A DIRECT SYNTHESIS OF 2,2-DISUBSTITUTED 3-SILYLCHROMENES
BY [4+2] CYCLOADDITION OF IN SITU GENERATED
\(\alpha \)-QUINONE METHIDES WITH ELECTRON-RICH ALKYNES

Kenta Tanaka, Yujiro Hoshino, and Kiyoshi Honda*

Graduate School of Environment and Information Sciences, Yokohama National
University, Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan; E-mail:
k-honda@ynu.ac.jp

Abstract – A direct synthesis of 2,2-disubstituted 3-silylchromenes by [4+2]
cycloaddition of in situ generated \(\alpha \)-quinonemethides with electron-rich alkynes
has been developed. The procedure is applicable for easily available starting
materials like various substituted alkynylsilanes and salicylaldehydes. The present
reaction provides versatile access to functionalized 2\(H \)-chromenes that would be a
useful tool for the synthesis of biologically and photochemically active molecules.

INTRODUCTION

2\(H \)-Chromenes are present in a vast number of natural products and represent important structural motifs
in medicinal chemistry and materials science. 2\(H \)-Chromene is an important skeleton that appears in
interesting compounds such as anticancer,\(^1\) antiestrogen,\(^2\) photochromic materials\(^3\) and a precursor of
flavylium dyes\(^4\) (Figure 1). Based on the importance of these compounds, a number of research groups
have developed methodologies to synthesize these compounds. The approaches include three-component
coupling reaction of arynes, ketene \(\text{N,S-acetals} \), and DMF,\(^5\) BF\(_3\)-OEt\(_2\)-AgSCF\(_3\) mediated
trifluoromethylthiolation/cascade cyclization of propynols,\(^6\) palladium(0)-catalyzed annihilations of
alkynyl aryl ethers with alkynes,\(^7\) microwave-assisted reaction of salicylaldehydes with enamines,\(^8\)
ring-closing olefin metathesis,\(^9\) the tandem ylide annihilation reaction,\(^10\) electrocyclic ring closure of
vinylquinone derivatives,\(^11\) catalytic Petasis reaction of salicylaldehydes,\(^12\) cobalt(II)-based metalloradical
reaction,\(^13\) simultaneous synthesis of both rings of chroomenes via a benzannulation/\(\alpha \)-quinonemethide
formation/electrocyclization cascade,\(^14\) electrophile-induced cyclization of aryl propargyl ethers,\(^15\)
palladium-catalyzed intramolecular cyclization,\(^16\) and \(L \)-proline catalyzed three-component reaction of
salicylaldehydes with diketone in alcohol.\(^17\) Recently, a few research groups reported the synthesis of the
2\(H \)-chromene ring system via intermolecular cycloaddition reaction with alkynes.\(^18\) However, most of
previous methods utilized alkynes only having electron-withdrawing substituents like dimethyl acetylenedicarboxylate (Scheme 1a).

![Potential anticancer agent](image1)

![Photochromic material](image2)

![Potent antiestrogen](image3)

![Flavylum dye](image4)

Figure 1. Selected examples of 2H-chromenes

G. Maiti’s work (a)

![Electron-poor alkynes](image5)

This work (b)

Scheme 1. Synthesis of 2H-chromenes with alkynes

Unfortunately these methods for the synthesis of chromene derivatives suffer from limitations, including a limited kind of substrate, *e.g.* withdrawing group-substituted alkynes and requiring multi-steps for preparation of starting materials as well as expensive noble transition metals. Since natural products and bioactive compounds containing 2H-chromenes have a variety of substituent patterns, there remains a
demand for general strategies that can more efficiently provide variously substituted chromene systems. Recently, we have investigated the generation of o-quinonemethide under mild conditions. In the course of this study we reported that salicylaldehyde 1 reacted with alcohol 2 in benzene in the presence of p-TsOH and trimethyl orthoformate at room temperature to give trans-4 in high yield as a single stereoisomer (Scheme 2). Herein we report the novel synthesis of polysubstituted chromenes via regioselective intermolecular cycloaddition reaction of easily available electron-rich alkynes like silyl substituted arylalkynes with substituted salicylaldehydes (Scheme 1b).

Scheme 2. Previous work

RESULTS AND DISCUSSION

We initially examined the reaction of 5-nitrosalicylaldehyde with phenylacetylene in the presence of TfOH (20 mol%) and CH(OMe)3 (1.0 equiv.) in toluene (Scheme 3). Contrary to expectation, the reaction gave the complex mixture (checked by TLC), and no Diels–Alder cycloadduct 6 was obtained. Unknown polymerized compound was obtained as a major product mainly due to the instability of unprotected terminal alkynes. Therefore the terminal methyne carbon of phenylacetylene was protected by trimethylsilyl group. Interestingly, when trimethylsilylethynylbenzene was subjected to the reaction conditions, the isomerized 2H-chromene product 7 was obtained in 14% yield instead of 4H-chromene 6. Because vinyl silanes are useful building blocks, which are readily transformed to a variety of functional groups such as ketone, alcohol, nitro, and chloride, we decided to further explore this cycloaddition reaction.

Scheme 3. Cycloaddition of 5-nitrosalicylaldehyde with phenylacetylenes in the presence of a catalytic amount of TfOH and CH(OMe)3 in toluene
Thus we investigated the reaction of 5-nitrosalicylaldehyde with trimethylsilylthynylbenzene in the presence of acid catalysts in various solvents (Table 1). When high polar solvents like acetonitrile, DMF, and MeOH were used, no desired product was obtained (entries 1-3). On the other hand several common medium polar solvents such as toluene and dichloromethane led to the formation of 3-trimethylsilylchromene 7 (entries 5-6). When the reaction was used toluene and 1,2-dichloroethane instead of dichloromethane under refluxing, the yield of chromene 7 was not increased (entries 7-8). Next we examined some Lewis acid catalysts. A catalytic amount of Yb(OTf)$_3$, Sn(OTf)$_3$, which are known as hard Lewis acids, afforded the desired product in moderate yields (entries 9-10). However, when a soft Lewis acid Pd(OAc)$_2$ was used, cycloaddition did not proceed (entry 11). On the other hand, some Bronsted acid such as p-TsOH·H$_2$O, TfOH, HBF$_4$·OEt$_2$ were used, the reaction was proceed and the corresponding product was obtained in medium yields (entries 12-14). Finally, because BF$_3$·OEt$_2$ was not expensive compared with HBF$_4$·OEt$_2$, it was suggested that the best reaction condition could be obtained by using 5-nitrosalicylaldehyde (1.0 equiv.), trimethylsilylthynylbenzene (4.0 equiv.), CH(OMe)$_3$ (1.0 equiv.), and BF$_3$·OEt$_2$ (20 mol%) in refluxing dichloromethane (entry 6).

Table 1. Optimization of reaction conditions

<table>
<thead>
<tr>
<th>entry</th>
<th>catalyst</th>
<th>solvent</th>
<th>yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BF$_3$·OEt$_2$</td>
<td>DMF</td>
<td>N.R.</td>
</tr>
<tr>
<td>2</td>
<td>BF$_3$·OEt$_2$</td>
<td>MeCN</td>
<td>N.R.</td>
</tr>
<tr>
<td>3</td>
<td>BF$_3$·OEt$_2$</td>
<td>MeOH</td>
<td>N.R.</td>
</tr>
<tr>
<td>4</td>
<td>BF$_3$·OEt$_2$</td>
<td>THF</td>
<td>N.R.</td>
</tr>
<tr>
<td>5</td>
<td>BF$_3$·OEt$_2$</td>
<td>toluene</td>
<td>32</td>
</tr>
<tr>
<td>6</td>
<td>BF$_3$·OEt$_2$</td>
<td>CH$_2$Cl$_2$</td>
<td>68</td>
</tr>
<tr>
<td>7b</td>
<td>BF$_3$·OEt$_2$</td>
<td>toluene</td>
<td>32</td>
</tr>
<tr>
<td>8b</td>
<td>BF$_3$·OEt$_2$</td>
<td>CH$_2$ClCH$_2$Cl</td>
<td>55</td>
</tr>
<tr>
<td>9</td>
<td>Yb(OTf)$_3$</td>
<td>CH$_2$Cl$_2$</td>
<td>39</td>
</tr>
<tr>
<td>10</td>
<td>Sn(OTf)$_3$</td>
<td>CH$_2$Cl$_2$</td>
<td>60</td>
</tr>
<tr>
<td>11</td>
<td>Pd(OAc)$_2$</td>
<td>CH$_2$Cl$_2$</td>
<td>N.R.</td>
</tr>
<tr>
<td>12</td>
<td>p-TsOH·H$_2$O</td>
<td>CH$_2$Cl$_2$</td>
<td>32</td>
</tr>
<tr>
<td>13</td>
<td>TfOH</td>
<td>CH$_2$Cl$_2$</td>
<td>52</td>
</tr>
<tr>
<td>14</td>
<td>HBF$_4$·OEt$_2$</td>
<td>CH$_2$Cl$_2$</td>
<td>70</td>
</tr>
</tbody>
</table>

a All reactions were carried out with 5 (1.0 mmol), 8 (4.0 mmol), CH(OMe)$_3$ (1.0 equiv.), and catalyst (20 mol%) in solvent (5.0 mL) under nitrogen. b reflux
Table 2. Reaction of salicylaldehydes with alkynes

\[
\begin{align*}
&\text{R}^1\text{CHO} \cdot \text{R}^2\text{R}^3\text{C} = \text{H} \\
&\text{CH(OMe)}_3 \text{(1.0 equiv.)} \\
&\text{BF}_3\cdot\text{OEt}_2 \text{(20 mol\%)} \\
&\text{CH}_2\text{Cl}_2, \text{reflux, 12 h} \\
&\rightarrow \text{R}^1\text{O}\text{Me} \cdot \text{R}^2\text{R}^3\text{OMe}
\end{align*}
\]

<table>
<thead>
<tr>
<th>R^1</th>
<th>R^2</th>
<th>R^3</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O2N</td>
<td>TMS</td>
<td>OMe</td>
<td>7a 68%</td>
</tr>
<tr>
<td>O2N</td>
<td>TMS</td>
<td>OMe</td>
<td>7b 40%</td>
</tr>
<tr>
<td>O2N</td>
<td>TMS</td>
<td>OMe</td>
<td>7c 60%</td>
</tr>
<tr>
<td>O2N</td>
<td>TMS</td>
<td>OMe</td>
<td>7d 32%</td>
</tr>
<tr>
<td>O2N</td>
<td>TMS</td>
<td>OMe</td>
<td>7e 47%</td>
</tr>
<tr>
<td>O2N</td>
<td>TMS</td>
<td>OMe</td>
<td>7f 34%</td>
</tr>
<tr>
<td>O2N</td>
<td>TMS</td>
<td>OMe</td>
<td>7g 17%</td>
</tr>
<tr>
<td>O2N</td>
<td>TMS</td>
<td>OMe</td>
<td>7h N.R.</td>
</tr>
<tr>
<td>O2N</td>
<td>TMS</td>
<td>OMe</td>
<td>7i 29%</td>
</tr>
<tr>
<td>O2N</td>
<td>TMS</td>
<td>OMe</td>
<td>7j 46%</td>
</tr>
<tr>
<td>O2N</td>
<td>TMS</td>
<td>OMe</td>
<td>7k 35%</td>
</tr>
<tr>
<td>O2N</td>
<td>TMS</td>
<td>OMe</td>
<td>7l N.R.</td>
</tr>
<tr>
<td>O2N</td>
<td>TMS</td>
<td>OMe</td>
<td>7m N.R.</td>
</tr>
<tr>
<td>O2N</td>
<td>TMS</td>
<td>OMe</td>
<td>7n 17%</td>
</tr>
<tr>
<td>O2N</td>
<td>TMS</td>
<td>OMe</td>
<td>7o 57%</td>
</tr>
<tr>
<td>O2N</td>
<td>TMS</td>
<td>OMe</td>
<td>7p 51%</td>
</tr>
<tr>
<td>O2N</td>
<td>TMS</td>
<td>OMe</td>
<td>7q N.R.</td>
</tr>
<tr>
<td>O2N</td>
<td>O2N</td>
<td>7r trace</td>
<td></td>
</tr>
</tbody>
</table>
With the optimal reaction conditions in hand, salicylaldehydes and a variety of alkynes were explored to examine the scope and limitation of the reaction (Table 2). Alkynes having an electron-donating group, which are known as good dienophiles for inverse-electron-demand Diels–Alder reaction, gave the corresponding products in medium yields (entries 7a-7g). However, alkyne with NO\textsubscript{2} group on benzene ring did not give the product (entry 7h). But alkyne with CF\textsubscript{3} group gave the corresponding product in 29% yield (entry 7i). Various salicylaldehydes having electron-withdrawing groups smoothly underwent the reaction to give the corresponding products in good yields (entries 7j-7k). In contrast, the reaction of salicylaldehydes having electron-donating groups smoothly did not proceed (entries 7l-7m). TBS and TES groups afforded products in good yields (entries 7o-7p). Interestingly, when sterically demanded silyl group was used, the reaction did not proceed (entry 7q). And diphenylacetylene and dimethyl acetylenedicarboxylate without silyl group did not afford the corresponding products (entries 7r-7s).

A plausible reaction mechanism for the cycloaddition of salicylaldehyde with alkyne is depicted in Scheme 4. First, salicylaldehyde dimethyl acetal (11) would be formed by the reaction of salicylaldehyde with CH(OMe)\textsubscript{3} in the presence of BF\textsubscript{3}·OEt\textsubscript{2}. It is well known that 5-nitrosalicylaldehyde could react with CH(OMe)\textsubscript{3} under acidic conditions to give acetal 9 as a reaction intermediate.22 We investigated cycloaddition reaction of acetal 9 with trimethylsilylethylnylbenzene 8 without CH(OMe)\textsubscript{3} (Scheme 5). This reaction smoothly proceeded to give the corresponding product in 60% yield. It suggests that 5-nitrosalicylaldehyde 5 would be smoothly transformed to acetal 9 in the presence of CH(OMe)\textsubscript{3}. o-Quinonemethide 12 was derived from elimination of methanol from 11. It is considered that o-quinonemethide would react with alkyne by a stepwise or concerted mechanism. It is also of great interest to see whether o-quinonemethide 12 has enough reactivity toward electron-rich dienophiles. Then it would react with electron-rich alkyne through inverse-electron-demand Diels–Alder reaction to give cyclic products 13. However, on the basis of the results shown in Table 2, it is suggested that this reaction would proceed through stepwise cycloaddition reaction. Treatment of 13 with Lewis acid resulted in the formation of flavylium salt 14 from the elimination of the methoxy group, which is reattacked by MeOH at 2-position to afford 15 as the most stable product.

Finally, to further functionalize the reaction products, we intended to convert silylchromene into the corresponding iodo derivative. 3-Silylchromene 7a was reacted with ICl to afford 3-iodochromene 16 in 55% yield. 3-Iodochromene 16 may be able to act as a coupling partner in transition metal-catalyzed cross-coupling reaction, which provides a new feasible route to biologically and photochemically active chromenes.2,3a
Scheme 4. Plausible mechanism for the synthesis of polysubstituted chromenes from various salicylaldehydes and alkynes

Scheme 5. Cycloaddition reaction of acetal 9 with trimethylsilylethynylbenzene 8 without CH(OMe)₃
Scheme 6. Conversion of 3-silylchromene 7a to 3-iodochromene 16

In summary, we have developed a direct synthesis of 2,2-disubstituted 3-silylchromenes by [4+2] cycloaddition of \textit{in situ} generated \(o\)-quinonemethides with electron-rich alkynes. The procedure is applicable for easily available starting materials like various substituted alkynylsilanes and salicylaldehydes. The present reaction provides versatile access to functionalized 2\(H\)-chromenes that would be a useful tool for the synthesis of biologically and photochemically active molecules.

EXPERIMENTAL

General. Infrared (IR) spectra were recorded on a JASCO FT/IR 4100. \(^1\)H NMR spectra were recorded on a Bruker DRX-300 (300 MHz) spectrometer or a Bruker DRX-500 (500 MHz) spectrometer with tetramethylsilane (TMS) as internal standard. Chemical shifts are reported in ppm from TMS. Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants, integration, and assignment. \(^{13}\)C NMR spectra were recorded on a Bruker DRX-500 (125 MHz) spectrometer with complete proton decoupling. Chemical shifts are reported in ppm from TMS with the solvent resonance as the internal standard (CDCl\(_3\) : \(\delta\) 77.0). Column chromatography was carried out with Cica-reagent silica gel 60 N (spherical, particle size 63-210 \(\mu\)m). Thin-layer chromatography (TLC) was carried out with Merck TLC plates with silica gel 60 F\(_{254}\). Unless otherwise noted, reagents were commercially available and were used without purification.

General procedure for the synthesis of 2\(H\)-chromene 7a: To a mixture of 5-nitrosalicylaldehyde (0.167 g, 1.0 mmol), trimethylsilyl ethynylbenzene (0.789 mL, 4.0 mmol), and trimethyl orthoformate (0.106 mL, 1.0 mmol) in dry CH\(_2\)Cl\(_2\) (5.0 mL) under nitrogen, boron trifluoride diethyl ether complex (0.025 mL, 20 mol\%) was added. After being stirred at reflux for 12 h, the reaction mixture was quenched with 5% aq NaHCO\(_3\). The organic layer was separated and the aqueous layer was extracted with EtOAc. The combined organic layer was washed with brine, dried over MgSO\(_4\), and filtered. The filtrate was concentrated in vacuo. The resulting residue was purified by column chromatography on silica gel (hexane / EtOAc = 20 : 1) to afford 2\(H\)-chromene product 7a.
2-Methoxy-3-trimethylsilyl-6-nitro-2-phenyl-2H-1-benzopyran (7a)
Yield 68%, brown solid; mp 88.7-89.2 °C; IR (neat): 3084, 2954, 1612, 1515, 1336, 1242, 1068, 835, 748, 693 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ -0.07 (s, 9H), 3.34 (s, 3H), 6.95 (d, J = 8.7 Hz, 1H), 7.15 (s, 1H), 7.35-7.39 (m, 3H), 7.50-7.53 (m, 2H), 8.12-8.15 (m, 2H). ¹³C NMR (125 MHz, CDCl₃): δ -0.90, 50.7, 105.6, 115.8, 118.3, 122.8, 125.8, 126.3, 128.1, 128.9, 133.4, 138.0, 141.4, 142.1, 158.2. HR-MS (ESI⁺) m/z calcd. for C₁₈H₁₈NO₃Si ([M-OMe]+): 324.10505, found: 324.10484.

2-Methoxy-3-trimethylsilyl-6-nitro-2-(2-methylphenyl)-2H-1-benzopyran (7b)
Yield 40%, brown solid; mp 119.6-119.7 °C; IR (neat): 2943, 1605, 1518, 1338, 1265, 1245, 992, 838, 750 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ -0.11 (s, 9H), 2.07 (s, 3H), 3.30 (s, 3H), 7.01-7.03 (m, 1H), 7.18-7.20 (m, 2H), 7.29-7.32 (m, 2H), 7.87-7.89 (m, 2H), 8.17-8.20 (m, 2H). ¹³C NMR (125 MHz, CDCl₃): δ -1.32, 20.1, 49.7, 104.1, 115.6, 118.6, 123.1, 125.5, 126.0, 129.2, 132.1, 134.2, 135.7, 138.0, 139.3, 141.6, 158.7. HRMS (ESI⁺) m/z calcd. for C₁₉H₂₀NO₃Si ([M-OMe]+): 338.12070, found: 338.12161.

2-Methoxy-3-trimethylsilyl-6-nitro-2-(3-methylphenyl)-2H-1-benzopyran (7c)
Yield 60%, brown solid; mp 95.5-95.7 °C; IR (neat): 2955, 1609, 1518, 1338, 1092, 995, 832 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ -0.06 (s, 9H), 2.39 (s, 3H), 3.34 (s, 3H), 6.95 (d, J = 8.5 Hz, 1H), 7.13 (s, 1H), 7.24 (m, 1H), 7.29-7.31 (m, 4H), 8.12-8.16 (m, 2H). ¹³C NMR (125 MHz, CDCl₃): δ -0.83, 21.2, 50.7, 105.8, 115.8, 118.4, 122.9, 123.5, 125.8, 127.1, 128.1, 129.0, 129.6, 132.5, 133.4, 137.8, 138.0, 141.4, 142.0, 158.2. HRMS (ESI⁺) m/z calcd. for C₁₉H₂₀NO₃Si ([M-OMe]+): 338.12070, found: 338.12257.

2-Methoxy-3-trimethylsilyl-6-nitro-2-(4-methylphenyl)-2H-1-benzopyran (7d)
Yield 32%, brown amorphous solid. IR (neat): 2958, 1611, 1515, 1337, 1259, 1244, 834, 812 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ -0.06 (s, 9H), 2.39 (s, 3H), 3.34 (s, 3H), 6.95 (m, 1H), 7.13 (s, 1H), 7.20-7.21 (m, 3H), 7.38-7.39 (m, 2H), 8.12-8.20 (m, 2H). ¹³C NMR (125 MHz, CDCl₃): δ -0.83, 21.2, 50.7, 105.8, 115.8, 118.4, 122.8, 125.8, 126.3, 128.8, 129.0, 131.9, 133.4, 138.2, 138.8, 139.3, 141.4, 158.3. HRMS (ESI⁺) m/z calcd. for C₁₉H₂₀NO₃Si ([M-OMe]+): 338.12070, found: 338.12075.

2-Methoxy-6-nitro-2-(4-isopropylphenyl)-3-trimethylsilyl-2H-1-benzopyran (7e)
Yield 47%, brown solid; mp 116.9-117.6 °C; IR (neat): 2960, 1610, 1514, 1336, 1262, 1068, 998, 837, 823 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ -0.07 (s, 9H), 1.27 (m 6H), 2.97-3.01 (m, 1H), 3.34 (s, 3H), 6.97 (d, J = 8.5 Hz, 1H), 7.12 (s, 1H), 7.25 (m, 2H), 7.42 (m, 2H), 8.11-8.18 (m, 2H). ¹³C NMR (125 Hz, CDCl₃): δ -1.32, 20.1, 49.7, 104.1, 115.6, 118.6, 123.1, 125.5, 126.0, 129.2, 132.1, 134.2, 135.7, 138.0, 139.3, 141.6, 158.7. HRMS (ESI⁺) m/z calcd. for C₁₉H₂₀NO₃Si ([M-OMe]+): 338.12070, found: 338.12075.

2-Methoxy-6-nitro-2-(4-isopropylphenyl)-3-trimethylsilyl-2H-1-benzopyran (7f)
Yield 47%, brown solid; mp 116.9-117.6 °C; IR (neat): 2960, 1610, 1514, 1336, 1262, 1068, 998, 837, 823 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ -0.07 (s, 9H), 1.27 (m 6H), 2.97-3.01 (m, 1H), 3.34 (s, 3H), 6.97 (d, J = 8.5 Hz, 1H), 7.12 (s, 1H), 7.25 (m, 2H), 7.42 (m, 2H), 8.11-8.18 (m, 2H). ¹³C NMR (125 Hz, CDCl₃): δ -1.32, 20.1, 49.7, 104.1, 115.6, 118.6, 123.1, 125.5, 126.0, 129.2, 132.1, 134.2, 135.7, 138.0, 139.3, 141.6, 158.7. HRMS (ESI⁺) m/z calcd. for C₁₉H₂₀NO₃Si ([M-OMe]+): 338.12070, found: 338.12075.
MHz, CDCl$_3$): δ -0.93, 24.0, 33.9, 50.7, 105.7, 115.8, 118.5, 122.8, 125.8, 126.1, 126.4, 132.0, 133.2, 138.3, 139.6, 141.4, 149.8, 158.3. HRMS (ESI+) m/z calcd. for C$_{21}$H$_{24}$NO$_3$Si ([M-OMe]$^+$): 366.15200, found: 366.15368.

2-Methoxy-6-nitro-2-naphthyl-3-trimethylsilyl-2H-1-benzopyran (7f)
Yield 34%, yellow solid; mp 146.7-147.1 °C; IR (neat): 1611, 1516, 1269, 1065, 1007, 830, 748 cm$^{-1}$. 1H NMR (500 MHz, CDCl$_3$): δ -0.06 (s, 9H), 3.44 (s, 3H), 6.98 (m, 1H), 7.23 (s, 1H), 7.51-7.71 (m, 3H), 7.82-8.01 (m, 3H), 8.03-8.18 (m, 2H), 8.20 (d, $J = 2.5$ Hz, 1H). 13C NMR (125 MHz, CDCl$_3$): δ -0.73, 50.9, 105.9, 115.9, 118.4, 123.0, 124.4, 125.2, 126.0, 126.4, 126.8, 127.7, 128.1, 128.8, 132.7, 133.4, 133.9, 137.8, 139.3, 141.5, 158.3. HRMS (ESI+) m/z calcd. for C$_{22}$H$_{20}$NO$_3$Si ([M-OMe]$^+$): 374.12070, found: 374.12332.

2-Methoxy-2-(4-methoxyphenyl)-6-nitro-3-trimethylsilyl-2H-1-benzopyran (7g)
Yield 17%, brown solid; mp 119.6-120.5 °C; IR (neat): 2960, 1610, 1511, 1335, 1244, 1070, 995, 823, 749 cm$^{-1}$. 1H NMR (500 MHz, CDCl$_3$): δ -0.05 (s, 9H), 3.33 (s, 3H), 3.84 (s, 3H), 6.90-6.96 (m, 3H), 7.13 (s, 1H), 7.41-7.42 (d, $J = 9.0$ Hz, 2H), 8.11-8.14 (m, 2H). 13C NMR (125 MHz, CDCl$_3$): δ -0.81, 50.8, 55.3, 105.7, 113.4, 118.3, 115.8, 122.8, 125.8, 127.7, 133.4, 134.7, 138.2, 141.4, 158.3, 160.0. HRMS (ESI+) m/z calcd. for C$_{19}$H$_{20}$NO$_4$Si ([M-OMe]$^+$): 354.11561, found: 354.11572.

2-Methoxy-6-nitro-2-(4-trifluoromethylphenyl)-3-trimethylsilyl-2H-1-benzopyran (7i)
Yield 29%, yellow solid; mp 98.5-99.0 °C; IR (neat): 2962, 1611, 1519, 1324, 1260, 1067, 999, 824 cm$^{-1}$. 1H NMR (500 MHz, CDCl$_3$): δ -0.06 (s, 9H), 3.36 (s, 3H), 6.96-6.97 (d, $J = 8.7$ Hz, 1H), 7.20 (s, 1H), 7.64-7.68 (m, 4H), 8.14-8.17 (m, 2H). 13C NMR (125 MHz, CDCl$_3$): δ -0.84, 50.8, 105.0, 115.8, 118.1, 123.0, 125.1, 126.1, 126.9, 134.3, 137.1, 141.7, 145.8, 157.8. HRMS (ESI+) m/z calcd. for C$_{19}$H$_{17}$NO$_3$F$_3$Si ([M-OMe]$^+$): 392.09243, found: 392.09230.

Methyl 2-methoxy-6-nitro-2-phenyl-3-trimethylsilyl-2H-1-benzopyran-6-carboxylate (7j)
Yield 46%, colorless solid; mp 73.8-74.2 °C; IR (neat): 2952, 1715, 1616, 1247, 999, 758, 695 cm$^{-1}$. 1H NMR (500 MHz, CDCl$_3$): δ -0.09 (s, 9H), 3.33 (s, 3H), 3.92 (s, 3H), 6.93-6.95 (d, $J = 9.1$ Hz, 1H), 7.14 (s, 1H), 7.36-7.37 (m, 3H), 7.52 (m, 2H), 7.93-7.94 (m, 2H). 13C NMR (125 MHz, CDCl$_3$): δ -0.84, 50.5, 51.9, 104.8, 115.3, 118.2, 122.7, 126.5, 128.0, 128.6, 129.0, 131.9, 134.6, 135.8, 142.7, 157.0, 166.7. HRMS (ESI+) m/z calcd. for C$_{20}$H$_{21}$O$_3$Si ([M-OMe]$^+$): 337.12545, found: 337.12520.
2-Methoxy-7-acetyloxy-2-phenyl-3-trimethylsilyl-2H-1-benzopyran (7k)
Yield 35%, yellow solid; mp 103.8-104.7 °C; IR (neat): 1756, 1617, 1492, 1202, 1007, 750, 694 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ -0.09 (s, 9H), 2.30 (s, 3H), 3.36 (s, 3H), 6.83-6.71 (m, 2H), 7.08 (s, 1H), 7.20 (d, J = 8.2 Hz, 1H), 7.28-7.48 (m, 3H), 7.49-7.70 (m, 2H). ¹³C NMR (125 MHz, CDCl₃): δ -0.75, 21.1, 50.7, 104.2, 108.8, 114.2, 116.7, 126.7, 127.6, 128.0, 128.5, 134.3, 134.4, 142.9, 151.9, 153.9, 169.1. HRMS (ESI⁺) m/z calcd. for C₂₀H₂₁O₃Si ([M-OMe]⁺): 337.12545, found: 337.12573.

2,6-Dimethoxy-2-(4-nitrophenyl)-3-trimethylsilyl-2H-1-benzopyran (7n)
Yield 17%, yellow solid; mp 117.6-118.5 °C; IR (neat): 2955, 1521, 1348, 1236, 1038, 1003, 836 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 0.06 (s, 9H), 3.49 (s, 3H), 3.98 (s, 3H), 6.91 (s, 1H), 6.99 (s, 1H), 7.00 (s, 1H), 7.44 (s, 1H), 7.88-7.91 (d, J = 9.0 Hz, 2H), 8.37-8.40 (d, J = 9.0, 2H). ¹³C NMR (125 MHz, CDCl₃): δ -0.61, 50.63, 55.86, 103.1, 111.3, 115.9, 116.8, 118.6, 123.2, 128.0, 134.1, 136.3, 146.8, 147.7, 149.8, 154.0. HRMS (ESI⁺) m/z calcd. for C₁₉H₂₀NO₄Si ([M-OMe]⁺): 354.11561, found: 354.11670.

3-tert-Butyldimethylsilyl-2-methoxy-6-nitro-2-phenyl-2H-1-benzopyran (7o)
Yield 57%, yellow solid; mp 101.1-101.7 °C; IR (neat): 2955, 2874, 1608, 1518, 1338, 1261, 1091, 995, 698 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 0.26-0.55 (m, 6H), 0.85 (t, 9H), 3.35 (s, 3H), 6.91-6.98 (d, J = 8.7 Hz, 1H), 7.11 (s, 1H), 7.38-7.40 (m, 3H), 7.50-7.52 (m, 2H), 8.15-8.18 (m, 2H). ¹³C NMR (125 MHz, CDCl₃): δ 3.09, 7.18, 50.78, 105.5, 115.8, 118.4, 122.9, 125.8, 126.3, 128.0, 129.0, 135.2, 136.4, 141.4, 142.5, 151.9, 158.0. HRMS (ESI⁺) m/z calcd. for C₂₁H₂₄NO₃Si ([M-OMe]⁺): 366.15200, found: 366.15197.

2-Methoxy-6-nitro-2-phenyl-3-triethylsilyl-2H-1-benzopyran (7p)
Yield 51%, yellow amorphous solid; IR (neat): 2955, 2874, 1608, 1518, 1338, 1261, 1091, 995, 698 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 0.26-0.55 (m, 6H), 0.85 (t, 9H), 3.35 (s, 3H), 6.91-6.98 (d, J = 8.7 Hz, 1H), 7.11 (s, 1H), 7.38-7.40 (m, 3H), 7.50-7.52 (m, 2H), 8.15-8.18 (m, 2H). ¹³C NMR (125 MHz, CDCl₃): δ 3.09, 7.18, 50.78, 105.5, 115.8, 118.4, 122.9, 125.8, 126.3, 128.0, 129.0, 134.3, 135.1, 141.5, 142.0, 158.1. HRMS (ESI⁺) m/z calcd. for C₂₁H₂₄NO₃Si ([M-OMe]⁺): 366.15200, found: 366.15348.

General procedure for the synthesis of 2H-chromene 7 by cycloaddition of trimethylsilylethynylbenzene with acetal 9: To a mixture of acetal 9 (0.213 g, 1.0 mmol), trimethylsilylethynylbenzene (0.789 mL, 4.0 mmol) in dry CH₂Cl₂ (5.0 mL) under nitrogen, boron trifluoride diethyl ether complex (0.025 mL, 20 mol%) was added. After being stirred at reflux for 12 h, the reaction mixture was quenched with 5% aq NaHCO₃. The organic layer was separated and the
aqueous layer was extracted with EtOAc. The combined organic layer was washed with brine, dried over MgSO₄, and filtered. The filtrate was concentrated in vacuo. The resulting residue was purified by column chromatography on silica gel (hexane / EtOAc = 20 : 1) to afford 2H-chromene product 7 in 60%.

Synthesis of 3-iodo-6-nitro-2-methoxy-2-phenyl-2H-chromene (16): A solution of ICl (0.082 g, 0.5 mmol) in dry CH₂Cl₂ (2.0 mL) was added dropwise to a solution of 7 (0.089 g, 0.25 mmol) in dry CH₂Cl₂ (5.0 mL) at rt. After stirring for 3 h, the reaction was quenched with sat. Na₂S₂O₃. The aqueous layer was extracted with CH₂Cl₂. The combined organic extracts were washed with brine, dried MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (hexane / EtOAc = 50 : 1) to afford 3-iodo-6-nitro-2-methoxy-2-phenyl-2H-chromene (16).

3-Iodo-6-nitro-2-methoxy-2-phenyl-2H-chromene (16)

Yield 55%, white solid; mp 140.5-141.3 °C; IR (neat): 1514, 1337, 1261, 1078, 965, 834, 755, 747, 700 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 8.18 (dd, J = 9.0, 2.7 Hz, 1H), 8.07 (m, 1H), 7.44-7.60 (m, 3H), 7.42 (m, 3H), 7.02 (m, 1H), 3.47 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 157.4, 141.9, 140.7, 137.0, 129.4, 128.2, 126.4, 126.1, 125.8, 125.0, 121.8, 119.5, 116.2, 105.0, 97.3, 51.0. HRMS (ESI+) m/z calcd for C₁₅H₉NO₃I ([M-OMe]⁺): 377.96217, found: 377.96483.

REFERENCES AND NOTES

