H, s). No signal due to the isoxazole ring proton was observed. These spectral data suggested II to contain a formyl group along with a dimethylaminomethyleneamino group on the iso-oxazole ring. Hydrolysis of II with 6N HCl at room temperature quantitatively afforded 3-phenyl-4-formyl-5-aminoisoxazole,
C$_{10}$H$_8$O$_2$N$_2$ (III), mp 125-126°, whose spectral data [IR$_{\text{CHCl}_3}$, 3 cm$^{-1}$, 3350, 3360, 1668, 1609 and 1593; NMR $\delta$(CDCl$_3$), 6.60-7.32 (2H, broad), 7.32-8.00 (5H, m), and 9.66 (1H, s)] are in accordance with the structure III.

At first the reaction of III with $\beta$-dicarbonyl compounds was investigated. According to the usual manner of the Friedländer reaction$^4$ III was treated in boiling acetic acid for an appropriate period with such compounds as ethyl acetoacetate, acetylacetone, ethyl cyanoacetate and malononitrile to give isoxazolo[5,4-b]pyridine derivatives (IVa-d). The melting points, yields and spectral data of IVa-d were as follows:

3-phenyl-5-ethoxycarbonyl-6-methylisoxazolo[5,4-b]pyridine (IVa); mp 123-124°; 42%; IR$_{\text{CHCl}_3}$ cm$^{-1}$: 1725, 1617; NMR $\delta$(CDCl$_3$): 1.43 (3H, t, $J$=7.1Hz), 2.97 (3H, s), 4.44 (2H, q, $J$=7.1Hz), 7.38-7.76 (3H, m), 7.76-8.14 (2H, m), 8.81 (1H, s).

3-phenyl-5-acetyl-6-methylisoxazolo[5,4-b]pyridine (IVb); mp 140-141°; 44%; IR$_{\text{CHCl}_3}$ cm$^{-1}$: 1700, 1618; NMR $\delta$(CDCl$_3$): 2.68 (3H, s), 2.87 (3H, s), 7.38-7.70 (3H, m), 7.70-8.03 (2H, m), 8.52 (1H, s).

3-phenyl-5-ethoxycarbonyl-6-aminoisoxazolo[5,4-b]pyridine (IVc); mp 158-159°; 27%; IR$_{\text{CHCl}_3}$ cm$^{-1}$: 3522, 3365, 1700, 1630; NMR $\delta$(CF$_3$CO$_2$H): 1.50 (3H, t, $J$=7.2Hz), 4.60 (2H, q, $J$=7.2Hz), 7.50-8.10 (5H, m), 9.24 (1H, s).

3-phenyl-5-cyano-6-aminoisoxazolo[5,4-b]pyridine (IVd); mp 218-219°; 17.3%; IR$_{\text{CHCl}_3}$ cm$^{-1}$: 3460, 3350, 2220, 1664, 1632; NMR $\delta$(CF$_3$CO$_2$H): 7.33-8.00 (5H, m), 8.63 (1H, s).

The scope and limitations of this reaction were further
examined by using amidine derivatives instead of \( \beta \)-dicarbonyl compounds, under basic conditions. When III was warmed in ethanol with an equimolar amount of formamidine acetate in the presence of sodium ethoxide, 3-phenylisoxazolo[5,4-d]pyrimidine (Va) was obtained in 62% yield. [NMR \( \delta \text{(CDCl}_3 \text{)} \): 7.36-7.73 (3H, m), 7.73-8.13 (2H, m), 9.16 (1H, s), 9.40 (1H, s)]. On treatment with free base of ethyl aceticiddate, III was converted to 3-phenyl-6-methylisoxazolo[5,4-b]pyrimidine, \( \text{C}_{12}\text{H}_9\text{ON}_3 \) (Vb), mp 147-148° in 82% yield. The NMR spectrum of Vb [\( \delta \text{(CF}_3\text{COOH)} \): 3.32 (3H, s), 7.55-7.86 (3H, m), 7.86-8.15 (2H, m), 9.80 (1H, s)] was in full agreement of the structure. Similarly 3,6-diphenyl- (Vc), mp 162-163° (62%) and 3-phenyl-6-amino-isoxazolo[5,4-d]pyrimidine (Vd), mp 251-252° (67%), were obtained from the reaction of III with ethyl benzimidate and guanidine hydrochloride, respectively.

It is well known that the treatment of quinazoline with organic peracid gives rise to 4-quinazolone instead of desired

![Chemical structure diagram](chart)

**Chart 2**
quinazoline N-oxide,\textsuperscript{5}) and that quinazoline 3-oxide was obtained from the condensation of o-aminobenzaldoxime with ethyl orthoformate.\textsuperscript{5}) Thus 3-phenyl-5-aminoisoxazole-4-aldoxime, mp 188-189°, which was prepared according to the usual method, was heated with excess ethyl orthoformate to afford yellow leaflets (VI) \(\text{C}_{11}\text{H}_{7}\text{O}_{2}\text{N}_{3}\), mp 223-224° in 45% yield \([\text{IR(KBr)}, 1246 \text{ cm}^{-1}]\). The product obtained from the reduction of VI with phosphorous trichloride in chloroform, was identical with Va in every respect, which proved VI to be 3-phenylisoxazolo[5,4-b]pyrimidine 5-oxide.

ACKNOWLEDGEMENT The authors express their deep gratitude to Drs. W. Tanaka and H. Miyazaki, Nippon Kayaku Co., for their kind and unfailing guidance throughout the course of this work. They are also indebted to all the staffs of the Central Analytical Room of the Pharmaceutical Institute, Tohoku University for elemental analysis and spectral measurements.

REFERENCES

Received, 10th March, 1977