REACTION OF HYDRAZINES AND HYDROXYLAMINE WITH TRIFLUOROMETHYL-\(\beta\)-DIKETONES: SYNTHESIS OF TRIFLUOROMETHYLPYRAZOLE AND ISOXAZOLE DERIVATIVES

Vinod Kumar, Ranjana Aggarwal, and Shiv P. Singh*

Department of Chemistry, Kurukshetra University, Kurukshetra –136 119, India
Fax: +01744-238628, 238277. E-mail: shivpsingh@rediffmail.com

Abstract – The reaction of trifluoromethyl-\(\beta\)-diketones with hydrazines and hydroxylamine finds interesting application in the synthesis of trifluoromethylpyrazole and isoxazole derivatives. The review covers the literature of the reactions mentioned up to 2007. Mechanistic aspects leading to the formation of these heterocycles and their NMR spectral characteristics are also described.

1. INTRODUCTION
Trifluoromethylpyrazole and isoxazole derivatives\(^1\)\(^-\)\(^12\) are important classes of compounds because of diverse biological properties associated with them. As a lot of work has been done in the past on the synthetic and mechanistic pathways of trifluoromethylpyrazole and isoxazole derivatives involving the reaction of trifluoromethyl-\(\beta\)-diketones with hydrazines and hydroxylamine, it is the aim of this review to update the status of this reaction. The reaction may proceed through a similar mechanism as has been established for the condensation of hydrazines or hydroxylamine with nonfluorinated-\(\beta\)-diketones. Investigation of the mechanism of the reaction of \(\beta\)-diketones with hydrazines or hydroxylamine has been a subject matter of several studies. It was shown, that \(\beta\)-diketones exist in three tautomeric forms\(^{13,14}\). Hydrazines or hydroxylamine (2), being binucleophilic in nature, may attack on any one of the electrophilic centers of \(\beta\)-diketone (1) to generate a number of intermediates which eventually lead to the formation of two regioisomeric products (5 & 6) after cyclization (Scheme 1).

2. REACTION OF TRIFLUOROMETHYL-\(\beta\)-DIKETONES WITH HYDRAZINES
Reaction of trifluoromethyl-\(\beta\)-diketones with hydrazine was first reported by Wagner\(^{15}\) in 1965. He
reported the synthesis of a number of biologically active 3 or 5-trifluoromethylpyrazoles (9 or 9') by treating hydrazine hydrate with trifluoromethyl-β-diketones. Nishiwaki16 has also repeated the similar reaction (R = Me) (Scheme 2).

![Scheme 1](image-url)

R, R' = alkyl, aryl
R'' = H, alkyl, aryl, heteroaryl
Trofimenko17 has reported that the slow addition of 1,1,1,5,5,5-hexafluoropentane-2,4-dione to hydrazine hydrate at 5 °C results in the formation of 3(5)-bis(trifluoromethyl)pyrazole (10) (Scheme 3).

\[\text{Scheme 2} \]

Portnoy18 reported the synthesis of several 3-trifluoromethyl-1-(4-trifluoromethyl-2-pyridyl)pyrazoles (11) by the reaction of 2-hyrazino-4-trifluoromethylpyridines with trifluoromethyl-β-diketones. However, no evidence in support of the proposed structure was provided (Scheme 4).

\[\text{Scheme 3} \]

Secor and Debardeleben19 have reported that the reaction of several α-trifluoroacetylketones with hydrazine and thiosemicarbazide results in the formation of 5-trifluoromethylpyrazoles (14) in some cases or 5-hydroxyazeprazoles (13) in other. Also, it has been observed that in the reaction of 2-trifluoroacetylcylopentanone and thiosemicarbazide, a stable enol (12) was obtained which did not cyclize to 13 or 14 probably due to the hydrogen bonding (Scheme 5).
Lyga and Patera20 have reported that reaction of arylhydrazines with 1,1,1-trifluoropentane-2,4-dione results in the formation of 1-aryl-3-methyl-5-trifluoromethylpyrazoles (15) as the major product along with minor amounts of the 5-hydroxy-5-trifluoromethylpyrazolines (16) (Scheme 6). They have also achieved the regioselective synthesis of (19, Ar = Ph) by treating trifluoromethyl-β-diketones first with pyrrolidine at 0 °C to yield Michael addition product 17, which on subsequent treatment with phenylhydrazine gives 18 exclusively. As expected, the compound 18 on treatment with acid gives the corresponding pyrazole 19 (Scheme 7).

\[
\begin{align*}
\text{CF}_3 & \quad \text{O} \\
\text{O} & \quad \text{NH} \\
\text{NH} & \quad \text{NH}_2 \\
\end{align*}
\]

\[
\begin{align*}
\text{CF}_3 & \quad \text{O} \\
\text{O} & \quad \text{OH} \\
\end{align*}
\]

\[
\begin{align*}
\text{CF}_3 & \quad \text{N} \\
\text{N} & \quad \text{R} \\
\end{align*}
\]

\[
\begin{align*}
\text{CF}_3 & \quad \text{N} \\
\text{N} & \quad \text{R} \\
\end{align*}
\]

\[
\begin{align*}
\text{R} & = \text{H}, \text{CSNH}_2 \\
\end{align*}
\]

\begin{scheme}
\textbf{Scheme 5}
\end{scheme}

\[
\begin{align*}
\text{Me} & \quad \text{O} \\
\text{O} & \quad \text{CF}_3 \\
\end{align*}
\]

\[
\begin{align*}
\text{ArNHNNH}_2 & \quad \text{THF} \\
25 \degree \text{C} & \quad \text{Ar} \\
\end{align*}
\]

\[
\begin{align*}
\text{Ar} & \quad \text{N} \\
\text{N} & \quad \text{Me} \\
\end{align*}
\]

\[
\begin{align*}
\text{Ar} & \quad \text{N} \\
\text{N} & \quad \text{Me} \\
\end{align*}
\]

\[
\begin{align*}
\text{HO} & \quad \text{F}_3\text{C} \\
\end{align*}
\]

\[
\begin{align*}
\text{F}_3\text{C} & \quad \text{Me} \\
\end{align*}
\]

\[
\begin{align*}
\text{F}_3\text{C} & \quad \text{Me} \\
\end{align*}
\]

(5 : 1)

\begin{scheme}
\textbf{Scheme 6}
\end{scheme}

It has been reported that dehydration of 3,5-\textit{bis}(trifluoromethyl)-4,5-dihydro-5-hydroxy-1-(4'-nitrophenyl)pyrazole (20), obtained by the reaction of \textit{p}-nitrophenylhydrazine with 1,1,1,5,5,5-hexafluoropentane-2,4-dione, could be achieved by treating it with a small quantity of acid in boiling ethanol. This method was found to be very effective and the pyrazole (21) was obtained in high yield (Scheme 8). Obviously, the presence of an acid favours the protonation of the hydroxyl group followed by facile dehydration.21
On the other hand, 3, 5-bis(trifluoromethyl)-4, 5-dihydro-5-hydroxy-1-(pentafluorophenyl)pyrazole (22), obtained by treating pentafluorophenylhydrazine with 1,1,1,5,5,5-hexafluoropentane-2,4-dione, did not undergo dehydration under these conditions. The compound was eventually dehydrated to the corresponding pyrazole (24) on treatment with acetic anhydride and acetic acid under reflux for 16 h. In the presence of Ac₂O the hydroxyl group was converted to an acetoxy group, which is indeed an efficient, leaving group²¹ (Scheme 9).

![Scheme 7]

![Scheme 8]
In a careful study, Elguero and Yranzo22 have established that the mechanism of formation of pyrazoles including trifluoromethylpyrazoles involves the intermediacy of 3,5-dihydroxypyrazolidines (25) and 5-hydroxypyrazolines (26). While the intermediate 26 has actually been isolated, 25 was found to be so unstable that it could be characterized only by NMR using special stop flow technique. Later on Elguero \textit{et al.}23 have isolated both the intermediates 25 and 26 successfully which were subsequently dehydrated to corresponding pyrazoles (27) (Scheme 10).

![Scheme 9](image)

![Scheme 10](image)

Formation of 5-(2-thienyl)-3-trifluoromethylpyrazoles (28) and (29) has been reported from our laboratory.24 These compounds were conveniently obtained by the condensation of 4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedione with 2-hydrazinobenzothiazoles and 2-hydrazinothiazoles, respectively (Scheme 11).
Several other heterocyclic hydrazines have similarly been treated with trifluoromethyl-1,3-diketones to yield corresponding 3-trifluoromethylpyrazoles.3,25-27 Joshi \textit{et al.}27 and Claire \textit{et al.}28 have reported that the reaction of 1,1,1,5,5,5-hexafluoropentane-2,4-dione with several hydrazines provides hydrated 3,5-\textit{bis}(trifluoromethyl)pyrazoles (30). In the same report28 synthesis of 1-aryl and aroyl-3,5-\textit{bis}(trifluoromethyl)pyrazoles was claimed to have been achieved by the reaction of substituted hydrazines with 1,1,1,5,5,5-hexafluoropentane-2,4-dione in refluxing ethanol (Scheme 12). The structure of the products was subsequently reinvestigated by Threadgill \textit{et al.}29 The reaction was performed under identical conditions and the authors have assigned the structure as 5-hydroxy-5-trifluoromethylpyrazoline (31) primarily on the basis of \textit{19}F spectral data of the products.29 They observed that till date the pyrazole structure was assigned on the basis of \textit{19}F NMR value of δ-80 ppm. It is actually a characteristic value for the CF$_3$ group located on a 5-hydroxypyrazoline ring at position-5. It thus became evident that previous authors28 have indeed obtained 5-hydroxy-5-trifluoromethyl-1\textit{H}-pyrazolines (31) instead of the erroneously reported pyrazole monohydrates (30). Corresponding pyrazoles (32) were subsequently obtained by the dehydration of 31 under strong acidic conditions (Scheme 12).

\begin{center}
\includegraphics[width=\textwidth]{Scheme11.png}
\end{center}

\textbf{Scheme 11}

In continuation of the work related to the reaction of hydrazines with trifluoromethyl-\textit{β}-diketones, the synthesis of isomeric 3-trifluoromethyl-5-methyl-1-[4'-(aryl)thiazole-2'-yl]pyrazole (33) and 5-trifluoromethyl-3-methyl-1-[4'-(aryl)thiazole-2'-yl]pyrazole (34) was reported from our laboratory.30
However, when 2-hydrazinobenzothiazole was treated with 1,1,1-trifluoropentane-2,4-dione, there was an exclusive formation of 5-trifluoromethylpyrazoles (35). In an attempt to isolate the intermediate of the reaction, 6-chloro-2-hydrazinobenzothiazole was treated with trifluoromethyl-β-diketones in absolute ethanol at rt. This reaction indeed provided the intermediate 5-hydroxy-5-trifluoromethylpyrazoline (36) rather than the hydrazone or pyrazole. The other regioisomer 3-trifluoromethylpyrazole could not be isolated even in traces. 36 underwent ready dehydration on refluxing in acetic acid-sulphuric acid or ethanol-HCl yielding the corresponding 5-trifluoromethylpyrazoles (35) (Scheme 13).

However, in order to make unambiguous assignments of the location of the trifluoromethyl group at positions-3 or 5, isomeric trifluoromethylpyrazoles (35 & 38) were synthesized by the condensation of 2-chlorobenzothiazole (37) and the sodium salt of NH-pyrazoles (9) (R = Me, phenyl, 2-thienyl) (Scheme 14). The isomeric products, obtained in 1:4 ratio, (35 & 38) were separated by column chromatography and were characterized by NMR spectral analysis.

STEREOCHEMICAL ASSIGNMENT OF REGIOISOMERS FOR PYRAZoles

NMR spectroscopy (1H, 13C and 19F) has been extensively used for the assignment of trifluoromethyl substituent in the pyrazole derivatives.

1H NMR SPECTROSCOPY

The structure of isomeric 1-subsituted-3(5) trifluoromethylpyrazoles can be easily predicted on the basis of 4-H proton of pyrazoles as a characteristic signal in 1H NMR spectra.$^{30-32}$
Table 1. Signal due to 4-H of pyrazoles

<table>
<thead>
<tr>
<th>CF3-Position</th>
<th>R</th>
<th>δ (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 alkyl</td>
<td>~6.4-6.5</td>
<td></td>
</tr>
<tr>
<td>5 alkyl</td>
<td>~6.6-6.7</td>
<td></td>
</tr>
<tr>
<td>3 aryl/heteroaryl</td>
<td>~6.8-6.9</td>
<td></td>
</tr>
<tr>
<td>5 aryl/heteroaryl</td>
<td>~7.1-7.3</td>
<td></td>
</tr>
</tbody>
</table>

As shown in Table 1, in case of 1-substituted-3-trifluoromethylpyrazoles, signal due to 4-H proton always appears upfield while in case of 5-trifluoromethylpyrazoles it appears downfield.

13C NMR SPECTROSCOPY

This technique has been found to be superior to that of the 1H NMR spectroscopy for the characterization of trifluoromethylpyrazole derivatives, particularly where the reaction results in the formation of isomeric products. As 13C NMR spectra of several differently substituted isomeric 1-aryl/heteroaryl-3(5)-trifluoromethylpyrazoles have been analyzed in this review, it is relevant to report the data available in the literature concerning these heterocycles. The detailed study of the effect of substituents on the 13C NMR parameters of pyrazoles has been reported by Begtrup et al.

In case of 1-aryl/heteroaryl-3, 4, 5-unsubstitutedpyrazoles, the carbons C-3, C-4 and C-5 appear in the range δ~142-144, δ~108-110 and δ~127-129 ppm, respectively in 13C NMR spectra.

Table 2. Effect of Me and CF3 group on C-3 and C-5 carbons of pyrazole

<table>
<thead>
<tr>
<th>Carbons</th>
<th>C-3</th>
<th>C-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>~142-144</td>
<td>~127-129</td>
</tr>
<tr>
<td>Me</td>
<td>~152-154</td>
<td>~142-144</td>
</tr>
<tr>
<td>CF3</td>
<td>~143-145 ppm (q, (2J_{C-F}) (= \sim 40) Hz)</td>
<td>(\sim 133-135) (q, (2J_{C-F}) (= \sim 42) Hz)</td>
</tr>
</tbody>
</table>
It has been reported that the carbons C-3 and C-5 of pyrazoles appears at $\delta \approx 143-145$ ppm (q, $^2J_{CF} \approx 40$ Hz) and $\delta \approx 133-135$ (q, $^2J_{CF} \approx 42$ Hz), respectively, in the presence of carbon bearing trifluoromethyl group at these positions.$^{30-32}$ It has been already reported from our laboratory that in case of 1-substituted-3, 5-dimethylpyrazoles, carbons C-3 and C-5 of the pyrazole ring appear at about $\delta 152-154$ and 142-144, respectively.35,36 Unsubstituted carbon C-4 of pyrazole nucleus appears in the range of about $\delta 104-109$ ppm if methyl or trifluoromethyl groups are located at position 3 and 5 of pyrazole ring. Therefore, it may be concluded that replacement of a methyl group at position-3 and 5 by trifluoromethyl group causes shielding of that carbon by about 7 and 9 ppm, respectively. The 13C NMR spectral analysis thus provided valuable information of general applicability to assign the structure of 1-substituted-3(5)-trifluoromethylpyrazoles.

19F NMR SPECTROSCOPY

The 19F NMR spectroscopy is proved to be an elegant tool to distinguish the position of trifluoromethyl group at pyrazole nucleus. It has been reported from our laboratory that the signal due to fluorine of trifluoromethyl group appear in the range of δ -60-63 ppm for 3-trifluoromethylpyrazoles and δ -57-60 ppm for 5-trifluoromethylpyrazoles.$^{30-32,40-43}$

Scheme 13
In order to shed more light on the mechanistic course of these reactions, the reaction of 2- and 4-hydrazinoquinolines with trifluoromethyl-β-diketones was subsequently investigated. The reaction of 2-hydrazino-4-methylquinoline with trifluoromethyl-β-diketones (R = Me, CF₃) provided 5-hydroxy-5-trifluoromethyl-1-(4-methylquinolin-2-yl)-4,5-dihydropyrazoles (39) as the only product. However, similar treatment of 2-hydrazino-4-methylquinoline with trifluoromethyl-β-diketones (R = phenyl, 2-thienyl) gave mixture of 39 and 3-trifluoromethyl-1-(4-methylquinolin-2-yl)-5-substituted pyrazoles (40). Dehydration of 39 was effected with sulphuric acid in acetic acid to give regioisomeric 3-substituted-1-(4-methylquinolin-2-yl)-5-trifluoromethylpyrazoles (41) (Scheme 15). The ratio of the yields of the two regioisomers depends on the ratio of the two enols at equilibrium. The elimination of water from 39 to 41 has been shown to be dependent on the electronic nature of substituent at position-5. Intermediacy of hydrazones in these reactions was established in the reaction of 7-chloro-4-hydrazinoquinoline with 1,1,1-trifluoropentane-2,4-dione. The reaction afforded for the first time the corresponding stable crystalline hydrazone 42, whose structure was firmly established using IR and NMR spectral data. Cyclization followed by elimination of water could be effected by the treatment of 42 with sulphuric acid in acetic acid to yield to 3-methyl-5-trifluoromethyl-1-(quinolin-4-yl)pyrazole (44). There was no evidence for the formation of the other regioisomer (i.e. 5-methyl-3-trifluoromethylpyrazole) (Scheme 16). The intermediate 5-hydroxypyrazoline (43) could not be isolated in this case. It is not clear why the attachment of hydrazine at position-4 to the quinoline should have such an effect on the course of the reaction. It was indeed an unusual observation for such reactions.
Reaction of various heteroaryltrifluoromethyl-β-diketones with different hydrazines under mild conditions was investigated in our laboratory. Treatment of hydrazines with β-diketones under different conditions affords exclusively 5-hydroxy-5-trifluoromethylpyrazolines which on subsequent treatment with acids undergo ready dehydration to give the corresponding pyrazoles (Scheme 17).

It was also found that 19F NMR spectroscopy is an elegant tool for assigning the structure of hydrazone, 5-trifluoromethyl-5-hydroxydihydropyrazole, and 3(5)-trifluoromethylpyrazole structures. The 5-hydroxypyrazoline such as 36, 39 exhibited a signal at about -81 ppm for the 5-CF$_3$. The CF$_3$ group of the hydrazone 42 resonates at about -75 ppm. Finally, isomeric trifluoromethylpyrazoles can easily be distinguished by their 19F NMR spectra. The 5-CF$_3$ of trifluoromethylpyrazoles resonates at about -58 ppm in contrast to the more upfield signal of the 3- CF$_3$ at -62 ppm.

Reaction of 3-acetyl-4-ethoxy-1,1,1-trifluorobut-3-en-2-one (47) with various aryl and heteroarylhydrazines gives an exclusive product, which was formulated as 5-methyl-1-aryl/heteroaryl-4-trifluoroacetylpyrazoles (48). However, reaction of methylhydrazine with 47 under similar conditions, afforded a single crystalline compound, whose structure was established as 4-acetyl-1-methyl-3-trifluoromethylpyrazole (49) (Scheme 18).
Reagents and conditions: (i) = N₂H₄, EtOH; (ii) = N₂H₄, Et₂O; (iii) = RNHNH₂, EtOH, Δ; (iv) = AcOH, EtOH, Δ; (v) = conc. H₂SO₄, EtOH, Δ; (vi) = aq. HCl, EtOH, Δ; (vii) = Ac₂O, AcOH, Δ.
The reaction of p-fluorophenylhydrazine with several trifluoromethyl-β-diketones was investigated in our laboratory. The reaction of p-fluorophenylhydrazine with trifluoromethyl-β-diketone (R = methyl) results in the formation of two isomeric products which were characterized as 5-methyl-3-trifluoromethyl-1-(p-fluorophenyl)pyrazole (50) and 3-methyl-5-trifluoromethyl-1-(p-fluorophenyl)pyrazole (51) with 50 as the major product in ratio of 4:1 (Scheme 19). p-Fluorophenylhydrazine was subsequently treated with several other unsymmetrical trifluoromethyl-β-diketones (R = phenyl, 2-thienyl, 2-pyridyl). However, in all the cases the reaction led to the exclusive formation of pyrazoles (50) having the CF$_3$ moiety located at position-3.

It was also reported from our laboratory that with a given β-diketone such as benzoyltrifluoroacetone ($R' = $ phenyl) and thienoyltrifluoroacetone ($R' = $ 2-thienyl), there was formation of a pyrazole (53) having the CF$_3$ located at position-3 with phenylhydrazine and p-nitrophenylhydrazine. However, when
2,4-dinitrophenylhydrazine was used, 5-hydroxy-5-trifluoromethylpyrazolines (52) were obtained which underwent dehydration to the corresponding pyrazoles (54) (Scheme 20).

It was also observed that the reaction of 3-hydrazino-1,2-benzoisothiazole-1,1-dioxide with diketone (R’ = Me) in refluxing ethanol provided the intermediate 5-hydroxy-5-trifluoromethylpyrazoline (55) as revealed by the spectral data (Scheme 21). Attempts to dehydrate the pyrazoline 55 under different conditions resulted in the release of 3-hydroxy-1,2-benzoisothiazole-1,1-dioxide (57) due to the cleavage of the C-N bond and 3(5)-methyl-5(3)-trifluoromethyl-1H-pyrazole (56) due to dehydration of pyrazoline ring (Scheme 21).
During investigation of the reaction between aryl or heteroarylhydrazines and trifluoromethyl-\(\beta\)-diketones (CF\(_3\)COCH\(_2\)COR), an interesting observation came to light.\(^4\) Spectral analysis of the products indicated that there was formation of either 3-trifluoromethyl or 5-trifluoromethylpyrazoles while using a particular trifluoromethyl-\(\beta\)-diketone such as benzoyl trifluoroacetone and thienoyltrifluoroacetone with a variety of monosubstituted hydrazines. It appeared that the orientation in these reactions depends, at least in some cases, on the substituent in the hydrazines. Such an observation is unprecedented in the literature, where focus has always been on the substituents in the \(\beta\)-diketone. It was, therefore, decided to investigate the mechanism of the reaction between monosubstituted hydrazines and unsymmetrical \(\beta\)-diketones leading to the formation of a mixture of pyrazole isomers 58, 59 (Scheme 22) with an emphasis on the nature of substituent of hydrazines (R).

\[
\begin{aligned}
\text{CF}_3\text{COCH}_2\text{COR} + \text{RNHNH}_2 &\rightarrow \text{RN} - \text{N} &+ \text{F}_3\text{C} - \text{R}' \\
\text{58} &\text{59}
\end{aligned}
\]

\textbf{Scheme 22}

This apparently simple reaction conceals a complex mechanistic problem considering that hydrazines can react initially by the NH (D) or the NH\(_2\) (E). A \(\beta\)-diketone has three tautomeric forms (A, B and C) with reactive centers, each isomer can be formed by six different routes (Scheme 23).

The mechanism of such reactions have been studied by several groups of workers,\(^{22,44-47}\) however, all these publications dealt with the structure of \(\beta\)-diketones on the relative ratio of the isomeric pyrazoles for a given hydrazine. Semi-empirical calculations at PM3 level have been used to rationalize these results. It appears that the orientation in the reaction of hydrazines with \(\beta\)-diketones depends on the nature of substituent in the hydrazine as well. Although the differences in the orientation between alkyl- and arylhydrazines have been assigned to differences in reactivity of both nitrogen atoms (R, NH, D in alkyl and NH\(_2\), E in arylhydrazines), this is certainly not the case of the reactions which have been investigated. All these reactions are initiated by the NH\(_2\). The outcome that emerges seems to be that the difference in the rate of dehydration of the two 3,5-dihydroxypyrazolidines (60, 61) in equilibrium controls the isomer formed (Scheme 24).\(^4\)

Penning \textit{et al.}\(^{48}\) have reported the synthesis of a series of selective inhibitors of cyclo-oxygenase-2 (COX-2) by treating 4-amiosulfonylphenylhydrazine hydrochloride with 1-(4-methylphenyl)-4,4,4-trifluorobutane-1,3-dione in refluxing ethanol. The reaction provided a mixture of isomeric products (62 & 63) (Scheme 25).
Scheme 23

Scheme 24
Scheme 25

Synthesis of isomeric 3(5)-trifluoromethylpyrazoles (64 & 65) (Scheme 26) has been reported by Pinto et al. 65 was found to be an intermediate of a highly potent, selective and orally inhibitor of blood coagulation factor Xa.

Scheme 26

It has been reported that 1,1,1-trifluoropentane-2,4-dione and 1-(2-thienyl)-4,4,4-trifluorobutane-1,3-dione react readily with per(poly)fluorophenylhydrazines to give N-per(poly)fluorophenyl-3-methyl(or 2-thienyl)-5-hydroxy-5-trifluoromethyl-4,5-dihydropyrazoles (66) and N-per(poly)fluorophenyl-5-methyl-(or 2-thienyl)-3-trifluoromethylpyrazoles (67), respectively.
Treatment of 66 with P₂O₅ yielded the dehydrated product N-per(poly)fluorophenyl-3-methyl(or 2-thienyl)-5-trifluoromethylpyrazoles (68) in good yield (Scheme 27).⁴⁹

\[
\begin{align*}
\text{RCOOCF}_3 & \quad + \quad \text{ArNHNH}_2 \quad \xrightarrow{\text{EtOH}} \quad \xrightarrow{\text{rt or reflux}} \quad \text{Ar} \quad \xrightarrow{\text{P}_2\text{O}_5/\text{CHCl}_3} \quad \text{Ar} \\
\text{R} = \text{Me}, \quad & \quad \begin{array}{c}
\text{C}_6\text{F}_5, \quad \text{HC}_6\text{F}_4,\quad \text{ClC}_6\text{F}_4
\end{array}
\end{align*}
\]

\[68\]

\[66\]

\[67\]

\[\text{Scheme 27}\]

Reaction of \(p\)-nitrophenylhydrazine with 4,4,4-trifluoro-1-(4-methylphenyl)-1,3-butanedione in refluxing ethanol containing hydrochloric acid has been reported to generate 3-trifluoromethylpyrazole (69) as the exclusive product.¹⁰ However, when the reaction was performed in the absence of acid, 5-hydroxy-5-trifluoromethyl-pyrazoline (70) was obtained which underwent ready dehydration to 5-trifluoromethylpyrazole (71) on refluxing in acetic acid (Scheme 28).

\[\text{Scheme 28}\]

Recently, Denisova et al.⁵⁰ have reported that the reaction of 2-hydrazinothiazoles with 4,4,4-trifluoro-1-heteroaryl-1,3-butanediones in methanol/HCl primarily leads to the formation of a mixture of pyrazoles (76) and pyrazolines (75) or pyrazoles (76 & 77) in strong acidic conditions. It was
also reported that isomeric hydrazones (72 & 73) and pyrazolines (74 & 75) could be formed and isolated in these reactions in the absence of hydrochloric acid (Scheme 29).

Sloop et al.\(^{51}\) have reported that the reaction of arylhydrazines with 2-fluorosubstituted-trifluoromethyl-β-diketones always results in the formation of a mixture of isomeric 4-fluoro-3(5)-trifluoromethylpyrazoles (78 & 79), while with trifluoromethyl-β-diketones, mixture of 3(5)-trifluoromethylpyrazoles or 3-trifluoromethylpyrazoles (78) is formed. The fluorine substituent at position-2 of the β-diketone effects the keto-enol tautomerism in favour of keto form due to which there was direct competition between two carbonyl groups, i.e. COCF\(_3\) and COR of β-diketones leading to the formation of a mixture (Scheme 30).

The reaction of 3-cyanophenylhydrazine with 1-(2-furyl)-4,4,4-trifluorobutane-1,3-dione gives 1-(3-cyanophenyl)-3-trifluoromethyl-5-(2-furyl)pyrazole (80) in refluxing methanol containing a few drops of acetic acid (Scheme 31).\(^{52}\)
Uddin \textit{et al.}53 have synthesized a series of novel 3-trifluoromethylpyrazole analogues (81) as selective COX-2 inhibitors by treating several arylsubstituted trifluoromethyl-\(\beta\)-diketones with phenyl or 4-sulphonamidophenylhydrazine hydrochlorides followed by further treatment of 63 with \(\text{ClSO}_3\text{H}\) and \(\text{NaN}_3\) (Scheme 32). Similar studies have been carried out by other workers.9,10,54

Reaction of 4-alkoxy-1,1,1-trifluoro-3-alken-2-ones (83), obtained by the treatment of acetaldehyde/acetone dimethyl acetal (82) with trifluoroacetic anhydride, with hydrazine and methylhydrazine gave corresponding 5-trifluoromethylpyrazoles (84). However, treatment with phenylhydrazine provides 5-hydroxy-5-trifluoromethylpyrazolines (85) which on subsequent treatment with sulphuric acid afforded 84 (Scheme 33).55

Similarly, reaction of 4-methoxy-1,1,1-trifluoro-3-buten-2-ones (83) with thiosemicarbazide provided 1-aminothiocarbonyl-5-hydroxy-5-trifluoromethylpyrazolines (86) which on subsequent treatment with sulphuric acid afforded cleavage products 5-trifluoromethyl-1-\(H\)-pyrazoles (9')(Scheme 34).56
It has been reported that the reaction of 1,1,1-trifluoro-4-methoxy-4-(2-furyl)-buten-2-one (87, R = Me, X = O) and 1,1,1-trifluoro-4-methoxy-4-(2-thienyl)-buten-2-one (87, R = Me, X = S) with furoic hydrazide, 2-thiophenecarboxylic hydrazide and 3-pyridinecarboxylic hydrazide regioselectively provided 5-hydroxy-5-trifluoromethyl-1-heteroaroylpyrazolines (88, 89 & 90), respectively, under mild conditions (Scheme 35).57

Reagents and conditions: (i) = EtOH, reflux, 24 h; (ii) = ClSO3H, 25 °C; (iii) = NaN3, acetone, H2O, 0 °C, 3 h.

Scheme 32

Scheme 33
Recently, the reaction between a series of 1-aryl-4,4,4-trifluorobutane-1,3-diones 91, which are differently substituted on the phenyl ring, with five hydrazines: phenylhydrazine 92, \(p \)-nitrophenylhydrazine 93, 6-methylbenzothiazol-2-ylhydrazine 94, 6-fluorobenzothiazol-2-ylhydrazine 95 and 4-methylquinolin-2-ylhydrazine 96 were studied by us to understand the effect of substituents present on trifluoromethyl-\(\beta \)-diketones and hydrazines on the product composition.\(^{58}\) The investigation was carried out under two experimental conditions i.e. in neutral and acidic media. It was found that either 3-trifluoromethylpyrazoles and/or 5-hydroxy-5-trifluoromethyl-\(\Delta^2 \)-pyrazolines are generated (Scheme 36).
For 99, 104, 109; R = Cl, NO₂ and Het = 6-methylbenzothiazol-2-yl (94)
100, 105, 110; R = Cl, Br and Het = 6-fluorobenzothiazol-2-yl (95)
101, 106, 111; R = Cl, Br and Het = 4-methylquinolin-2-yl (96)

[Note: - A mixture of 101, 106 & 111 is obtained in acidic medium when Het = 96]
The conclusions drawn from this investigation are as follow: (Figure 1)

i) Vertical or z-axis: on going from neutral to acidic conditions, the proportion of 3-trifluoromethylpyrazoles always increases (if these are not the 100% of the mixture).

ii) Horizontal or y-axis: the more the electron-withdrawing effect of the substituent on the hydrazine (from 92 to 96), the percentage of 5-hydroxy-5-trifluoromethyl-Δ^2-pyrazolines also increases.

iii) Tilted or x-axis: in case of the presence of an electron-withdrawing substitutent on the phenyl ring of the β-diketones 91, there is greater proportion of 5-hydroxy-5-trifluoromethyl-Δ^2-pyrazolines.

Figure 1. Proportions of the Products in Reaction Mixture Under Neutral and Acid Media: A Three-dimensional View

Recently it has been reported59 that the reaction of the β-diketone 4,4,4-trifluoro-1-pyridin-2-yl-butane-1,3-dione (113) and the monosubstituted hydrazine, 2-hydroxyethylhydrazine (112) has been investigated (Scheme 37). Two products have been identified, 2-(2-hydroxyethyl)-3-pyridin-2-yl-5-trifluoromethyl-5-hydroxy-4,5-dihydropyrazole (114) and 2-(3-pyridin-2-yl-5-trifluoromethylpyrazol-1-yl)ethanol (115) in proportion 2:8, when the reaction was done at rt in ethanol for 15 h. The preparation of 114 as a pure product was performed in ethanol at 0 °C for 7 h. Compound 114 has been characterized by 1H, 13C and 19F NMR spectroscopy and by other techniques as appropriate.
3. REACTION OF TRIFLUOROMETHYL-β-DIKETONES WITH HYDROXYLAMINE

Carr et al.60 have reported that the reaction of 4,4,4-trifluoro-1-phenyl-1,3-butanedione with hydroxylamine hydrochloride in refluxing methanol-water in presence of K\textsubscript{2}CO\textsubscript{3} gives monoxime (116) of Z-stereochemistry. The product is resistance to further reaction with hydroxylamine on the other carbonyl group due to the highly stabilized hydrogen bonded enol form. (Z)-stereochemistry to 116 was assigned on the basis of the absence of a carbonyl bond in the IR and the subsequent appearance of a methylene singlet at \(\delta\) 3.7 ppm in the NMR when DMSO-\(d_6\) was used as solvent. The ring closure of 116 to give 3-trifluoromethyl-5-phenylisoxazole (117) was affected by refluxing in acetyl chloride. Acetyl chloride forms an acetylated oxime that can undergo ring closure to the isoxazole along with the formation of another acetylated oxime as side product (Scheme 38). The other regioisomer, 5-trifluoromethyl-3-phenylisoxazole (119) was synthesized by 1,3-dipolar addition of benzonitrile oxide (118) [generated \textit{in situ} by the reaction of triethylamine on benzhydroximioyl chloride, which in turn was obtained by the chlorination of benzaldehyde oxime] to 3,3,3-trifluoropropyne (Scheme 39).

Martins et al.61 have investigated the effect of halomethyl group on the regiochemistry of the reaction of 2-acetylcyclohexanones and β-methoxyvinyl trifluoromethyl ketone derivatives (120) with hydroxylamine under different conditions. The reaction affords 3,3\textsubscript{a},4,5,6,7-hexahydro-3-trifluoromethyl-3-hydroxy[2,1]benzoisoxazoles (121) and the dehydrated products (Scheme 40).

It has been observed that when cyclization of 2-acetylcyclohexanone (R' = Me) with hydroxylamine hydrochloride was carried out in the same conditions, a mixture of [2,1]-benzoisoxazoles (122) and [1,2]-benzoisoxazoles (123) was obtained.

On the other hand, cyclocondensation of 2-acetylcyclopentanones and β-methoxyvinyl trifluoromethyl ketone derivatives (124) under acidic conditions gives the other isomer i.e. 4,5-trimethylene-5-hydroxy-4,5-dihydroisoxazoles (125). This showed the effect of ring size on the
Scheme 38

\[
\text{PhCO}_2\text{CF}_3 + \text{NH}_2\text{OH} \cdot \text{HCl} \xrightarrow{\text{MeOH/H}_2\text{O}, \text{K}_2\text{CO}_3} \text{Ph} \text{O} \text{N} \text{H}_3\text{F}\text{F} \text{F}
\]

\[
\text{AcCl, } \Delta \xrightarrow{} \text{Ph} \text{O} \text{N} \text{H}_3\text{F}\text{F} \text{F}
\]

(67%)

117

PhCH\text{NOH} \xrightarrow{\text{Cl}_2/\text{CHCl}_3} \text{PhC=}\text{NOH}

Cl

\[
\text{Et}_3\text{N}/\text{Et}_2\text{O} \xrightarrow{} \text{PhC=}\text{N} \rightarrow \text{O}
\]

118

\[
\text{F}_3\text{CC} \equiv \text{CH}
\]

119

Scheme 39

\[
\text{NH}_2\text{OH} \cdot \text{HCl}
\]

(i) H\text{O}/\text{Py}

(ii) H\text{O}/\text{HCl}

45-50 \degree \text{C}, 8 \text{ h}

\[
\text{NH}_2\text{OH} \cdot \text{HCl}
\]

45-50 \degree \text{C}, 5 \text{ h}

R = \text{H, Me}

R' = \text{CF}_3, \text{CCl}_3, \text{Me}

Scheme 40
regioselectively of the reactions of 120 and 124 with hydroxylamine hydrochloride. These 5-hydroxyisoxazolines can be acetylated by the treatment of 126 with acetic anhydride. Double oxime (127) was obtained on treatment of 124 (R = CF$_3$) with hydroxylamine in pyridine, which undergoes cyclization on further treatment with HCl (0.1N) to give 5-hydroxy derivatives (125) (Scheme 41).62 Felix et al.63 have reported that the reaction of 4,4,4-trifluoro-1-phenyl-1,3-butanedione with hydroxylamine generates 5-hydroxy-5-trifluoromethylisoxazoline (128) which on subsequent treatment with trifluoroacetic acid affords the 5-trifluoromethylisoxazole (119) (Scheme 42).

![Scheme 41](image)

Reagents and conditions: (i) = NH$_2$OH HCl/H$_2$O, Py, 50 °C; (ii) = NH$_2$OH HCl/H$_2$O, HCl, 50 °C; (iii) = Ac$_2$O, CH$_2$Cl$_2$, 50 °C; (iv) = HCl 0.1 N, 50 °C.

Scheme 41

![Scheme 42](image)

Scheme 42

It has also been reported64 that β-aryl-β-methoxyvinyl ketones (83), obtained from the reaction of the corresponding acetophenone dimethyl acetics with trichloroacetyl chloride or trifluoroacetic anhydride, undergo cyclization with hydroxylamine hydrochloride in refluxing methanol-pyridine to give
3-aryl-5-hydroxy-5-trihalomethylisoxazolines (129). As expected isoxazolines (129) undergo easy dehydration on treatment with sulphuric acid (Scheme 43).

The reaction of 2-hydroxy-2-polyfluoromethylchroman-4-ones (131) with hydroxylamine yields 3-(2-hydroxyaryl)-5-polyfluoromethylisoxazoles (135) through the intermediacy of Δ^2-isoxazolines (134). Analogous reaction with 2-polyfluoromethylchromones (132) affords β-diketone monooximes (133), which in acidic medium undergo cyclodehydration to yield 5-(2-hydroxyaryl)-3-polyfluoromethylisoxazoles (136) (Scheme 44). 65

![Scheme 43](image)

Sloop et al. 51 have reported that the reaction of trifluoromethyl-β-diketones with hydroxylamine in presence of sulphuric acid gives a mixture of 3(5)-trifluoromethylisoxazoles (137 & 138) (R = Me) or a single product i.e. 3-trifluoromethylisoxazole (137) (R = Ph) depending upon the nature of β-diketones (Scheme 45).

It has recently been reported 14 that 1-phenyl-2-(p-fluorophenylazo)-4,4,4-trifluorobutane-1,3-dione on treatment with hydroxylamine hydrochloride in presence of sodium acetate affords corresponding 3-trifluoromethylisoxazoles (139) (Scheme 46).

In contrast to these finding, we have observed the formation of a single product while reinvestigating the reaction at different pH values with hydroxylamine hydrochloride (Scheme 47). 66, 67 A careful analysis of the NMR data (^1H, ^13C and ^19F) established the formation of 5-hydroxy-5-trifluoromethyl-Δ^2-isoxazolines (140) rather than the reported 3-trifluoromethylisoxazoles (139). 67 The formation of this product indicates that NH₂ of hydroxylamine attacks on COAr group instead of COCF₃ group. The corresponding isoxazole 141 was obtained by the dehydration of 140. Similar results were obtained when the reactions were carried out between 1-aryl-2-(p-fluorophenylazo)-4, 4, 4-trifluorobutane-1,3-diones (142) and
hydroxylamine, only 142 was obtained as an exclusive product, (Scheme 48) instead of the formation of the reported corresponding 3-trifluoromethylisoxazole. The compound 143 on treatment with acid gives the dehydrated product 144.

\[
\begin{align*}
\text{Reagents: (i) } &= \text{AcOH, HCl; (ii) } = \text{NH}_2\text{OH HCl, AcONa, EtOH, H}_2\text{O; (iii) } = \text{SOCl}_2, \text{PhMe, pyridine}
\end{align*}
\]

\text{Scheme 44}
Scheme 45

\[
\begin{align*}
R &= \text{Me, CF}_3, \text{Ph} \\
\text{R} &= \text{H, F, Cl, Br, OMe, NO}_2
\end{align*}
\]

Scheme 46

\[
\begin{align*}
\text{For 91, 140 and 141} & \quad a, b, c, d, e, f \\
\text{R} &= \text{H, F, Cl, Br, OMe, NO}_2
\end{align*}
\]

Scheme 47
STEREOCHEMICAL ASSIGNMENT OF REGIOISOMERS FOR ISOXAZOLES

1H NMR SPECTROSCOPY

In 1H NMR spectra of isomeric 3(5)-trifluoromethylisoxazoles signal due to 4-H is a key signal for distinguishing the isomeric structures.

Table 3. Signal due to 4-H of isoxazoles

<table>
<thead>
<tr>
<th>CF3-Position</th>
<th>R</th>
<th>δ (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>alkyl</td>
<td>~ 6.4</td>
</tr>
<tr>
<td>5</td>
<td>alkyl</td>
<td>~ 6.6</td>
</tr>
<tr>
<td>3</td>
<td>aryl</td>
<td>~ 6.7</td>
</tr>
<tr>
<td>5</td>
<td>aryl</td>
<td>~ 7.00</td>
</tr>
</tbody>
</table>
As given in Table 3, the characteristic signal due to 4-H in 1H NMR spectra of such compounds is expected to appear upfield for 3-trifluoromethylisoxazoles and downfield for 5-trifluoromethylisoxazoles.68-70

13C NMR SPECTROSCOPY
Signals due to C-3 and C-5 carbons of isoxazoles bearing trifluoromethyl substituent are sufficient to distinguish the structure of isomeric 3(5)-trifluoromethylisoxazoles. The signals for isoxazole carbons 3, 4 and 5 in 5-trifluoromethylisoxazoles appear at $\delta \sim 162$ (s), ~ 102 (s) and at ~ 159 (q) ppm, respectively66-68 while in case of 3-trifluoromethylisoxazoles, the signals for C-3, C-4 and C-5 would appear at $\delta \sim 152$ (q), ~ 104 (s) and at $\delta \sim 162$ (s) ppm, respectively.68,70

19F NMR SPECTROSCOPY
The 19F NMR spectroscopy is proved to be an elegant tool to distinguish the position of trifluoromethyl group at pyrazole nucleus but 19F NMR is not of much help for distinguishing a pair of isomeric 3(5)-trifluoromethylisoxazoles as the values are very close (δ -64-65 ppm for both the isomers).69

ACKNOWLEDGEMENTS
We are grateful to the UGC and CSIR, New Delhi, India for financial assistance.

REFERENCES

Vinod Kumar obtained his B.Sc. (Hons) in Chemistry from University College, Kurukshetra in 1999. He subsequently joined the Department of Chemistry, Kurukshetra University and obtained the degree of M.Sc.(Chemistry) in first division with specialization in Organic Chemistry in May 2001. He qualified CSIR-UGC NET examination in July 2001. After teaching for a while, he joined Ph.D program in the Department of Chemistry under a CSIR sponsored project sanctioned to Prof. S. P. Singh. He continued to work under the joint supervision of Prof. S. P. Singh and Dr. Ranjana Aggarwal. During this period, he synthesized a large number of heterocyclic compounds particularly having trifluoromethyl group whose structures have been established using spectroscopic techniques. He was awarded Ph.D degree in 2006 on the thesis entitled “Heterocyclic compounds: Synthesis and NMR Spectral Characteristics of Some Azoles”.
number of papers based on the work done during this period have appeared in many reputed national and international journals. He is currently working as a Research Scientist in a pharmaceutical company (Jubilant Organosys Ltd., Noida, India) and is involved in the process development and optimization of active pharmaceutical intermediates.

Ranjana Aggarwal was born in 1967. She received the M.Sc. degree from Kurukshetra University, India with academic distinction. She received her Ph.D. from Kurukshetra University, India in 1993 under the supervision of Prof. S. P. Singh on the synthesis of azole compounds as potential phototoxic agents. After two years of postdoctoral research with Prof. James Staunton at Cambridge University, U. K. on the “thioesterase of erythromycin producing polyketide synthase”, she joined the faculty of Kurukshetra University as a lecturer in 1995. She travelled to Universita degli Studi di Trieste, Italy in 1998 and worked there as a postdoctoral research associate with Prof. Fabio Benedetti on the catalytic antibody programmed for amide bond hydrolysis. In 2003, she was awarded Commonwealth Fellowship by the Association of Commonwealth Universities, London to work again at Cambridge University in Dr. Jonathan Spencer group. During her stay at Cambridge, she worked on the synthesis of enantiomerically pure δ-aminolactone produced by a novel engineered Non-ribosomal peptide synthetase/polyketide synthase. At present, Dr. Ranjana Aggarwal is an Associate Professor at K.U.K. and her research group is engaged in the study of synthetic, mechanistic and spectral aspects of heterocyclic compounds of medicinal interest.

Shiv P. Singh Professor Emeritus, Kurukshetra University obtained his Ph.D degree from the University of Lucknow in 1964 under the supervision of Prof. A. B. Sen. He has been teaching in Kurukshetra University since 1965 and had served as the Chairman of Department of Chemistry (1989-92). He has supervised M.Phil and Ph.D theses of a large number of students and has published more than 150 research papers. His areas of interest include structural reinvestigation of organic molecules, synthesis of heterocyclic compounds and mass spectrometry. Prof. Singh was associated with the University of Illinois at Chicago as post-doc fellow (1968-70) Senior Fulbright Scholar (1979-80) and visiting research professor (1989). During his many trips to universities in Europe, he established professional collaboration with a number of scientists, notable among them is Prof. J. Elguero, CSIC, Madrid, Spain. Prof. Singh was elected as the General Secretary (outstation) of the Indian Science Congress Association (2004-2007). Among many awards received by Prof. Singh are Acharya P. C. Ray Memorial Award and Lectureship (1994) and the Life Time Achievement Award of the Indian Chemical Society (2003).