NEW AND CONVENIENT ROUTE FOR THE SYNTHESIS OF SOME NEW PYRAZOL-5-YL-1H-IMIDAZOLE DERIVATIVES

Afsaneh Zonouzi,* Roghieh Mirzazadeh,* Marzieh Talebi,* Razieh Jafarypoor,* Azadeh Peivandi,* and Seik Weng Ng b

a School of Chemistry, University College of Science, University of Tehran, Tehran, Iran. E-mail: zonouzi@khayam.ut.ac.ir
b Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Abstract - A simple and efficient method for the synthesis of some new pyrazol-5-yl-1H-imidazoles 4a-h is described. In this method oxazolones 5a-h were produced as minor products. The X-ray analysis confirmed the structures of 4 and 5.

The pyrazole derivatives are well known for their wide range of biological and pharmacological activities, such as antibacterial, fungicidal, herbicidal, insecticidal, anti-HIV, antitumor and other biological activities.1-8 Various methods have been reported for the synthesis of pyrazole derivatives.9-13 On the other hand imidazole derivatives are frequently found in biological active natural products or pharmaceutically important drugs. Some of them are useful as antitumor, antifungal, antimicrobial.14-16 There are some reports for the synthesis of imidazole derivatives.17-24 Imidazole derivatives were used also as ligands in organomethalic compounds.25-27 There are few reports on the synthesis of systems which contain the imidazole and pyrazole rings.5, 28 Here we wish to report a new and convenient route for the synthesis of pyrazol-5-yl-1H-imidazole derivatives 4a-h under a one-pot and solvent-free conditions in 78-89 % yields. In this procedure oxazolones 5a-h are produced as by-products in 8-15 % yields (Scheme 1, Table 1).

We have already reported one-pot and multicomponent synthetic procedures for the synthesis of some heterocyclic compounds.29-33 In continuation of our request for developing one-pot procedure heterocyclic frameworks, we here report a novel one-pot, multicomponent reaction of acetyl or benzoylelglycine 1 and benzaldehyde derivatives 2 and 1,3-diphenyl-1H-pyrazol-5-amine 3 in the
presence of sodium acetate and acetic anhydride. It is well known that the reaction of acetyl or benzoyl glycine 1, and benzaldehyde 2 in the presence of sodium acetate, acetic anhydride and heat afforded the oxazolones 5.35,36 In this multicomponent reaction, the compounds 5a-h were produced as by-products in 8-15 % yields (their spectroscopic data have already been published36-43) and the pyrazol-5-yl-1H-imidazoles 4a-h as the main products in 78 - 88% yields.

![Scheme 1](image)

\textbf{Scheme 1}

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|}
\hline
Comp. \small Entry 4, 5 & \small R1 & \small R2 & \small Yield \% & \small Yields \% \\
\hline
a & Me & H & 85 & 1036,37 \\
b & Me & Cl & 82 & 1038 \\
c & Me & Br & 83 & 839 \\
d & Me & NO\textsubscript{2} & 78 & 1540 \\
e & Ph & H & 84 & 1036,41 \\
f & Ph & Me & 85 & 1236,41 \\
g & Ph & Br & 89 & 842 \\
h & Ph & OMe & 85 & 843 \\
\hline
\end{tabular}
\caption{Yields of products 4 and 5.}
\end{table}

Recrystallization of 4a in ethanol and 5a (4-benzylidine-2-methyloxazol-5-(4H)-one) in acetone gave the single crystals suitable for X-ray analysis. X-ray crystal structures of 4a, 5a were performed to confirm unambiguously their structures44 (Figures 1, 2).
This procedure is optimized as following: To a mixture of acetyl- or benzoylglycine 1 and benzaldehydes 2, anhydrous sodium acetate in acetic anhydride were added gently at 0 °C and heated for 5-7 h. Then 1,3-diphenyl-1H-pyrazol-5-amine 3 was added to the reaction mixture and heated for 16-18 h. The product 4 was purified by column chromatography and recrystallized from ethyl acetate or ethanol. Structures 4 were assigned on the basis of their elemental analysis, IR, 1H, 13C NMR and MS data. The MS of compounds 4a-h displayed molecular ion peaks at appropriate m/z values. For pyrazol-5-yl-1H-imidazole derivatives 4, initial fragmentation involved the loss of the phenyls also pyrazole and imidazole ring side groups. 1H NMR and 13C NMR spectra of 4a-h displayed resonances in agreement with their structures.

In summary, we report an efficient multicomponent reaction for synthesis of some new pyrazol-5-yl-1H-imidazole derivatives under a one-pot and solvent-free conditions. In this method novel extended π-conjugated heterocyclic system with a pyrazole and imidazole rings were produced in fairly high yields. Further investigations of this method are currently in progress to establish its scope and utility.

EXPERIMENTAL

Chemicals and solvents were obtained from Merck (Germany) and Fluka (Switzerland) and were used without further purification. Compound 3 was synthesized according to the procedure. Isolation and determination of the by-products 5a-h were according to references. Columns chromatography were performed on silica Gel (0.015-0.04 mm, mesh-size) and TLC on precoated plastic sheets (25 DC UV-254) respectively. Melting points were measured on Barnstead Electrothermal melting point apparatus and were not corrected. Elemental analyses for C, H and N were performed using a Thermo Finnigan Flash EA1112 instrument. IR spectra were measured on a Bruker EQUINOX 55 spectrophotometer by ATR method. 1H NMR and 13C NMR spectra were determined in CDCl3 on a Brucker 500 spectrophotometer.
and chemical shifts were expressed in ppm downfield from tetramethylsilane. Mass spectra were recorded on a Finnigan-MAT 8430 spectrometer at an ionization potential of 70 ev.

General Procedure:

To a magnetically stirred mixture of acetyl- or benzoylglycine 1 (2mmol) and benzaldehyde derivatives 2 (2.5 mmol), anhydrous sodium acetate (3 mmol) in acetic anhydride (3 mmol) were added and heated for 5-7 h. Then 1, 3-diphenyl-1H-pyrazol-5-amine 3 (2 mmol) was added to the above mixture and was heated for 16-18 h. The brown residue was purified by column chromatography using silica gel and EtOAc: n-hexane (1:4) as co-solvent. The products 4a-h were recrystallized from EtOAc or EtOH.

4-Benzylidine-2-methyl-1-(1,3-diphenyl-1H-pyrazol-5-yl)-1H-imidazol-5(4H)-one (4a).

Light yellow crystals; mp 145 °C; \(\nu_{\text{max}}: 1724 \) (C=O), 1643, 1623 (C=N), 7.41-7.44, 7.47-7.49, 7.52-7.53, 7.94-7.96, 8.18-8.20 (16H, aromatic and pyrazole); \(\delta_C \) (125 MHz): 16.22 (CH\(_3\)), 104.28 (olefinic), 124.28, 126.12, 128.97, 129.01, 129.20, 129.27, 130.05, 130.09, 131.21, 132.49, 132.81, 132.84, 134.10, 137.42, 138.39 (aromatic), 152.58, 160.60 (C=N), 170.01 (C=O); MS: m/z: 404, 327, 260, 116, 77; Anal. Calcd for C\(_{26}\)H\(_{20}\)N\(_4\)O: C, 77.21; H, 4.98; N, 13.85. Found: C, 77.20; H, 4.96; N, 13.88.

4-(4-Chlorobenzylidine)-2-methyl-1-(1,3-diphenyl-1H-pyrazol-5-yl)-1H-imidazol-5(4H)-one (4b).

Light yellow crystals; mp 157 °C; \(\nu_{\text{max}}: 1726 \) (C=O), 1643, 1621 (C=N), 7.31-7.32, 7.42-7.44, 7.45-7.47, 7.48-7.50, 7.93-7.95, 8.12-8.14 (15H, aromatic and pyrazole); \(\delta_C \) (125 MHz): 16.24 (CH\(_3\)), 104.27 (olefinic CH), 124.29, 126.11, 128.37, 129.01, 129.20, 129.55, 130.05, 132.49, 132.74, 133.95, 134.08, 137.28, 137.69, 138.35 (aromatic), 152.60, 161.04 (C=N), 169.82 (C=O); MS: m/z: 440, 438, 363, 361, 286, 284, 219, 77; Anal. Calcd for C\(_{26}\)H\(_{19}\)ClN\(_4\)O: C, 71.15; H, 4.36; N, 12.77. Found: C, 71.14; H, 4.37; N, 12.80.

4-(4-Bromobenzylidine)-2-methyl-1-(1,3-diphenyl-1H-pyrazol-5-yl)-1H-imidazol-5(4H)-one (4c).

Black crystals; mp 178 °C; \(\nu_{\text{max}}: 1738 \) (C=O), 1645, 1616 (C=N), 7.14-7.15, 7.28-7.29, 7.40-7.42, 7.43-7.48, 7.49-7.51, 7.58-7.60, 7.92-7.94, 8.03-8.05 (15H, aromatic and pyrazole); \(\delta_C \) (125 MHz): 16.25 (CH\(_3\)), 104.26 (olefinic CH), 124.28, 125.86, 126.11, 128.41, 129.00, 129.06, 129.20, 130.10, 132.31, 132.53, 132.74, 132.98, 134.10, 137.82, 138.34 (aromatic), 152.61, 161.11 (C=N), 169.82 (C=O); MS: m/z: 482, 484, 327, 260, 116, 77; Anal. Calcd for C\(_{26}\)H\(_{19}\)BrN\(_4\)O: C, 64.61; H, 3.96; N, 11.59. Found: C, 64.59; H, 3.97; N, 11.62.

4-(4-Nitrobenzylidine)-2-methyl-1-(1,3-diphenyl-1H-pyrazol-5-yl)-1H-imidazol-5(4H)-one (4d).

Yellow crystals; mp 174 °C; \(\nu_{\text{max}}: 1737 \) (C=O), 1650, 1627 (C=N), 1526, 1512 (C-N), 1563, 1311 (NO\(_2\))
4-Benzylidine-2-phenyl-(1,3-diphenyl-1H-pyrazol-5-yl)-1H-imidazol-5(4H)-one (4e).

Light yellow crystals; mp 167 °C; νmax: 1736 (C=O), 1654, 1630 (C=N), 1531, 1511 (C-N) cm⁻¹; δH (500 MHz, CDCl₃): 6.95 (1H, s, olefinic), 7.20-7.22, 7.28-7.32, 7.39-7.50, 7.95-7.97, 8.19-8.21 (20H, 5m, aromatic and pyrazole); δC (125 MHz): 2.46 (3H, s, CH₃), 103.96 (olefinic CH), 124.38, 126.15, 128.51, 128.57, 128.69, 128.89, 129.00, 129.15, 129.67, 130.13, 131.40, 131.76, 132.07, 132.76, 132.97, 133.34, 133.84, 136.99, 138.34, 140.27 (aromatic), 152.45, 158.21 (C=N), 170.62 (C=O); MS: m/z: 480, 326, 203, 116, 100, 98, 57; Anal. Calcd for C₃₁H₂₄N₄O: C, 79.98; H, 5.03; N, 11.66. Found: C, 79.99; H, 5.02; N, 11.68.

4-(4-Methoxybenzylidine)-2-phenyl-(1,3-diphenyl-1H-pyrazol-5-yl)-1H-imidazol-5(4H)-one (4h).

Light yellow crystals; mp 188 °C; νmax: 1729 (C=O), 1635, 1614 (C=N), 1563, 1508 (C-N) cm⁻¹; δH (500 MHz, CDCl₃): 3.91 (1H, s, OCH₃), 6.92 (1H, s, olefinic), 7.03-7.05, 7.26-7.29, 7.50-7.57, 7.61-7.66, 8.14-8.16, 8.19-8.24 (20H, 6m, aromatic and pyrazole); δC (125 MHz): 55.18 (OCH₃), 103.91 (olefinic CH), 124.29, 126.10, 127.17, 128.39, 128.50, 128.62, 128.84, 129.03, 129.26, 129.72, 130.11, 130.81, 131.38, 132.44, 133.44, 133.88, 134.19, 135.85, 137.53 (aromatic), 152.53, 159.16 (C=N), 170.11 (C=O);
MS: m/z: 496, 464, 419, 387, 167, 105, 77, 57; Anal. Calcd for C$_{32}$H$_{24}$N$_4$O$_2$: C, 77.40; H, 4.87; N, 11.28. Found: C, 77.41; H, 4.86; N, 11.30.

ACKNOWLEDGEMENTS

We wish to thank Research Council of University of Tehran for the financial support.

REFERENCES

44. Crystallographic data for the structures of compounds 4a, 5a reported in this paper have been deposited with the Cambridge Crystallography Data Center as supplementary publication No. CCDC 776000, 775999. These data can be obtained free of charge via www.ccdc.com.ac.uk/data_request/cif.