ENANTIOCONTROLLED SYNTHESIS OF NATURAL PRODUCTS UTILIZING HETEROCYCLES

Seiichi Takano, Kazuhiko Seya, Hirotoshi Numata, Emiko Goto,
Michiyasu Hirama, and Kunio Ogusawara

Pharmaceutical Institute, Tohoku University, Aobayama, Sendai 980, Japan

Some natural products containing a tertiary methyl group at the chiral center have been synthesized enantioselectively from the common glycerol derivative ((R)-1) via heterocyclic intermediates. This approach involves an efficient conversion of the one enantiomer ((R)-1) into the alternative one ((S)-1) via the transient heterocycle (2). Chirality transfer of the each glycerol into the target molecules is accomplished via the corresponding epoxide (3) in an efficient manner allowing novel syntheses of the aggregation pheromone of Gnathotrichus sulcatus (+)-and (-)-sulcatol, (4) the bisabolane type sesquiterpenes (+)-α-curcumene (5), (+)-nuciferal (6), (+)-nuciferol (7), a marine steroid 20β-H cholic acid (8), and a vitamin D metabolite desmosterol (9).

![Diagram of the synthesis process involving enantiomer conversion and chirality transfer via heterocyclic intermediates.](image)