STEREOSELECTIVE SYNTHESIS OF CHIRAL \(\alpha,\beta \)-UNSATURATED tert-BUTYL SULFOXIDES DERIVATIVES BY THE HORNER-WADSWORTH-EMMONS REACTION

Bo Liu, Lingyan Chen, and Zhihua Sun*

College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, P.R. China

*Zhihua Sun, Telephone: +86 21 67791432, Fax: +86 21 67791214, E-mail: sungaris@gmail.com

Abstract – A series of chiral \(\alpha,\beta \)-unsaturated tert-butyl sulfoxides derivatives was synthesized by the Horner-Wadsworth-Emmons reaction in good \((E)/(Z)\) ratios. The enantioselectivity up to 89% and the yield up to 90% were achieved. These sulfoxides could be important intermediates in asymmetric synthesis.

Sulfoxides are widely used in organic synthesis.\(^1\)\(^-\)\(^5\) They often are valuable intermediates of biologically active compounds (for example, Omeprazole and Lansoprazole) and are good auxiliary or ligands in asymmetric synthesis.\(^6\) In particular, \(\alpha,\beta \)-unsaturated sulfoxides are often employed in carbon-carbon bond-forming reactions as the contained double bond is reactive towards addition\(^7\) and can serve as a dienophile in Diels-Alder reaction.\(^8\) There are two general methods for the preparation of \(\alpha,\beta \)-unsaturated sulfoxides. One may be achieved through the use of vinylic Grignard reagents. As many Grignard reagents can not be prepared easily, this approach is not very practical. The other method is based on Horner-Wittig reaction\(^9\) or Horner-Wadsworth-Emmons Reaction. However, the chirality is often ignored during the preparation, leading to the synthesis of \(\alpha,\beta \)-unsaturated sulfoxide compounds with no or low enantioselectivity. Therefore, the design and synthesis of new chiral \(\alpha,\beta \)-unsaturated sulfoxides attracted

\[(S)\text{-menthyl } p\text{-toluenesulfinate} \] \[N\text{-sulfinylsultam} \] \[\text{tert-butyl tert-butanethiosulfinate} \]

\(Figure \ 1 \)
more attention.10-13 Optically active sulfoxides were successfully generated from (S)-menthyl
p-toluenesulfinites by Anderson,14 N-sulfinylsultams by Oppolzer15 and tert-butyl
tert-butaneethiosulfinites by Ellman (Figure 1).16

Given that tert-butylsulfinyl group is a very useful chiral auxiliary in organic synthesis as it has shown
high levels of asymmetric induction in a variety of processes, we demonstrate here an approach for the
synthesis of chiral α,β-unsaturated sulfoxides containing tertiary butyl group using
Horner-Wadsworth-Emmons Reaction (HWE reaction) to achieve good enantioselectivities and (E)/(Z)
ratios. HWE reaction has some advantages over traditional Wittig reaction: 1) the preparation of the
starting alkyl phosphonates is easier and cheaper; 2) the phosphonate carbanions are more nucleophilic
towards all aldehydes under milder reaction conditions.

α,β-Unsaturated tert-butyl sulfoxides were prepared via HWE reaction between diethyl
methylphosphonate sulfoxide 4 and aldehydes. The chiral substrate 4 was prepared in good yield and with
good enantioselectivity as shown in Scheme 1: the oxidation of disulfide 1 with a chiral ligand in the
presence of H$_2$O$_2$, followed by nucleophilic substitution reaction with diethyl methylphosphonate 3 using
n-BuLi in THF at -78 °C. The enantiomeric excess (ee) of 2 was 92\% as checked by HPLC analysis,
while for 4 was about 89\% (if the reaction temperature was -100 °C, ee could be higher by another
1\%\textendash3\%).17 For α,β-unsaturated tert-butyl sulfoxides, our investigations started with the examination of
effects of different bases on the yields and (E)/(Z) ratios. As shown in Table 1, we found that n-BuLi gave
the best performance and resulted in 90\% yield of E-isomer. Other strong and bulky bases such as
LiHMDS, LDA or LTMP all gave less yield and (E)/(Z) ratio. When toluene was used instead of THF as
the reaction solvent, both yield and (E)/(Z) ratio were decreased.

\begin{center}
\includegraphics[width=\textwidth]{scheme1.png}
\end{center}

\textbf{Scheme 1.} Synthesis of chiral diethyl methylphosphonate sulfoxide 4

Using the optimized conditions (entry 1 in Table 1), we shifted to survey the scope of the reaction. A
wide range of aryl-, alkyl-, and α,β-unsaturated aldehydes were tested. The results are summarized in
Table 2. All substrates could smoothly lead to α,β-unsaturated tert-butyl sulfoxides with the E-isomers as
the major product. It seemed that the 4-substitued aromatic aldehydes with electron-donating group gave
higher $\text{(E)}/(\text{Z})$ ratios and yields than that with electron-withdrawing group. For any 2-substituted aromatic aldehydes, $(\text{E})/(\text{Z})$ ratios decreased. In addition, the aliphatic aldehydes gave lower yields and $(\text{E})/(\text{Z})$ ratios.

In order to check if the enantioselectivity was loss or not in the Horner-Wadsworth-Emmons reaction, all E-products were subjected HPLC analysis using a chiralpak column. The resulting ee values were also listed in Table 2.

Table 1. Investigations of the effects of different bases and solvents on the Horner-Wadsworth-Emmons reactiona

<table>
<thead>
<tr>
<th>Entry</th>
<th>Base</th>
<th>Solvent</th>
<th>$(\text{E})/(\text{Z})$ ratiob</th>
<th>Yield (%)c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>n-BuLi</td>
<td>THF</td>
<td>10/1.0</td>
<td>90</td>
</tr>
<tr>
<td>2</td>
<td>LDA</td>
<td>THF</td>
<td>10/2.3</td>
<td>80</td>
</tr>
<tr>
<td>3</td>
<td>LTMP</td>
<td>THF</td>
<td>10/2.6</td>
<td>75</td>
</tr>
<tr>
<td>4</td>
<td>NaHMDS</td>
<td>THF</td>
<td>10/2.8</td>
<td>78</td>
</tr>
<tr>
<td>5</td>
<td>LiHMDS</td>
<td>THF</td>
<td>10/2.3</td>
<td>81</td>
</tr>
<tr>
<td>6</td>
<td>t-BuOK</td>
<td>THF</td>
<td>10/6.1</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>n-BuLi</td>
<td>toluene</td>
<td>10/4.3</td>
<td>70</td>
</tr>
</tbody>
</table>

aAll reactions were carried out using 4 (1.0 mmol), 5a (2.0 mmol), and base (1.1 mmol) in solvent (5.0 mL) at -78 °C. bDetermined by 1H NMR analysis of crude product. cIsolated yield.

Table 2. The scope of the synthesis of α,β-unsaturated tert-butyl sulfoxides using Horner-Wadsworth-Emmons reactiona

<table>
<thead>
<tr>
<th>Entry</th>
<th>R</th>
<th>$(\text{E})/(\text{Z})$ ratiob</th>
<th>Major Product (E)</th>
<th>Yield (%)c</th>
<th>ee (%)d</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>10/1.0</td>
<td></td>
<td>90</td>
<td>91</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>10/0.6</td>
<td></td>
<td>87</td>
<td>89</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>10/0.8</td>
<td></td>
<td>88</td>
<td>89</td>
</tr>
<tr>
<td>No.</td>
<td>反应物</td>
<td>产率</td>
<td>收率</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-------</td>
<td>-----</td>
<td>-----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5d</td>
<td>10/1.0</td>
<td>65</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5e</td>
<td>10/0.9</td>
<td>70</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>5f</td>
<td>10/1.1</td>
<td>64</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>5g</td>
<td>10/1.0</td>
<td>67</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>5h</td>
<td>10/2.1</td>
<td>61</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>5i</td>
<td>10/2.3</td>
<td>67</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>5j</td>
<td>10/4.1</td>
<td>72</td>
<td>87</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>5k</td>
<td>10/2.1</td>
<td>80</td>
<td>87</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>5l</td>
<td>10/1.7</td>
<td>77</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>5m</td>
<td>10/1.3</td>
<td>62</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>5n</td>
<td>10/1.0</td>
<td>65</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>5o</td>
<td>10/3.4</td>
<td>73</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>5p</td>
<td>10/2.3</td>
<td>68</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>5q</td>
<td>10/1.8</td>
<td>70</td>
<td>89</td>
<td></td>
</tr>
</tbody>
</table>

*All reactions were carried out using 4 (1.0 mmol), 5 (2.0 mmol), and n-BuLi (1.1 mmol) in THF (5.0 mL) at -78 °C. *b* Determined by ¹H NMR analysis of crude product. *c* Isolated yield. *d* Determined by HPLC analysis using a chiralpak column.
In summary, we have demonstrated the synthesis of chiral α,β-unsaturated tert-butyl sulfoxides using Horner-Wadsworth-Emmons reaction. Up to 90% yield of E-isomer was achieved. The enantioselectivity in the starting material 4 could be retained in the HWE reaction, resulting in α,β-unsaturated tert-butyl sulfoxides in about 89% ee. As they were important intermediates in the organic synthesis, further applications of these chiral α,β-unsaturated tert-butyl sulfoxides such as asymmetric Diels-Alder reaction are in progress.

EXPERIMENTAL

1H NMR and 13C NMR spectra were recorded in CDCl₃ operating at 400 MHz and 100 MHz respectively. Proton chemical shifts are reported relative to the residual proton signals of the deuterated solvent CDCl₃ (7.28 ppm) or TMS. Carbon chemical shifts were internally referenced to the deuterated solvent signals in CDCl₃ (77.00 ppm). Data are represented as follows: chemical shift, multiplicity (br = broad singlet, s = singlet, d = doublet, t = triplet, m = multiplet), coupling constant in Hertz (Hz), and integration. Products were identified by comparison to spectral data reported in the literature. Mass spectra (both at low resolution and at high resolution) were recorded on a time-of-flight mass spectrometer with an ESI source. High performance liquid chromatography (HPLC) was performed using a chromatograph equipped with a Chiral pak column (250 mm × 4.6 mm) with 10%-1% i-PrOH in hexane as the eluent and a flow rate of 1.0-0.7 mL/min. The retention times were 6.4 (R) and 7.9 (S) min for 2 (AS-H column, 1 mL/min, 97:3 hexanes:i-PrOH, 254 nm detector wavelength), 11.9 (R) and 12.4 (S) min for 6a (OJ-H column, 1 mL/min, 97:3 hexanes:i-PrOH, 254 nm detector wavelength), 22.5 (R) and 23.4 (S) min for 6b (OJ-H column, 1 mL/min, 99:1 hexanes:i-PrOH, 254 nm detector wavelength), 23.5 (R) and 24.8 (S) min for 6c (OJ-H column, 1 mL/min, 97:3 hexanes:i-PrOH, 254 nm detector wavelength), 15.3 (S) and 18.4 (R) min for 6d (OJ-H column, 1 mL/min, 98:2 hexanes:i-PrOH, 254 nm detector wavelength), 36.1 (R) and 40.2 (S) min for 6e (OJ-H column, 1 mL/min, 99:1 hexanes:i-PrOH, 254 nm detector wavelength), 13.9 (S) and 14.6 (R) min for 6f (OJ-H column, 1 mL/min, 99:1 hexanes:i-PrOH, 254 nm detector wavelength), 45.7 (S) and 49.9 (R) min for 6g (OJ-H column, 1 mL/min, 99:1 hexanes:i-PrOH, 254 nm detector wavelength), 31.9 (R) and 35.2 (S) min for 6h (AS-H column, 0.7 mL/min, 90:10 hexanes:i-PrOH, 254 nm detector wavelength), 15.8 (R) and 16.5 (S) min for 6i (OJ-H column, 0.7 mL/min, 99:1 hexanes:i-PrOH, 254 nm detector wavelength), 11.5 (R) and 14.5 (S) min for 6j (OJ-H column, 1 mL/min, 99:1 hexanes:i-PrOH, 254 nm detector wavelength), 8.5 (S) and 9.1 (R) min for 6k (OJ-H column, 1 mL/min, 99:1 hexanes:i-PrOH, 254 nm detector wavelength), 37.7 (S) and 41.2 (R) min for 6l (AS-H column, 1 mL/min, 95:5 hexanes:i-PrOH, 254 nm detector wavelength), 27.9 (R) and 30.7 (S) min for 6m (OJ-H column, 1 mL/min, 98:2 hexanes:i-PrOH, 254 nm detector wavelength), 14.2 (R) and 14.8 (S) min for 6n (OJ-H column, 0.8 mL/min, 98:2 hexanes:i-PrOH, 254 nm detector wavelength), 15.0 (S) and 15.9
Typical procedure for synthesis of 4.

(S)-(2-Methylpropane-2-sulfinylmethyl)phosphonic acid diethyl ester (4): A solution of diethyl methylphosphonate 3 (3.0 g, 19.68 mmol) was dissolved in THF (30 mL) under nitrogen. n-BuLi (21.65 mmol, 1.6 M in hexanes) was added at -78 °C. After stirring for 10 min at this temperature, a solution of \((R)-\text{tert}-\text{butyl tert}-\text{butanethiosulfinate} 2\) (1.86 g, 9.84 mmol) in THF (10 mL) was added, and stirring was continued until the reaction reached completion (as checked by TLC). This usually took 1 h. Saturated aqueous ammonium chloride solution (10 mL) was added and the layers were separated. The water layer was extracted with EtOAc (3 × 100 mL). The combined organic layers were dried with magnesium sulfate. After filtration, the solvents were removed under reduced pressure. The residue was purified using silica gel chromatography with EtOAc as eluent to afford the desired product 4 (1.69 g, 68%); pale green oil; \(^1\text{H} \text{NMR} (400 \text{ MHz}, \text{CDCl}_3) \delta 4.23-4.16 (m, 4H), 3.10-2.77 (m, 2H), 1.34 (t, J = 7.2 Hz, 6H), 1.24 (s, 9H).

Typical procedure for synthesis of 6a-q.

(S)-(E)-(2-(2-Methylpropane-2-sulfinyl)vinyl)benzene (6a): (S)-(2-Methylpropane-2-sulfinylmethyl)phosphonic acid diethyl ester 4 (0.256 g, 1 mmol) was dissolved in THF (3 mL) under nitrogen. n-BuLi (1.1 mmol, 1.6 M in hexanes) was added at -78 °C. After stirring for 30 min at this temperature, the aldehyde 5a (0.212 g, 2 mmol) in THF (2 mL) was added, and stirring was continued until the reaction reached completion (as checked by TLC). This usually took 0.5-1 h. Saturated aqueous ammonium chloride solution (10 mL) was added and the layers were separated. The water layer was extracted with EtOAc (3 × 10 mL). The combined organic layers were dried with magnesium sulfate. After filtration, the solvents were removed under reduced pressure. The crude product was analyzed by \(^1\text{H} \text{NMR}\). Column chromatography afforded the (E)-vinyl sulfoxides and the corresponding (Z)-vinyl sulfoxides, as mentioned in Table 2. The residue was loaded on a silica gel using PE / EtOAc (10/1 to 4/1) to afford the desired product 6a (0.187 g, 90%). The coupling constant of between alkene hydrogen atom is 15.5 Hz, between 12-18 Hz, therefore the absolute configuration of 6a is (E)-vinyl sulfoxides. White solid; mp 80-81 °C; \([\alpha]_D^{20} +13.52\) (c 1.0, MeOH); \(^1\text{H} \text{NMR} (400 \text{ MHz}, \text{CDCl}_3) \delta 7.52-7.42 (m, 2H), 7.41-7.37 (m, 3H), 7.25 (d, J = 15.6 Hz, 1H), 6.81(d, J = 15.5 Hz, 1H), 1.32 (s, 9H); \(^1\text{C} \text{NMR} (100 \text{ MHz}, \text{CDCl}_3) \delta 138.5, 134.1, 129.6, 128.9, 127.6, 126.5, 55.7, 23.1. \text{MS (ESI-TOF)} m/z: 209.1 [\text{M}+\text{H}]^+. \text{HRMS (ESI-TOF) calcd for } \text{C}_{12}\text{H}_{16}\text{OS}^+ [\text{M}]^+ 209.0995, \text{Found: } 209.0995.
(S)-(E)-1-Methyl-4-[2-(2-methylpropane-2-sulfinyl)vinyl]benzene (6b): white solid (0.194 g, 87%); mp 93-94 °C; \([\alpha]_D^20 +8.82\) (c 1.0, MeOH); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.39 (d, \(J = 8.0\) Hz, 2H), 7.25-7.19 (m, 3H), 6.75 (d, \(J = 15.6\) Hz, 1H), 2.39 (s, 3H), 1.31 (s, 9H); \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 140.0, 139.1, 131.3, 129.6, 127.6, 124.7, 55.7, 23.1, 21.4. MS (ESI-TOF) \(m/z\): 223.1 [M+H]\(^+\). HRMS (ESI-TOF) calcd for C\(_{13}\)H\(_{18}\)OS\(^+\) [M]+ 223.1151, Found: 223.1149.

(S)-(E)-1-Methoxy-4-[2-(2-methylpropane-2-sulfinyl)vinyl]benzene (6c): white solid (0.210 g, 88%); mp 114-115 °C; \([\alpha]_D^20 +10.20\) (c 1.0, MeOH); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.45 (d, \(J = 8.8\) Hz, 2H), 7.20 (d, \(J = 15.2\) Hz, 1H), 6.94 (d, \(J = 8.8\) Hz, 2H), 6.65 (d, \(J = 15.5\) Hz, 1H), 3.86 (s, 3H), 1.31 (s, 9H); \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 160.9, 138.8, 129.2, 126.8, 123.3, 114.3, 55.5, 55.4, 23.1. MS (ESI-TOF) \(m/z\): 239.1 [M+H]\(^+\). HRMS (ESI-TOF) calcd for C\(_{13}\)H\(_{18}\)O\(_2\)S\(^+\) [M]+ 239.1100, Found: 239.1103.

(S)-(E)-1-[2-(2-Methylpropane-2-sulfinyl)vinyl]-4-nitrobenzene (6d): colorless oil (0.165 g, 65%); \([\alpha]_D^20 +35.80\) (c 1.0, MeOH); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.26 (d, \(J = 8.8\) Hz, 2H), 7.64 (d, \(J = 8.4\) Hz, 2H), 7.32 (d, \(J = 15.2\) Hz, 1H), 7.06 (d, \(J = 15.2\) Hz, 1H), 1.34 (s, 9H); \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 148.0, 140.2, 135.3, 132.0, 128.1, 124.3, 56.6, 23.2. MS (ESI-TOF) \(m/z\): 254.0 [M+H]\(^+\). HRMS (ESI-TOF) calcd for C\(_{12}\)H\(_{15}\)NO\(_3\)S\(^+\) [M]+ 254.0845, Found: 254.0841.

(S)-(E)-1-Chloro-4-[2-(2-methylpropane-2-sulfinyl)vinyl]benzene (6e): white solid (0.169 g, 70%); mp 92-93 °C; \([\alpha]_D^20 +22.16\) (c 1.0, MeOH); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.40 (dd, \(J = 21.6, 8.4\) Hz, 4H), 7.20 (d, \(J = 15.2\) Hz, 1H), 6.80 (d, \(J = 15.6\) Hz, 1H), 1.31 (s, 9H); \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 136.8, 135.4, 132.6, 129.2, 128.7, 127.3, 55.9, 23.1. MS (ESI-TOF) \(m/z\): 243.0 [M+H]\(^+\). HRMS (ESI-TOF) calcd for C\(_{12}\)H\(_{15}\)ClOS\(^+\) [M]+ 243.0605, Found: 243.0600.

(S)-(E)-4-[2-(2-Methylpropane-2-sulfinyl)vinyl]benzonitrile (6f): white solid (0.149 g, 64%); mp 86-87 °C; \([\alpha]_D^20 +34.71\) (c 1.0, MeOH); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.70 (d, \(J = 8.0\) Hz, 2H), 7.58 (d, \(J = 8.4\) Hz, 2H), 7.27 (t, \(J = 8\) Hz, 1H), 6.99 (d, \(J = 15.6\) Hz, 1H), 1.33 (s, 9H); \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 138.3, 135.8, 132.7, 131.0, 128.0, 126.1, 118.4, 112.7, 56.4, 23.2. MS (ESI-TOF) \(m/z\): 234.0 [M+H]\(^+\). HRMS (ESI-TOF) calcd for C\(_{13}\)H\(_{15}\)NOS\(^+\) [M]+ 234.0947, Found: 234.0944.

(S)-(E)-1,2-Dichloro-3-[2-(2-methylpropane-2-sulfinyl)vinyl]benzene (6g): white solid (0.186 g, 67%); mp 92-93 °C; \([\alpha]_D^20 +8.34\) (c 1.0, MeOH); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.62 (d, \(J = 15.6\) Hz, 1H), 7.49-7.44 (m, 2H), 7.24 (t, \(J = 8\) Hz, 1H), 6.86 (d, \(J = 15.6\) Hz, 1H), 1.31 (s, 9H); \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 135.0, 134.7, 134.0, 132.2, 131.8, 130.8, 127.4, 126.2, 56.0, 23.1. MS (ESI-TOF) \(m/z\): 277.0 [M+H]\(^+\). HRMS (ESI-TOF) calcd for C\(_{12}\)H\(_{14}\)Cl\(_2\)OS\(^+\) [M]+ 277.0215, Found: 277.0210.

(S)-(E)-2-[2-(2-Methylpropane-2-sulfinyl)vinyl]pyridine (6h): colorless oil (0.127 g, 61%); \([\alpha]_D^20 +21.35\) (c 1.0, MeOH); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.63 (d, \(J = 4.0\) Hz, 1H), 8.75-7.71 (m, 1H), 7.54 (d, \(J = 14.8\) Hz, 1H), 7.34 (d, \(J = 8.0\) Hz, 1H), 7.28-7.24 (m, 2H), 1.33 (s, 9H); \(^13\)C NMR (100 MHz, CDCl\(_3\))

(S)-(E)-1-Fluoro-2-[2-(2-methylpropane-2-sulfinyl)vinyl]-3-trifluoromethylbenzene (6i): colorless oil (0.197 g, 67%); [α]_{D}^{20} +128.83 (c 1.0, MeOH); ^1H NMR (400 MHz, CDCl₃) δ 7.54 (d, J = 7.6 Hz, 1H), 7.39 (t, J = 5.6 Hz, 1H), 7.31 (t, J = 7.6 Hz, 2H), 7.04 (d, J = 15.6 Hz, 1H), 1.30 (s, 9H); ^13C NMR (100 MHz, CDCl₃) δ 162.0, 159.5, 136.3, 136.2, 129.8, 129.7, 126.3, 122.2, 122.1, 122.1, 122.1, 120.0, 119.8, 56.2, 23.0. MS (ESI-TOF) m/z: 295.0 [M+H]+. HRMS (ESI-TOF) calcd for C_{13}H_{14}F_{4}OS+ [M]⁺ 295.0774, Found: 295.0776.

(S)-(E)-1-(2-Methylpropane-2-sulfinyl)propene (6j): colorless oil (0.105 g, 72%); [α]_{D}^{20} +27.20 (c 1.0, MeOH); ^1H NMR (400 MHz, CDCl₃) δ 6.50-6.38 (m, 1H), 6.13 (dd, J = 15.2, 1.6 Hz, 1H), 1.93 (dd, J = 15.6 Hz, 1H), 1.21 (s, 3H); ^13C NMR (100 MHz, CDCl₃) δ 138.2, 129.1, 54.23, 22.80, 18.02. MS (ESI-TOF) m/z: 147.0 [M+H]+. HRMS (ESI-TOF) calcd for C_{7}H_{14}OS+ [M]⁺ 147.0838, Found: 147.0837.

(S)-(E)-1-[2-(2-Methylpropane-2-sulfinyl)vinyl]cyclohexane (6k): colorless oil (0.171 g, 80%); [α]_{D}^{20} +98.22 (c 1.0, MeOH); ^1H NMR (400 MHz, CDCl₃) δ 6.38 (dd, J = 15.2, 6.4 Hz, 1H), 6.03 (d, J = 15.6 Hz, 1H), 2.20-2.18 (m, 1H), 1.78-1.64 (m, 5H), 1.28 (dd, J = 24.4, 11.6 Hz, 3H), 1.19 (s, 9H), 1.14 (d, J = 11.6 Hz, 2H); ^13C NMR (100 MHz, CDCl₃) δ 147.7, 125.8, 54.3, 40.6, 32.1, 32.0, 25.9, 25.7, 22.8. MS (ESI-TOF) m/z: 215.1 [M+H]+. HRMS (ESI-TOF) calcd for C_{12}H_{22}OS+ [M]⁺ 215.1464, Found: 215.1462.

(S)-(E)-2-[2-(2-Methylpropane-2-sulfinyl)vinyl]naphthalene (6l): white solid (0.199 g, 77%); mp 85-86 °C; [α]_{D}^{20} +85.43 (c 1.0, MeOH); ^1H NMR (400 MHz, CDCl₃) δ 8.19 (d, J = 8.0 Hz, 1H), 8.07 (d, J = 15.2 Hz, 1H), 7.91-7.89 (m, 2H), 7.68 (d, J = 7.2 Hz, 1H), 7.60-7.55 (m, 2H), 7.53-7.45 (m, 1H), 6.89 (d, J = 15.6 Hz, 1H), 1.37 (s, 9H); ^13C NMR (100 MHz, CDCl₃) δ 135.9, 133.7, 132.0, 131.1, 129.8, 129.6, 128.6, 126.8, 126.3, 125.4, 124.8, 123.6, 55.8, 23.2. MS (ESI-TOF) m/z: 259.1 [M+H]+. HRMS (ESI-TOF) calcd for C_{16}H_{18}OS+ [M]⁺ 259.1151, Found: 259.1144.

(S)-(E)-3-[2-(2-Methylpropane-2-sulfinyl)vinyl]isoquinoline (6m): white solid (0.161 g, 62%); mp 130-131 °C; [α]_{D}^{20} +21.97 (c 1.0, MeOH); ^1H NMR (400 MHz, CDCl₃) δ 8.21 (d, J = 8.4 Hz, 1H), 8.07 (d, J = 15.2 Hz, 1H), 7.84 (d, J = 8.0 Hz, 1H), 7.77-7.60 (m, 2H), 7.59-7.52 (m, 2H), 7.47 (d, J = 15.2 Hz 1H), 1.38 (s, 9H); ^13C NMR (100 MHz, CDCl₃) δ 152.5, 147.6, 138.5, 138.1, 136.4, 130.0, 129.5, 127.6, 127.3, 122.1, 121.3, 57.7, 23.7. MS (ESI-TOF) m/z: 260.1 [M+H]+. HRMS (ESI-TOF) calcd for C_{15}H_{17}NOS+ [M]⁺ 260.1104, Found: 260.1097.

(S)-(E)-2-[2-(2-Methylpropane-2-sulfinyl)vinyl]furan (6n): colorless oil (0.129 g, 65%); [α]_{D}^{20} +3.72 (c 1.0, MeOH); ^1H NMR (400 MHz, CDCl₃) δ 7.41 (s, 1H), 7.01 (d, J = 15.2 Hz, 1H), 6.69 (d, J = 15.2 Hz, 1H), 6.51-6.39 (m, 2H), 1.25 (s, 9H); ^13C NMR (100 MHz, CDCl₃) δ 150.5, 143.8, 125.1, 124.3, 112.4, 112.0, 55.8, 23.0. MS (ESI-TOF) m/z: 199.0 [M+H]+. HRMS (ESI-TOF) calcd for C_{10}H_{14}O_{2}S+ [M]⁺
199.0787, Found: 199.0783.

(S)-(E)--[4-(2-Methylpropane-2-sulfinyl)buta-1,3-dienyl]benzene (6o): white solid (0.170 g, 73%); mp 82-83 °C; \([\alpha]_D^{20} +52.83\) (c 1.0, MeOH); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.46 (d, \(J = 8\) Hz, 2H), 7.42-7.30 (m, 3H), 7.05 (dd, \(J = 14.8, 10.4\) Hz, 1H), 6.99-6.88 (m, 1H), 6.83 (d, \(J = 15.6\) Hz, 1H), 6.41 (d, \(J = 14.8\) Hz, 1H), 1.28 (s, 9H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 138.5, 138.0, 136.1, 129.2, 128.8, 128.8, 127.0, 125.1, 55.7, 23.0. MS (ESI-TOF) \(m/z\) 235.1 [M+H]+. HRMS (ESI-TOF) calcd for C\(_{14}\)H\(_{18}\)OS+ [M]+ 235.1151, Found: 235.1155.

(S)-(E)--3-Methyl-1-(2-methylpropane-2-sulfinyl)but-1-ene (6p): colorless oil (0.118 g, 68%); \([\alpha]_D^{20} +34.10\) (c 1.0, MeOH); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 6.42 (dd, \(J = 15.6, 6.8\) Hz, 1H), 6.05 (dd, \(J = 15.6, 1.2\) Hz, 1H), 2.53 (dd, \(J = 13.2, 6.8\) Hz, 1H), 1.21 (s, 9H), 1.08 (d, \(J = 6.8\) Hz, 6H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 149.1, 125.5, 54.3, 31.3, 22.8, 21.6, 21.5. MS (ESI-TOF) \(m/z\) 175.1 [M+H]+. HRMS (ESI-TOF) calcd for C\(_9\)H\(_{18}\)OS+ [M]+ 175.1151, Found: 175.1154.

(S)-(E)--3-(2-Methylpropane-2-sulfinyl)acrylic acid ethyl ester (6q): colorless oil (0.143 g, 70%); \([\alpha]_D^{20} +20.15\) (c 1.0, MeOH); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.59 (d, \(J = 14.8\) Hz, 1H), 6.66 (d, \(J = 14.8\) Hz, 1H), 4.28 (dd, \(J = 14.4, 7.2\) Hz, 2H), 1.34 (t, \(J = 7.2\) Hz, 3H), 1.31 (s, 9H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 163.9, 146.2, 128.2, 61.3, 57.0, 23.3, 14.1. MS (ESI-TOF) \(m/z\) 205.0 [M+H]+. HRMS (ESI-TOF) calcd for C\(_9\)H\(_{16}\)O\(_3\)S+ [M]+ 205.0893, Found: 205.0897.

ACKNOWLEDGEMENTS

Financial support for this work was provided by Shanghai Municipal Education Commission (No.14ZZ159).

REFERENCES

