SYNTHESIS OF 7,7'-LINKED-BIS-INDOLES VIA 7-TRYPTAMINES

Hakan Kandemir,a,b Ibrahim F. Sengul,a,c Christopher R. Gardner,a Eryn L. Werry,d Melissa L. Barrond, Michael Kassiou,d,e Naresh Kumar,a and David StC. Blacka*

a School of Chemistry, UNSW Australia, UNSW Sydney, NSW 2052, Australia
b Department of Chemistry, Faculty of Art and Science, Namık Kemal University, Tekirdag, Turkey
c Department of Chemistry, Gebze Institute of Technology, P.O. Box. 141. 41400, Kocaeli, Turkey
d Faculty of Health Sciences, The University of Sydney, Sydney, NSW 2006 Australia
e School of Chemistry, The University of Sydney, Sydney, NSW 2006 Australia

Dedicated to Prof. Dr. Lutz F. Tietze on the occasion of his 75th birthday

Abstract – The synthesis of 7-tryptamines was accomplished via the reduction of 7-nitrovinylindoles which were developed by the condensation of indole-7-carbaldehydes with nitromethane and ammonium acetate. 7-Tryptamines were subsequently used for the construction of 2,3-disubstituted and 3-substituted 7,7'-linked-bis-indoles.

INTRODUCTION

Tryptamine 1 and its derivatives are a class of organic compounds built around an indole nucleus with an ethanamine substituent at the C3 position (Figure 1). Many members of this family display various biological properties. For example, the neurotransmitter serotonin (5-hydroxytryptamine) 2 is active in the central nervous system and regulates mood, appetite, sleep and self-control,1 and melatonin (N-acetyl-5-methoxytryptamine) 3 is responsible for the control of circadian rhythm and blood pressure regulation.2 It has recently been reported that tryptamine derivatives may also function as bacterial efflux
pumps and inhibitors of CDK4, an anticancer drug.3,4 In addition to the biological importance of tryptamine and its derivatives, the ethanamine substituent offers a great number of possibilities for functionalisation and derivatisation, allowing a large number of analogues to be synthesised. Importantly, it is also possible to functionalise the benzenoid ring, allowing the addition of primary amines at the C7 position and subsequent formation of 7,7’-tryptamine based bis-indole systems.

![Figure 1](image-url)

Figure 1. Examples of naturally occurring and biologically active tryptamines

Tryptamine based bis-indoles have been isolated from natural sources and demonstrate potential as biologically active compounds and useful synthetic targets. For example, bis-indole 4, isolated from the roots of *Antirhea lucida*, has been synthesized from tryptamine derivatives through acid catalysed nucleophilic substitution of 1-hydroxytryptamine,5 while chondriamide C 5 was isolated from red alga *Chondria atropurpurea* and possesses anthelmintic activity.6

Recently, other analogues of marine natural products containing a tryptamine nucleus have been synthesized and screened for biological activity. For instance, 8,9-dihydrocoscinamide 6, with a structure derived from tryptamine and indole oxalyl chloride, was found to display inhibition against promastigote and amastigote protozoa.7

Given the important biological activities of tryptamine derivatives and their related bis-indoles, we were interested in the development of novel 4,6-dimethoxyindole-7-tryptamine analogues and related bis-indoles. In 1969, lithium aluminium hydride reduction of 4,6-dimethoxy-7-nitrovinylindole was reported to give 4,6-dimethoxy-7-tryptamine as a dark gum that gave a gummy hydrochloride and eventually a crystalline picrate.8
RESULTS AND DISCUSSION
SYNTHESIS OF 7-TRYPTAMINE ANALOGUES

The general development of 4,6-dimethoxy-7-tryptamines was successfully achieved over a convenient three-step process as demonstrated in Scheme 1. The first step involved the reaction of readily available 7-carbaldehydes 7a-c with excess ammonium acetate in nitromethane for 3 hours to give the target 7-nitrovinylindoles 8a-c in 92-95% yields. The reduction of these nitrovinylindoles to the corresponding amines was then examined. Accordingly, 7-nitrovinylindole 8a was treated with lithium aluminium hydride in tetrahydrofuran, however, the reaction was found to produce many side products and the desired tryptamine 10a could not be isolated.

Scheme 1. Reagents and conditions: (a) MeNO₂, ammonium acetate, reflux, 3 h; (b) NaBH₄, absolute EtOH and THF, rt; (c) NH₂NH₂·H₂O, Pd/C, absolute EtOH, 4 h.

As an alternative strategy, a two stage reduction of the 7-nitrovinylindoles 8a-c was undertaken in an attempt to avoid the formation of a complex mixture. In the first step, indoles 8a-c were reduced with sodium borohydride in a mixture of tetrahydrofuran and ethanol (1:1) to produce the 7-nitroethylindoles 9a-c in yields of 66-88%. The reaction was found to similarly produce a number of unwanted side products, however, they were minimised upon cooling the reaction mixture in an ice bath. The appearance of two triplet signals at 3.44 ppm and 4.65 ppm, and the disappearance of the nitrovinyl doublets at 8.14...
ppm and 8.67 ppm in the 1H NMR of compound 9b provided evidence for the reduction occurring at the double bond.

In order to reduce the nitro group to the primary amine, the 7-nitroethylindoles 9a-c were heated with hydrazine hydrate and 10% Pd/C in ethanol for 4 hours to give in each case a single product in 79-93% yield (Scheme 1).

The 1H NMR spectrum of the compound 10a showed the upfield shift of the methylene triplets to 3.04 ppm and 3.11 ppm respectively. The 13C NMR spectrum also indicated the methylene carbon attached to C7 of the indole nucleus at 27.5 ppm and the methylene carbon adjacent to the amino group at 41.9 ppm. Interestingly, the 1H NMR spectra of the anticipated compounds 10b and 10c did not demonstrate the two characteristic aromatic doublets expected for the para-substituted rings. Instead, the aryl protons appeared as multiplets between 7.15-7.55 ppm and integrated for 5H, indicating that the halogen atoms had been lost during the reduction to give amine 10d. This dehalogenation was further confirmed by high resolution mass spectrometry, as well as through the presence of three aryl CH resonances at 125.8, 127.9 and 129.9 ppm in the 13C NMR spectrum, as opposed to the two aryl CH resonances expected. This result is not entirely surprising as the Pd/C-catalysed dehalogenation of aromatic halides is well documented in the literature.9-12 Moreover, the reducing reagent hydrazine hydrate is also known to cause dehalogenation.13

The 7-tryptamines 10a and 10d were found to be air stable, and it was not necessary to convert them to the hydrochloride or hydrobromide salt in order to increase their stability. Purification, however, was hindered by their high polarity such that they remained on the baseline of thin layer chromatography plates even with the use of highly polar solvent systems such as methanol or ethanol. Because of this, purification was instead achieved by washing the crude product with diethyl ether.

SYNTHESIS OF 7-TRYPTAMINE-BASED BIS-INDOLES

The primary amine functionality of the developed 7-tryptamines was used as a functional handle in the synthesis of a range of unsymmetrical and symmetrical bis-indoles.

Unsymmetrical 7,7′-imine linked bis-indoles were prepared from indoles 10a and 10d upon reflux with 7-formylindoles 7a, 7b and 7d in ethanol. Bis-indoles 12a-c precipitated out of solution and were collected by filtration to give yields of 43-69% (Scheme 2).

The structure of bis-indole 12a was confirmed by high resolution mass spectrometry, which showed the molecular ion at 712.3159 (M+H)$^+$. The 1H NMR spectrum showed the imine proton signal at 8.30 ppm and four methoxy protons at 3.72, 3.76, 3.88 and 3.91 ppm. However, compound 12a was found to be highly insoluble and this inhibited the collection of a satisfactory 13C NMR spectrum.
Unsymmetrical 7,7'-amide linked bis-indoles were then synthesised at room temperature via the reaction of 7-tryptamines 10a and 10d with 7-trichloroacetylindoles 11a and 11b in acetonitrile in the presence of triethylamine. The target amide linked bis-indoles 13a and 13b were isolated in 59% and 79% yield respectively (Scheme 2).

Scheme 2. Reagents and conditions: (a) absolute EtOH, reflux; (b) Et₃N, MeCN, rt; (c) oxalyl chloride, Et₃N, DCM, rt.

The new amide functionality was clearly evident in the ¹H and ¹³C NMR spectra of compound 13a, with the amide NH proton present as a triplet at 8.38 ppm and the carbonyl group appearing at 167.3 ppm. The ¹H NMR spectrum also showed the indole NH protons as singlets at 11.13 ppm and 11.30 ppm and the ethylene protons as a quartet at 2.48 ppm (J = 5.4 Hz) and triplet at 3.18 ppm (J = 13.5 Hz).

Symmetrically linked 7-bisoxalamides 14a and 14b were prepared in moderate yields by reacting 7-tryptamines 10a and 10d with oxalyl chloride in dichloromethane at room temperature. Evidence for the formation of compound 14b was provided by the ¹H NMR spectra, which showed the appearance of a triplet at 8.53 ppm corresponding to the amide NH proton while the indole NH was a doublet at 11.02 ppm. The ¹³C NMR spectrum showed the presence of the carbonyl carbon at 160.2 ppm,
and the IR spectrum further supported the structure by showing the distinctive carbonyl absorption at 1650 cm⁻¹.

In all cases, the synthesised bis-indoles were found to be very stable under standard laboratory conditions but showed poor solubility in the majority of organic solvents.

BIOLOGICAL EVALUATION OF 7-TRYPTAMINE INDOLE ANALOGUES

The 7-tryptamines were tested for their effect on the cell viability and proliferation of the SH-SY5Y human neuroblastoma cell line. Table 1 details the potency of the tested compounds, giving the pIC50 values of each. 10a was the most potent of the compounds, displaying both cytotoxic and cytostatic behaviour towards neuroblastoma cells. 10b and 10d also displayed cytotoxic and cytostatic behaviour, but with less potency. The pIC50 values for proliferation were unable to be calculated for 10b and 10d because of a large overlap between cytotoxic and cytostatic concentrations, however Table 2 demonstrates that at concentrations which did not impair viability, these 2 compounds still displayed cytostatic effects.

Table 1. Potency to inhibit viability and proliferation of SH-SY5Y neuroblastoma cells

<table>
<thead>
<tr>
<th>Compound</th>
<th>Viability pIC50</th>
<th>Proliferation pIC50</th>
</tr>
</thead>
<tbody>
<tr>
<td>10a</td>
<td>4.86 ± 0.06</td>
<td>5.25 ± 0.03</td>
</tr>
<tr>
<td>10b</td>
<td>4.45 ± 0.08</td>
<td>N/A</td>
</tr>
<tr>
<td>10d</td>
<td>4.58 ± 0.08</td>
<td>N/A</td>
</tr>
</tbody>
</table>

N/A indicates pIC50 values could not be calculated due to cell death at 100 µM. Values are mean ± S.D.

Table 2. Viable cells and level of proliferation as a percentage of vehicle for 10b and 10d

<table>
<thead>
<tr>
<th>Compound</th>
<th>Percentage viability</th>
<th>Percentage proliferation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 µM</td>
<td>10 µM</td>
</tr>
<tr>
<td>10b</td>
<td>101.7 ± 1.0</td>
<td>101.8 ± 2.3</td>
</tr>
<tr>
<td>10d</td>
<td>100.1 ± 3.5</td>
<td>97.4 ± 1.8</td>
</tr>
</tbody>
</table>

Threshold for statistical significance: *p<0.01; **p<0.001 when compounds compared to vehicle.

CONCLUSION

A general synthesis of 7-tryptamines has been developed by a sequence of reactions involving the conversion of indole-7-carbaldehydes to 7-nitrovinylindoles, followed by sequential reduction of the alkene and the nitro groups. The 7-tryptamines were used to form amide and imine bonds in the construction of a variety of 7,7'-linked-bis-indoles. Preliminary biological assays also indicate that the
7-tryptamines have a moderate impact on the viability and proliferation of the SH-SY5Y neuroblastoma cancer cell line.

EXPERIMENTAL

GENERAL
All reagents and solvents were obtained from commercial sources and appropriately purified, if necessary. Melting points were measured using a Mel-Temp melting point apparatus and are uncorrected. Microanalyses were performed on a Carlo Erba Elemental Analyses EA 1108 at the Campbell Microanalytical Laboratory, University of Otago, New Zealand. 1H and 13C NMR spectra were obtained on Bruker DPX300 (300 MHz) and Bruker DPX600 (600 MHz) spectrometers. Mass spectra were recorded on either a Bruker FT-ICR MS (EI) or a Micromass ZQ2000 (ESI). Infrared spectra were recorded with a Thermo Nicolet 370 FTIR Spectrometer using KBr discs. Pressure column chromatography was carried out using Merck 230-400 mesh ASTM silica gel. Vacuum column chromatography was carried out using Merck 60H silica gel. Gravity column chromatography was carried out using Merck 70-230 mesh ASTM silica gel, whilst preparative thin layer chromatography was performed using Merck silica gel 7730 60GF254.

4,6-Dimethoxy-2,3-diphenyl-7-(2-nitroethenyl)-1H-indole (8a)
A mixture of 7-carbaldehyde 7a (1.98 g, 5.53 mmol) and ammonium acetate (3.8 g, 49.29 mmol) in MeNO$_2$ (25 mL) was heated at reflux for 3 h and evaporated to dryness in vacuo. The residue was quenched with water and the solid obtained was filtered, dried and washed with EtOH to give the title compound 8a (2.1 g, 95%) as a red solid, mp 215-217 °C. Anal. Calcd for C$_{24}$H$_{20}$N$_2$O$_4$: C, 71.99; H, 5.03; N, 7.00%. Found: C, 71.89; H, 5.02; N, 7.03. 1H NMR (300 MHz, CDCl$_3$): δ 3.74 (3H, s, OMe), 4.03 (3H, s, OMe), 6.46 (1H, s, H5), 7.22-7.28 (10H, m, aryl H), 8.14, 8.86 (2H, 2d, $\text{J} = 12.6$ Hz, CH), 11.83 (1H, bs, NH); 13C NMR (75 MHz, CDCl$_3$): δ 56.0, 56.9 (OMe), 89.2 (C5), 132.4, 135.1 (ethenyl CH) 126.5, 127.6, 127.7, 128.4, 129.2, 131.5 (aryl CH), 96.9, 112.7, 114.8, 132.3, 134.1, 135.8, 138.2, 159.5, 160.4 (aryl C); ν_{max} (KBr): 3342, 1601, 1460, 1280, 1247, 1140, 989, 696 cm$^{-1}$; λ_{max} (MeOH): 204 nm (ε 37,600 cm$^{-1}$M$^{-1}$), 241 (26,800), 314 (15,300); HRMS (+ESI): [M+H]$^+$, found 401.1492. C$_{24}$H$_{20}$N$_2$O$_4$ requires 401.1501.

3-(4-Chlorophenyl)-4,6-dimethoxy-7-(2-nitrovinyl)-1H-indole (8b)
A mixture of 7-carbaldehyde 7b (0.73 g, 2.31 mmol) and ammonium acetate (1.114 g, 14.45 mmol) in MeNO$_2$ (18 mL) was heated at reflux for 3 h and evaporated to dryness in vacuo. The residue was quenched with water and the solid obtained was filtered, dried and washed with EtOH to give the title
compound 8b (0.77 g, 93%) as a red solid, mp 228-230 °C. Anal. Calcd for C$_{18}$H$_{15}$ClN$_2$O$_4$ requires C, 60.26; H, 4.21; N, 7.81%. Found: C, 60.41; H, 4.26; N, 7.71. 1H NMR (300 MHz, DMSO-d_6): δ 3.93 (3H, s, OMe), 4.06 (3H, s, OMe), 6.54 (1H, s, H5), 7.35 (1H, s, H2), 7.40, 7.55 (4H, J 8.40 Hz, 2d, aryl H), 8.14, 8.66 (2H, 2d, J 13.2 Hz, CH), 11.89 (1H, bs, NH); 13C NMR (75 MHz, DMSO-d_6): δ 56.0, 57.0 (OMe), 89.1 (C5), 123.8 (C2), 131.7, 134.6 (ethenyl CH), 127.9, 131.1 (aryl CH), 96.9, 110.2, 117.1, 130.7, 134.7, 138.4, 159.5, 160.3 (aryl C); ν$_{\text{max}}$ (KBr): 3439, 3293, 1614, 1578, 1292, 1274, 1181, 1103, 979 cm$^{-1}$; λ$_{\text{max}}$ (MeOH): 202 nm (ε 33,350 cm$^{-1}$M$^{-1}$), 228 (30,650), 283 (14,400); HRMS (+ESI): [M+H]$^+$, found 359.0793. C$_{18}$H$_{15}$ClN$_2$O$_4$ requires 359.0799.

3-(4-Bromophenyl)-4,6-dimethoxy-7-(2-nitroethenyl)-1H-indole (8c)

A mixture of 7-carbaldehyde 7c (3.73 g, 10.38 mmol) and ammonium acetate (4.78 g, 62 mmol) in MeNO$_2$ (25 mL) was heated at reflux for 3 h and evaporated to dryness in vacuo. The residue was quenched with water and the solid obtained was filtered, dried and washed with EtOH to give the title compound 8c (3.84 g, 92%) as a red solid. mp 226-228 °C. Anal. Calcd for C$_{18}$H$_{15}$BrN$_2$O$_4$: C, 53.62; H, 3.75; N, 6.95%. Found: C, 53.67; H, 3.67; N, 6.94. 1H NMR (300 MHz, DMSO-d_6): δ 3.94 (3H, s, OMe), 4.07 (3H, s, OMe), 6.55 (1H, s, H5), 7.36 (2H, d, J 1.9 Hz, H2), 7.48, 7.54 (4H, 2d, J 8.6 Hz, aryl H), 8.14, 8.67 (2H, 2d, J 13.2 Hz, CH), 11.90 (1H, bs, NH); 13C NMR (75 MHz, DMSO-d_6): δ 56.0, 57.0 (OMe), 89.1 (C5), 123.8 (C2), 131.7, 134.6 (ethenyl CH), 130.8, 131.5 (aryl CH), 96.9, 110.2, 117.1, 119.2, 135.1, 138.4, 159.5, 160.3 (aryl C); ν$_{\text{max}}$ (KBr): 3439, 3293, 1614, 1578, 1292, 1274, 1254, 1181, 1103, 979 cm$^{-1}$; λ$_{\text{max}}$ (MeOH): 202 nm (ε 33,350 cm$^{-1}$M$^{-1}$), 228 (30,650), 283 (14,400); HRMS (+ESI): [M+H]$^+$, found 403.0284. C$_{18}$H$_{15}$BrN$_2$O$_4$ requires 403.0293.

4,6-Dimethoxy-2,3-diphenyl-7-(2-nitroethyl)-indole (9a)

Sodium borohydride (1.00 g, 26.31 mmol) was added in portions to a stirred suspension of 7-nitroethenylindole 8a (1.85 g, 4.62 mmol) in EtOH/THF (45 mL) (2:1) at room temperature with cooling using an ice bath. Stirring was continued with cooling for 1 h. The mixture was poured into ice water and acidified to pH 3 with dilute hydrochloric acid (2 M). The resulting precipitate was filtered, dried and recrystallised from DCM/n-hexane to yield the title compound 9a (1.23 g, 66%) as a yellow solid, mp 196-198 °C; 1H NMR (300 MHz, CDCl$_3$): δ 3.53 (2H, t, J 13.9 Hz, CH$_2$), 3.72 (3H, s, OMe), 3.94 (3H, s, OMe), 4.72 (2H, t, J 13.2 Hz, CH$_2$), 6.32 (1H, s, H5), 7.25-7.43 (10H, m, aryl H), 8.40 (1H, bs, NH); 13C NMR (75 MHz, CDCl$_3$): δ 23.3 (CH$_2$), 55.6, 56.5 (OMe), 74.8 (CH$_2$-NO$_2$), 89.0 (C5), 126.0, 127.2, 127.3, 128.0, 128.5, 131.4 (aryl CH), 98.2, 113.5, 115.2, 132.8, 133.0, 135.8, 137.1, 154.5, 154.5 (aryl C); ν$_{\text{max}}$ (KBr): 3443, 2359, 2341, 1600, 1548, 1220, 1126, 697 cm$^{-1}$; λ$_{\text{max}}$ (MeOH): 206 nm (ε 340340.
46,750 cm⁻¹M⁻¹), 246 (27,600), 323 (15,800); HRMS (+ESI): [M+Na]⁺ found 425.1460. C₂₄H₂₂N₂O₄ requires 425.1472.

3-(4-Chlorophenyl)-4,6-dimethoxy-7-(2-nitroethyl)-indole (9b)
Sodium borohydride (1.00 g, 26.31 mmol) was added in portions to a stirred suspension of 7-nitroethenylindole 8b (0.7 g, 1.95 mmol) in a mixture of EtOH/THF (30 mL) (2:1) at room temperature with cooling using an ice bath. Stirring was continued with cooling for 1 h. The mixture was poured into ice water and acidified to pH 3 with dilute hydrochloric acid (2 M). The resulting precipitate was filtered, dried and recrystallised from DCM/n-hexane to yield the title compound 9b (0.62 g, 88%) as a yellow solid, mp 176-178 ºC; Anal. Calcd for C₁₈H₁₇ClN₂O₄: C, 59.92; H, 4.75; N, 7.76%. Found: C, 60.00; H, 4.72; N, 7.86. ¹H NMR (300 MHz, DMSO-d₆): δ 3.41 (2H, t, J 15.1 Hz, CH₂), 3.77 (3H, s, OMe), 3.83 (3H, s, OMe), 4.64 (2H, t, J 14.4 Hz, CH₂), 6.42 (1H, d, J 2.7 Hz, H2), 7.34, 7.52 (4H, 2d, J 8.4 Hz, aryl H), 11.25 (1H, d, J 1.6 Hz, NH); ¹³C NMR (75 MHz, DMSO-d₆): δ 23.0 (CH₂), 55.5, 57.1 (OMe), 74.6 (CH₂-NO₂), 89.4 (C5), 123.3 (C2), 127.8, 130.9 (aryl CH), 99.0, 110.1, 116.2, 135.5, 138.2, 153.4, 154.2 (aryl C); ν max (KBr): 3386, 2938, 2840, 1622, 1597, 1541, 1328, 1121, 1099, 835 cm⁻¹; λ max (MeOH): 228 nm (ε 32,950 cm⁻¹M⁻¹), 282 (15,450); HRMS (+ESI): [M+H]⁺, found 361.0948. C₁₈H₁₇ClN₂O₄ requires 361.0955.

3-(4-Bromophenyl)-4,6-dimethoxy-7-(2-nitroethyl)-indole (9c)
Sodium borohydride (2.00 g, 52.62 mmol) was added in portions to a stirred suspension of 7-nitroethenylindole 8c (2.8 g, 6.96 mmol) in EtOH/THF (75 mL) (2:1) at room temperature with cooling using an ice bath. Stirring was continued with cooling for 1 h. The mixture was poured into ice water and acidified to pH 3 with dilute hydrochloric acid (2 M). The resulting precipitate was filtered, dried and recrystallised from DCM/n-hexane to yield the title compound 9c (2.02 g, 72%) as a yellow solid, mp 184-186 ºC; ¹H NMR (300 MHz, CDCl₃): δ 3.44 (2H, t, J 13.6 Hz, CH₂), 4.65 (2H, t, J 13.6 Hz, CH₂), 3.81 (3H, s, OMe), 3.91 (3H, s, OMe), 6.32 (1H, s, H5), 7.03 (1H, d, J 2.5 Hz, H2), 7.42-7.49 (4H, m, aryl H), 8.37 (1H, bs, NH); ¹³C NMR (75 MHz, CDCl₃): δ 23.2 (CH₂), 55.2, 56.3 (OMe), 74.6 (CH₂-NO₂), 88.5 (C5), 121.5 (C2), 130.5, 131.0 (aryl CH), 98.3, 110.3, 118.0, 119.7, 134.8, 137.9, 153.9, 154.4 (aryl C); ν max (KBr): 3392, 2937, 2839, 1621, 1593, 1541, 1328, 1121, 1099, 835 cm⁻¹; λ max (MeOH): 203 nm (ε 50,400 cm⁻¹M⁻¹), 221 (46,350), 283 (18,800); HRMS (+ESI): [M+H]⁺, found 427.0263. C₁₈H₁₇ClN₂O₄ requires 427.0264.

2-(4,6-Dimethoxy-2,3-diphenyl-1H-indol-7-yl)-ethanamine (10a)
To a refluxing solution of 7-nitroethylindole 9a (1.00 g, 2.48 mmol) in absolute EtOH/THF (60 mL) (3:1), 10% Pd/C (0.32 g) was added under argon followed by the dropwise addition of hydrazine monohydrate (5 mL) over 15 min. The reaction mixture was heated under reflux for another 4 h, then filtered through Celite and the solvent was removed under reduced pressure. The residue was quenched with water and the resulting precipitate was filtered, dried and washed with Et₂O to yield the title compound 10a (0.73 g, 79%) as a grey solid, mp 170-172 ºC; ¹H NMR (300 MHz, CDCl₃): δ 3.04 (2H, t, J 9.9 Hz, CH₂), 3.11 (2H, t, J 10.0 Hz, CH₂), 3.69 (3H, s, OMe), 3.88 (3H, s, OMe), 6.31 (1H, s, H5), 7.17-7.44 (10H, m, aryl H), 10.98 (1H, bs, NH); ¹³C NMR (75 MHz, CDCl₃): δ 27.5, 41.9 (CH₂), 55.5, 57.6 (OMe), 90.2 (C5), 125.7, 126.6, 127.2, 127.9, 128.2 (aryl CH), 104.5, 113.6, 114.5, 132.9, 133.4, 136.4, 137.9, 153.3, 153.2 (aryl C); νmax (KBr): 3341, 3193, 2936, 1601, 1454, 1292, 1104, 701 cm⁻¹; λmax (MeOH): 246 nm (ε 29,350 cm⁻¹M⁻¹), 323 (16,550). HRMS (+ESI): [M+H]+, found 373.1917. C₂₄H₂₄N₂O₂ requires 373.1916.

The related acetamide was formed by reaction of 7-tryptamine 10a with acetic anhydride in 57% yield as a yellow solid, mp 223-225 ºC; ¹H NMR (300 MHz, DMSO-d₆): δ 2.96 (2H, t, J 14.5 Hz, CH₂), 3.17-3.24 (2H, m, CH₂), 3.60 (3H, s, OMe), 3.82 (3H, s, OMe), 6.35 (1H, s, H5), 7.19-7.30 (10H, m, aryl H), 7.96 (1H, t, J 10.4 Hz, NH), 11.00 (1H, bs, NH); ¹³C NMR (75 MHz, DMSO-d₆): δ 23.0 (Me), 24.4, 39.2 (CH₂), 55.5, 57.2 (OMe), 90.0 (C5), 126.1, 127.1, 127.6, 128.5, 128.7, 131.5 (aryl CH), 102.7, 112.9, 114.2, 133.01, 133.2, 136.7, 137.5, 153.1, 153.8 (aryl C), 170.1 (C=O); νmax (KBr): 3436, 3187, 1655, 1600, 1454, 1271, 1163, 1125, 765, 700 cm⁻¹; λmax (MeOH): 205 nm (ε 71,250 cm⁻¹M⁻¹), 247 (42,400), 325 (24,450); HRMS (+ESI): [M+H]+, found 415.2009. C₂₆H₂₆N₂O₃ requires 415.2021.

2-(4,6-Dimethoxy-3-phenyl-1H-indol-7-yl)-ethanamine (10d)
To a refluxing solution of 7-nitroethylindole 9b (1.59 g, 4.4 mmol) in absolute EtOH/THF (60 mL) (3:1), 10% Pd/C (0.4 g) was added under argon followed by the dropwise addition of hydrazine monohydrate (6 mL) over 15 min. The reaction mixture was heated under reflux for another 4 h then filtered through Celite and the solvent was removed under reduced pressure. The residue was quenched with water and the resulting precipitate was filtered, dried and washed with Et₂O to yield the title compound 10d (1.10 g, 93%) as a grey solid, mp 135-137 ºC; ¹H NMR (300 MHz, CDCl₃): δ 2.90, 2.94 (4H, 2d, J 4.5 Hz, CH₂), 3.71 (3H, s, OMe), 3.79 (3H, s, OMe), 6.26 (1H, s, H5), 6.98 (1H, s, H2), 7.15-7.55 (5H, m, aryl H), 10.23 (1H, bs, NH); ¹³C NMR (75 MHz, CDCl₃): δ 28.1, 42.3 (CH₂), 55.9, 56.0 (OMe), 90.5 (C5), 122.1 (C2), 125.8, 127.9, 129.9 (aryl CH), 104.9, 111.4, 119.0, 136.9, 139.4, 153.6, 154.1 (aryl C); νmax (KBr): 2933, 2359, 1600, 1519, 1462, 1331, 1215, 1127 cm⁻¹; λmax (MeOH): 229 nm (ε 71,250 cm⁻¹M⁻¹), 247 (42,400), 325 (24,450); HRMS (+ESI): [M+H]+, found 297.1596. C₁₈H₂₀N₂O₂ requires 297.1603.

(E)-2-(4,6-Dimethoxy-2,3-diphenyl-1H-indol-7-yl)-N-((4,6-dimethoxy-2,3-diphenyl-1H-indol-7-yl)-
methylene)-ethanamine (12a)

A mixture of 7-carbaldehyde 7a (0.19 g, 0.53 mmol) and 7-tryptamine 10a (0.20 g, 0.53 mmol) was heated under reflux in absolute EtOH (25 mL) for 24 h. The precipitate was filtered, washed with water and dried. The crude product was purified by flash chromatography using DCM/EtOAc (90:10) as eluent to yield the title compound 12a (0.16 g, 43%) as a pale yellow solid, mp 131-133 °C; \(^1\)H NMR (300 MHz, CDCl\(_3\)): δ 3.22 (2H, t, \(J\) 12.3 Hz, CH\(_2\)), 3.71 (3H, s, OMe), 3.75 (3H, s, OMe), 3.87 (3H, s, OMe), 3.91 (3H, s, OMe), 4.00 (2H, t, \(J\) 11.7 Hz, CH\(_2\)), 6.16 (1H, s, H5), 6.35 (1H, s, H5'), 6.75-7.32 (20H, m, aryl H), 8.30 (1H, s, CH), 8.86 (1H, bs, NH); \(\nu\)\(_{\text{max}}\) (KBr): 3427, 2931, 2835, 1624, 1597, 1462, 1361, 1244, 1123, 696 cm\(^{-1}\); \(\lambda_{\text{max}}\) (CH\(_2\)Cl\(_2\)): 229 nm (ε 81,100 cm\(^{-1}\)M\(^{-1}\)), 251 (78,450), 328 (46,750); HRMS (+ESI): [M+H]\(^+\), found 712.3159. C\(_{47}\)H\(_{41}\)N\(_3\)O\(_4\) requires 712.3175. The sample was not soluble enough for \(^{13}\)C NMR measurement.

\((E)-2-(4,6-Dimethoxy-3-phenyl-1H-indol-7-yl)-N-((4,6-dimethoxy-3-phenyl-1H-indol-7-yl)-methylene)-ethanamine (12b)

A mixture of 7-carbaldehyde 7d (0.21 g, 0.75 mmol) and 7-tryptamine 10d (0.23 g, 0.75 mmol) was heated under reflux in absolute EtOH (30 mL) for 8 h. The precipitate was filtered, washed with water and dried. The crude product was purified by flash chromatography using DCM/EtOAc (90:10) as eluent to yield the title compound 28 (0.29 g, 69%) as a yellow solid, mp 229-231 °C; \(^1\)H NMR (300 MHz, CDCl\(_3\)): δ 3.23 (2H, t, \(J\) 13.9 Hz, CH\(_2\)), 3.77 (3H, s, OMe), 3.85 (6H, s, OMe), 3.87 (3H, s, OMe), 3.91 (3H, s, OMe), 6.42 (1H, s, H5), 6.45 (1H, s, H5'), 7.17-7.56 (12H, m, H2, H2', aryl H), 8.76 (1H, s, CH), 11.17 (1H, d, \(J\) 2.2 Hz, NH), 11.26 (1H, bs, NH); \(^{13}\)C NMR (75 MHz, DMSO-\(d_6\)): δ 26.9 (CH\(_2\)), 55.5, 55.7, 57.1, 57.2 (OMe), 61.1 (CH\(_2\)), 88.5 (C5), 89.8 (C5'), 122.9 (C2), 125.4 (C2'), 125.8, 127.9, 128.0, 129.3, 129.4 (aryl CH), 101.3, 103.7, 109.9, 110.3, 117.4, 117.5, 136.3, 136.9, 137.0, 138.8, 152.8, 153.7, 157.2, 157.7 (aryl C), 156.8 (C=N); \(\nu_{\text{max}}\) (KBr): 3425, 3314, 2927, 2834, 1625, 1596, 1517, 1462, 1358, 1328, 1209, 1148, 1085, 1025, 701 cm\(^{-1}\); \(\lambda_{\text{max}}\) (THF): 311 nm (ε 28,750 cm\(^{-1}\)M\(^{-1}\)); HRMS (+ESI): [M+H]\(^+\), found 560.2538. C\(_{35}\)H\(_{33}\)N\(_3\)O\(_4\) requires 560.2549.

\((E)-2-(4,6-Dimethoxy-3-phenyl-1H-indol-7-yl)-N-((3-(4-Chlorophenyl)-4,6-dimethoxy-1H-indol-7-yl)-methylene)-ethanamine (12c)

A mixture of 7-carbaldehyde 7b (0.22 g, 0.71 mmol) and 7-tryptamine 10d (0.23 g, 0.71 mmol) was refluxed in absolute EtOH (30 mL) for 24 h. The precipitate was filtered, washed with water and dried. The crude product was purified by flash chromatography using DCM/EtOAc (90:10) as eluent to yield the title compound 12c (0.25 g, 65%) as a yellow solid, mp 284-286 °C; \(^1\)H NMR (300 MHz, DMSO-\(d_6\)): δ 3.18 (2H, t, \(J\) 13.7 Hz, CH\(_2\)), 3.75 (3H, s, OMe), 3.84 (6H, s, OMe), 3.88 (3H, s, OMe), 6.41 (1H, s, H5),
6.42 (1H, s, H5'), 7.16 (2H, t, J 6.8 Hz, H2, H2'), 7.21-7.52 (9H, m, aryl H), 8.72 (1H, s, CH), 11.14 (1H, bs, NH), 11.27 (1H, bs, NH); ν\text{max} (KBr): 3336, 1593, 1463, 1344, 1210, 1173, 1148, 1089 cm\(^{-1}\); λ\text{max} (THF): 228 nm (ε 69,600 cm\(^{-1}\)M\(^{-1}\)), 286 (28,450); HRMS (+ESI): [M+H]\(^+\), C\(_{35}\)H\(_{32}\)ClN\(_3\)O\(_4\) requires 594.2160, found 594.2153. The sample was not soluble enough for \(^{13}\)C NMR measurement.

\(N\)-(2-(4,6-Dimethoxy-2,3-diphenyl-1H-indol-7-yl)-ethyl)-4,6-dimethoxy-2,3-diphenyl-1H-indole-7-carboxamide (13a)

To a suspension of 7-tryptamine 10a (0.15 g, 0.4 mmol) and 7-trichloroacetylindole 11a (0.19 g, 0.4 mmol) in MeCN (20 mL), triethylamine (3 drops) was added and the mixture was stirred at room temperature for 2 h. The reaction mixture was poured into ice-water and the resulting precipitate was filtered, washed with water, dried and recrystallised from MeOH to afford the title compound 13a (0.26 g, 80%) as a pale green solid, mp 283-285 ºC; Anal. Calcd for C\(_{47}\)H\(_{41}\)N\(_3\)O\(_5\): C, 77.56; H, 5.68; N, 5.82%: Found: C, 77.27; H, 5.72; N, 5.82. \(^1\)H NMR (300 MHz, DMSO-\(d_6\)): δ 2.48 (2H, q, J 5.4 Hz, CH\(_2\)), 3.18 (2H, t, J 13.5 Hz, CH\(_2\)), 3.62 (3H, s, OMe), 3.70 (3H, s, OMe), 3.82 (3H, s, OMe), 3.84 (3H, s, OMe), 6.38 (1H, s, H5), 6.40 (1H, s, H5'), 7.10-7.27 (20H, m, aryl H), 8.38 (1H, t, J 10.3 Hz, NH), 11.1 (1H, bs, NH), 11.30 (1H, bs, NH); \(^{13}\)C NMR (75 MHz, DMSO-\(d_6\)): δ 24.2, 39.2 (CH\(_2\)), 55.6, 55.8, 57.0, 57.3 (OMe), 88.8 (C5), 90.0 (C5'), 126.1, 126.5, 127.1, 127.6, 127.8, 128.4, 128.7, 129.0, 131.5, 131.5 (aryl CH), 97.1, 102.4, 112.9, 113.0, 113.7, 114.1, 132.4, 132.5, 133.1, 133.3, 135.9, 136.7, 137.7, 138.1, 153.3, 153.9, 156.9, 157.4 (aryl C), 167.3 (C=O); ν\text{max} (KBr): 3407, 2927, 1618, 1502, 1264, 1213, 1116, 697 cm\(^{-1}\). λ\text{max} (CH\(_2\)Cl\(_2\)): 228 nm (ε 75,000 cm\(^{-1}\)M\(^{-1}\)), 250 (86,750), 335 (54,100); HRMS (+ESI): [M+H]\(^+\), found 728.3115. C\(_{47}\)H\(_{41}\)N\(_3\)O\(_5\) requires 728.3124.

3-(4-Chlorophenyl)-\(N\)-(2-(4,6-dimethoxy-3-phenyl-1H-indol-7-yl)-ethyl)-4,6-dimethoxy-1H-indole-7-carboxamide (13b)

To a suspension of 7-tryptamine 10d (0.20 g, 0.6 mmol) and 7-trichloroacetylindole 11b (0.26 g, 0.6 mmol) in MeCN (20 mL), triethylamine (3 drops) was added and the mixture was stirred at room temperature for 4 h, then poured into ice-water and the resulting precipitate was filtered, washed with water, dried and recrystallised from MeOH to afford the title compound 13b (0.22 g, 60%) as a cream solid, mp 196-198 ºC; Anal. Calcd for C\(_{35}\)H\(_{32}\)ClN\(_3\)O\(_5\)0.25 CH\(_3\)OH: C, 68.50; H, 5.38; N, 6.80%: Found: 68.31; H, 5.30; N, 6.94. \(^1\)H NMR (300 MHz, CDCl\(_3\)): δ 3.21 (2H, t, J 15.3 Hz, CH\(_2\)), 3.66 (2H, q, J 21.7 Hz, CH\(_2\)), 3.84 (3H, s, OMe), 3.88 (3H, s, OMe), 3.92 (3H, s, OMe), 3.95 (3H, s, OMe), 6.25 (1H, s, H5), 6.36 (1H, s, H5'), 7.19 (1H, d, J 2.0 Hz, H2), 7.24 (1H, d, J 2.4 Hz, H2'), 7.25-7.68 (9H, m, aryl H), 8.52 (1H, t, J 11.8 Hz, NH), 10.43 (1H, bs, NH), 11.29 (1H, bs, NH); \(^{13}\)C NMR (75 MHz, CDCl\(_3\)): δ 24.9, 39.2 (CH\(_2\)), 55.1, 55.4, 56.7, 57.5 (OMe), 87.4 (C5), 89.5 (C5'), 122.0 (C2), 122.2 (C2'), 125.3, 127.5, 127.6, 129.4,
130.7 (aryl CH), 97.5, 102.7, 110.7, 110.9, 116.7, 118.3, 131.5, 134.3, 136.4, 138.9, 139.3, 153.2, 153.3, 156.8, 157.3 (aryl C), 168.6 (C=O); ν\textsubscript{max} (KBr): 3397, 2927, 2834, 1619, 1593, 1540, 1330, 1264, 1209, 1106 cm-1; λ\textsubscript{max} (THF): 232 nm (ε 74,900 cm-1M-1), 286 (31,800); HRMS (+ESI): [M+Na]+, found 634.1899. C\textsubscript{35}H\textsubscript{32}ClN\textsubscript{3}O\textsubscript{5} requires 634.1899.

N1,N2-Bis-(2-(4,6-dimethoxy-2,3-diphenyl-1H-indol-7-yl)-ethyl)-oxalamide (14a)
Oxalyl chloride (0.05 mL, 0.48 mmol) in dry DCM (5 mL) was added dropwise to a solution of 7-tryptamine 10a (0.30 g, 0.81 mmol) in dry DCM (10 mL) containing triethylamine (0.11 mL, 0.81 mmol). The reaction mixture was stirred at room temperature for 1.5 h. The solvent was evaporated and the residue was quenched with water. The resulting precipitate was filtered, dried and recrystallised from EtOH to yield the title compound 14b (0.15 g, 46%) as a pale yellow solid, mp 278-280 °C; Anal. Calcd for C\textsubscript{50}H\textsubscript{46}N\textsubscript{4}O\textsubscript{6}: C, 74.15; H, 5.75; N, 6.90%. Found: C, 73.93; H, 5.82; N, 7.18. 1H NMR (300 MHz, DMSO-\textit{d}\textsubscript{6}): δ 3.04 (4H, s, CH\textsubscript{2}), 3.61 (6H, s, OMe), 3.81 (6H, s, OMe), 6.36 (2H, s, H5), 7.22-7.26 (20H, m, aryl H), 8.50 (2H, s, NH), 10.86 (2H, bs, NH); 13C NMR (75 MHz, DMSO-\textit{d}\textsubscript{6}): δ 23.9, 39.6 (CH\textsubscript{2}), 55.5, 57.1 (OMe), 89.8 (C5), 126.1, 127.2, 127.5, 128.5, 129.0, 131.5 (aryl CH), 102.0, 112.8, 114.1, 133.1, 133.3, 136.6, 137.4, 153.2, 153.9 (aryl C), 160.1 (C=O); ν\textsubscript{max} (KBr): 3353, 1646, 1598, 1518, 1326, 1217, 1128, 698 cm-1; λ\textsubscript{max} (THF): 214 nm (ε 112,150 cm-1M-1), 248 (73,200), 329 (41,000); HRMS (+ESI): [M+H]+, found 799.3487. C\textsubscript{50}H\textsubscript{46}N\textsubscript{4}O\textsubscript{6} requires 799.3496.

N1,N2-Bis-(2-(4,6-dimethoxy-3-phenyl-1H-indol-7-yl)-ethyl)-oxalamide (14b)
Oxalyl chloride (0.06 mL, 0.69 mmol) in dry DCM (6 mL) was added dropwise to a solution of 7-tryptamine 10d (0.36 g, 1.22 mmol) in dry DCM (10 mL) containing triethylamine (0.15 mL, 1.09 mmol). The reaction mixture was stirred at room temperature for 1 h. The solvent was evaporated and the residue was quenched with water. The resulting precipitate was filtered, dried and recrystallised from MeOH to yield the title compound 14b (0.2 g, 51%) as a pale yellow solid, mp 284-286 °C; Anal. Calcd for C\textsubscript{38}H\textsubscript{38}N\textsubscript{4}O\textsubscript{6}: C, 70.20; H, 5.90; N, 8.61%. Found: C, 70.07; H, 5.99; N, 8.72. 1H NMR (300 MHz, DMSO-\textit{d}\textsubscript{6}): δ 3.01 (4H, t, J 13.9 Hz, CH\textsubscript{2}), 3.78 (6H, s, OMe), 3.85 (6H, s, OMe), 6.42 (2H, s, H5), 7.16-7.57 (12H, m, aryl H), 8.53 (1H, t, J 11.3 Hz, NH), 11.02 (2H, d, J 1.7 Hz, NH); 13C NMR (75 MHz, DMSO-\textit{d}\textsubscript{6}): δ 24.1, 39.7 (CH\textsubscript{2}), 55.6, 57.2 (OMe), 89.7 (C5), 122.9 (C2), 125.5, 127.9, 129.4 (aryl CH), 102.3, 110.4, 117.7, 136.8, 138.5, 153.1, 153.7 (aryl C), 160.2 (C=O); ν\textsubscript{max} (KBr): 3350, 1646, 1598, 1518, 1326, 1217, 1128, 698 cm-1; λ\textsubscript{max} (THF): 230 nm (ε 66,700 cm-1M-1), 286 (28,200); HRMS (+ESI): [M+H]+, found 647.2855. C\textsubscript{38}H\textsubscript{38}N\textsubscript{4}O\textsubscript{6} requires 647.2870.

BIOLICAL METHODS
SH-SY5Y cells were cultured in 10% Dulbecco’s modified Eagle’s medium/F-12 (DMEM/F-12; Invitrogen) with 1% penicillin-streptomycin (Life Technologies). For assessment of viability, cells were plated at 5x10^4 cells per well in 96-well plates and were cultured for 24 h before addition of compounds for 24 h. Viability was then assessed using CellTiter-Blue (Promega) as per the manufacturer’s protocol. For assessment of proliferation, cells were plated at 2x10^4 cells per well in 96-well plates and were cultured for 24 h before addition of compounds for 24 h. Effects on proliferation were then assessed using a 5–bromo–2’–deoxyuridine (BrdU) enzyme–linked immunosorbent assay (ELISA) according to the manufacturer’s protocol (Roche Molecular Diagnostics). Experiments were conducted on three independent occasions, and results expressed as mean ± standard deviation.

ACKNOWLEDGEMENTS

We thank the University of New South Wales and the Turkish Government for their financial support. Mass spectrometric analysis for this work was carried out at the Bioanalytical Mass Spectrometry Facility, UNSW and was supported in part by infrastructure funding from the New South Wales Government as part of its coinvestment in the National Collaborative Research Infrastructure Strategy

REFERENCES

1. X. Yang, T. Bing, H. Mei, C. Fang, Z. Cao, and D. Shangguan, Analyst, 2011, 136, 577.