AN INTRAMOLECULAR NUCLEOPHILE-CATALYZED ALDOL-LACTONIZATION (NCAL) REACTION OF S-ARYL-(E)-6-OXOHEX-2-ENETHIOATE WITH N,N-4-DIMETHYLAMINOPYRIDINE N-OXIDE

Hiroki Mandai,* Keita Shimowaki, Kohei Hongo, Koichi Mitsudo, and Seiji Suga*

Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530; E-mail: mandai@cc.okayama-u.ac.jp, suga@cc.okayama-u.ac.jp

Abstract – We have developed an intramolecular nucleophile-catalyzed aldol-lactonization (NCAL) reaction of S-aryl-(E)-6-oxohex-2-enethiolate with N,N-4-dimethylaminopyridine N-oxide (DMAPO) to afford densely functionalized bicyclic β-lactones in moderate yield. This unique transformation may be explained in terms of nucleophilic substitution of the S-aryl moiety by DMAPO, followed by 1,4-addition of aryl thiolate to generate a zwitterionic enolate and an intramolecular C–C bond-forming reaction (aldol-lactonization).

The construction of densely functionalized carbocycles has been a challenging topic in organic synthesis. 1 One option for accessing such molecules is through the use of intramolecular Morita-Baylis-Hillman (MBH) reactions 2 or their products 3 from easily accessible starting materials. However, these reactions, especially with the use of α,β-unsaturated carbonyls having an (E)-olefin (versus (Z)-olefin) in the intramolecular MBH reaction, are extremely slow 4 due to steric repulsion between the reactant and a nucleophilic catalyst. 5 To address this reactivity issue, several organocatalytic methods including enantioselective variants have been developed to enhance the rate of the reaction by using a nucleophilic catalyst in combination with a co-catalyst. 6 Very recently, we also reported an extremely fast intramolecular MBH reaction by the combination of a catalytic amount of a nucleophilic catalyst (N,N-4-dimethylaminopyridine, 4-pyrrolidinopyridine, or tributylphosphine) and 1,3-diphenyl-2-thiourea as a co-catalyst (eq. 1). 7 Under these catalytic systems A–C, the reaction proceeded smoothly to give various six-membered ring MBH adducts in good to excellent yield (up to 96% yield) within 3 hours. However, when catalytic system A was applied to 1a for the construction of a five-membered ring system,
only a trace amount of 2a was obtained (11% NMR yield, eq. 2). Thus, we were strongly motivated to explore the intramolecular MBH reaction for constructing a five-membered system, and eventually found an unexpected rearrangement reaction from S-aryl-(E)-6-oxohex-2-enethioate to afford densely functionalized fused bicyclic β-lactones in moderate yields. The reaction should proceed via an intramolecular nucleophile-catalyzed aldol-lactonization (NCAL) reaction. In this paper, we report the details of the development of a NCAL reaction with S-aryl-(E)-6-oxohex-2-enethioate by N,N-4-dimethylaminopyridine N-oxide (DMAPO).

We began by exploring an optimal substrate for an intramolecular MBH reaction for constructing a five-membered carbocycle (Table 1). For comparison to the previous results with 1a (2a obtained in NMR yield of 11%, eq. 2), the reactions with selected substrates 1b–e were carried out using catalyst system A–C in acetone (0.4 M) at 25 ºC for 6 h (entries 1–4). Unfortunately, in most cases, the reaction did not proceed and recovery of the unreacted starting material was confirmed. However, the reaction of 1c with catalyst system A or B delivered a trace amount of MBH adduct 2c along with two other products (entries 1, 3, 4 vs 2). On the basis of a precise analysis of the byproducts using various spectroscopy modalities, these were identified as 3c and 4c, which were obtained in respective yields of 15% and 11% yield. Interestingly, 3c has a fused β-lactone skeleton with three continuous stereogenic centers, and consisted of a single diastereomer. Presumably, it was directly derived from 1c though an intramolecular nucleophile-catalyzed aldol-lactonization (NCAL) reaction. Generally, NCAL reactions and their enantioselective variants, which involve the in-situ generation of ketene through the activation of a carboxylic acid by Mukaiyama’s reagent, are known to generate bicyclic β-lactone. Very recently, during the preparation of this manuscript, Birman also reported an enantioselective NCAL-type reaction with α,β-unsaturated thioesters catalyzed by chiral homobenzotetramisole (HBTM), followed by
decarboxylation for the synthesis of 2-substituted thiochromenes. As illustrated in entry 2 in Table 1, such a unique transformation from the simple starting material 1c to construct a densely functionalized β-lactone 3c is of great interest in synthetic organic chemistry. Thus, we sought to develop an efficient method for the synthesis of fused β-lactone through an intramolecular NCAL-type process using α,β-unsaturated thioesters.

Table 1. Seeking the optimal substrate for the intramolecular MBH reaction

<table>
<thead>
<tr>
<th>Entry</th>
<th>R</th>
<th>Substrate</th>
<th>Product</th>
<th>System A</th>
<th>System B</th>
<th>System C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OPh</td>
<td>1b</td>
<td>2b</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>2</td>
<td>SPh</td>
<td>1c</td>
<td>2c</td>
<td>8</td>
<td>5</td>
<td>trace</td>
</tr>
<tr>
<td>3</td>
<td>OEt</td>
<td>1d</td>
<td>2d</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>4</td>
<td>SEt</td>
<td>1e</td>
<td>2e</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
</tbody>
</table>

NMR yield of 2 (%)a

<table>
<thead>
<tr>
<th>Entry</th>
<th>R</th>
<th>Substrate</th>
<th>Product</th>
<th>System A</th>
<th>System B</th>
<th>System C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OPh</td>
<td>1b</td>
<td>2b</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>2</td>
<td>SPh</td>
<td>1c</td>
<td>2c</td>
<td>8</td>
<td>5</td>
<td>trace</td>
</tr>
<tr>
<td>3</td>
<td>OEt</td>
<td>1d</td>
<td>2d</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>4</td>
<td>SEt</td>
<td>1e</td>
<td>2e</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
</tbody>
</table>

*aYields were determined by 1H NMR analysis using mesitylene as an internal standard.

To improve the yield of 3c, we began by seeking the optimal catalyst loading (for both DMAP and thiourea) for an intramolecular NCAL reaction of 1c as a model substrate in acetone (0.4 M) for 6 h (Table 2). As a result, in the absence of either DMAP or thiourea, the reactions did not afford any products compared to the combination of DMAP and thiourea (entries 2 and 3 vs 1). Although further increases in the amounts of both catalysts (50 mol% each) increased the yield of β-lactone (35% yield, entry 4), stoichiometric amounts of both catalysts were somewhat less efficient (28% yield, entry 5). In all
cases, none or only a trace amount of the MBH adduct \(\text{2c} \) was obtained, and we decided to use 50 mol% of both DMAP and thiourea as optimal catalyst loadings for further screening of the reaction conditions.

Table 2. Effects of catalyst loading of DMAP and thiourea in an intramolecular NCAL reaction of \(\text{1c} \)

<table>
<thead>
<tr>
<th>Entry</th>
<th>(x) (mol%)</th>
<th>(y) (mol%)</th>
<th>(3c)</th>
<th>(4c)</th>
<th>(2c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1(^b)</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>11</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>none</td>
<td>trace</td>
<td>trace</td>
<td>trace</td>
</tr>
<tr>
<td>3</td>
<td>none</td>
<td>10</td>
<td>N.D.(^c)</td>
<td>N.D.(^c)</td>
<td>N.D.(^c)</td>
</tr>
<tr>
<td>4</td>
<td>50</td>
<td>50</td>
<td>35</td>
<td>trace</td>
<td>trace</td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>100</td>
<td>28</td>
<td>trace</td>
<td>trace</td>
</tr>
</tbody>
</table>

\(^a\)Yields were determined by \(^1\)H NMR analysis using mesitylene as an internal standard. \(^b\)Same data as in entry 2, Table 1. \(^c\)Not detected.

Next, a series of nucleophilic catalysts, which are generally used in MBH-type reactions, in combination with 50 mol\% of thiourea were tested in an intramolecular NCAL reaction of \(\text{1c} \) in acetone (0.4 M) for 3 h (Table 3). The use of 4-pyrrolidinopyridine (PPY),\(^{11}\) which is a more nucleophilic catalyst than DMAP, gave \(\text{3c} \) in 16\% yield (entry 2 vs entry 1). On the other hand, the use of 1,4-diazabicyclo[2.2.2]octane (DABCO), \(N \)-methylimidazole (NMI), triphenylphosphine, or tributylphosphine only afforded a mixture of \(E \)-lactone \(\text{3c} \) and the MBH adduct \(\text{2c} \) (entries 3–6). Finally, the use of 50 mol\% of DMAPO\(^{12}\) and 50 mol\% of thiourea resulted in a significant increase in the yield of \(\text{3c} \) (53\% yield, entry 7). Subsequently, we found that the co-catalyst (thiourea) was not necessary because 50 mol\% of DMAPO, by itself, afforded \(\text{3c} \) in 55\% yield (entry 8 vs 7). With the use of 10 mol\% of DMAPO without thiourea, this reaction proceeded (30\% yield of \(\text{3c} \), entry 9), but it is not efficient enough regardless of the complete consumption of \(\text{1c} \). Thus, the optimal catalyst and its loading amount in this reaction are currently thought to be DMAPO and 50 mol\%.

\[\text{PhS} - \text{O} - \text{C} \rightarrow \text{O} \text{PhS} - \text{O} - \text{C} \rightarrow \text{O} \]
Table 3. Effects of a nucleophilic catalyst in an intramolecular NCAL reaction of 1c

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>NMR yield (%)<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DMAP</td>
<td>23 3 trace</td>
</tr>
<tr>
<td>2</td>
<td>PPY</td>
<td>16 3 trace</td>
</tr>
<tr>
<td>3</td>
<td>DABCO</td>
<td>trace trace 18</td>
</tr>
<tr>
<td>4</td>
<td>NMI</td>
<td>5 4</td>
</tr>
<tr>
<td>5</td>
<td>PPh<sub>3</sub></td>
<td>8 trace 3</td>
</tr>
<tr>
<td>6</td>
<td>PBu<sub>3</sub></td>
<td>14 trace N.D.</td>
</tr>
<tr>
<td>7</td>
<td>DMAPO</td>
<td>53 trace</td>
</tr>
<tr>
<td>8<sup>b</sup></td>
<td>DMAPO</td>
<td>55 trace</td>
</tr>
<tr>
<td>9<sup>b,c</sup></td>
<td>DMAPO</td>
<td>30 trace</td>
</tr>
</tbody>
</table>

^aYields were determined by ¹H NMR analysis using mesitylene as an internal standard. ^bWithout thiourea. ^c10 mol% of DMAPO was used.

Our work to this point revealed that 50 mol% of DMAPO facilitated an intramolecular NCAL reaction of 1c. Thus, we set out to explore the effectiveness of a series of N-oxides as a nucleophilic catalyst (Figure 1). The reaction promoted by 50 mol% of 4-pyrrolidinopyridine (PPYO) for 1.5 h was almost identical to that with DMAPO (51% NMR yield with PPYO vs 55% NMR yield with DMAPO), whereas other N-oxides resulted in no reaction or the formation of a complex mixture. Finally, we selected 50 mol% of DMAPO in acetone (0.4 M) at 25 °C as the optimal conditions.

A variety of substrates with different S-aryl units were subjected to an intramolecular NCAL reaction (Figure 2). The β-lactone 3c with a phenyl group, which was derived from model substrate 1c, was isolated in 49% yield. The reaction of an electron-deficient S-aryl unit (p-FC₆H₄S and p-BrC₆H₄S) 1f and 1g gave 3f and 3g in 31% and 48% yield, respectively, whereas that of an electron-enriched substrate (p-MeOC₆H₄S) proceeded slowly to afford 3h in 34% yield (10 h). The nucleophilic substitution of the p-MeOC₆H₄S unit by DMAPO in the initial step of the NCAL process may be rather slow due to the leaving ability of thiolate. Furthermore, the reaction of 1i with a sterically demanding S-aryl unit
Figure 1. The intramolecular NCAL reactions of 1c catalyzed by various N-oxides

55% NMR yield (1.5 h)

51% NMR yield (1.5 h)

no reaction

no reaction

complex mixture

no reaction

complex mixture

complex mixture

Figure 2. The intramolecular NCAL reactions of various S-Ar substrates

49% yield

31% yield

48% yield

34% yield (10 h)

28% yield (24 h)

complex mixture
(2,6-di-MeC₆H₃S) was more sluggish and gave 3i in 28% yield after 24 h. The reaction of substrate 1j that affords six-membered ring 3j somewhat resulted in complex mixture. Although the desired β-lactones 3c, 3f–i were obtained in low to moderate yields due to the formation of unidentified byproducts, to the best of our knowledge, this is the first example of a DMAPO-catalyzed C–C bond-forming reaction and the synthesis of highly functionalized bicyclic β-lactones from an easily accessible starting material such as 1.

A proposed mechanism for the NCAL reaction of 1c, inspired by Romo’s studies, is as follows. First, nucleophilic displacement of the S-Aryl unit by DMAPO gives an activated ester i, which is followed by the 1,4-addition of thiolate (PhS⁻) to generate zwitterionic enolate ii. An intramolecular C–C bond-forming reaction (aldol-lactonization) then proceeds to give densely functionalized bicyclic β-lactone 3c. This mechanism may be reasonable and consistent with the relative stereochemistry of the product.

![Figure 3. A plausible reaction mechanism of the NCAL reaction of 1c with DMAPO](image)

In summary, we have developed a simple protocol for the synthesis of densely functionalized bicyclic β-lactones in moderate yield via an NCAL reaction. This unique transformation can be performed with
easily accessible S-aryl-(E)-6-oxohex-2-enethiolate and commercially available DMAPO. It does not require stoichiometric amounts of a condensation agent (e.g., Mukaiyama’s reagent) and base, which are typically required for the in-situ generation of a ketene in the NCAL reaction. The reaction presumably involves nucleophilic displacement of the S-aryl moiety by DMAPO, followed by the 1,4-addition of aryl thiolate to generate zwitterionic enolate and an intramolecular C–C bond-forming reaction (aldol-lactonization). Since the efficiency of the reaction was still moderate due to the formation of several unidentified byproducts, further tuning of the catalyst or reaction conditions to improve the reaction efficiency is now underway.

EXPERIMENTAL

All melting points were determined using a Yanaco MP-S3 micro melting point apparatus and are uncorrected. IR spectra were recorded on a JASCO FT/IR-4100 spectrometer. NMR spectra were recorded on a JEOL ECS-400 series, operating at 400 MHz for 1H NMR and at 100 MHz for 13C NMR. Chemical shifts in CDCl3 are reported on the δ scale relative to CHCl3 (7.26 ppm) as an internal reference for 1H-NMR. For 13C NMR, chemical shifts are reported on the δ scale relative to CHCl3 (77.16 ppm) as an internal reference. Column chromatography was performed with silica gel 60N (spherical, neutral, 40–50 μm) purchased from KANTO CHEMICAL. Optical rotations were measured on a HORIBA Model SEPA-300 High-sensitive polarimeter. High-resolution FAB mass spectra (HRMS) were measured on a JEOL JMS-700 MStation or Agilent 6520 Accurate Mass Q-TOF LC/MS (ESI-MS) at the Mass Spectrometry Facility (Okayama University). 4-(Dimethylamino)pyridine N-oxide (DMAPO), and 1,3-diphenyl-2-thiourea were purchased from Tokyo Chemical Industry Co., Ltd. 4-(Dimethylamino)pyridine (DMAP) and 4-pyrrolidinopyridine (PPY) were purchased from Wako Pure Chemical Industries, Ltd. Unless otherwise noted, all materials were purchased from commercial suppliers and used without further purification.

General procedure for nucleophilic-catalyzed aldol lactonization (NCAL)

To a solution of S-aryl-(E)-6-oxohex-2-enethiolate (0.20 mmol) in acetone (0.5 mL) was added DMAPO (50 mol%) at 25 °C. After being stirred for 3 h, the reaction mixture was quenched with saturated aqueous NH4Cl (1 mL) and diluted with EtOAc (7 mL). The organic layer was separated, dried over MgSO4, and concentrated in vacuo. Purification of the crude product by flash column chromatography on silica gel using toluene as an eluent gave the desired product.
6-Oxa-2-(phenylthio)-bicyclo[3.2.0]heptan-7-one (3c).

According to the general procedure, product 3c was obtained (21.1 mg, 95.8 μmol, 49% yield) as a pale yellow oil. 1H NMR (400 MHz, CDCl$_3$) δ 7.41–7.26 (m, 5H), 5.09 (t, $J = 3.6$ Hz, 1H), 4.04 (d, $J = 4.8$ Hz, 1H), 3.89 (d, $J = 3.6$ Hz, 1H), 2.32–2.19 (m, 2H), 2.17–2.09 (m, 1H), 2.08–1.99 (m, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 169.1, 133.6, 131.9, 129.5, 127.9, 77.9, 61.3, 46.5, 28.8, 28.7; IR (neat) 3057, 2868, 1967, 1481, 1248, 1115, 741 cm$^{-1}$; TLC R$_f$ 0.65 (toluene/EtOAc = 10/1), 0.35 (toluene); HRMS (FAB) m/z: [M+H]$^+$ calcd for C$_{12}$H$_{13}$O$_2$S: 221.0630, found: 221.0656.

6-Oxa-2-(4-fluorophenylthio)-bicyclo[3.2.0]heptan-7-one (3f).

According to the general procedure, product 3f was obtained (14.6 mg, 61.3 μmol, 31% yield) as a pale yellow oil. 1H NMR (400 MHz, CDCl$_3$) δ 7.46 (ddt, $J = 8.4$, 5.0, 2.5 Hz, 2H), 7.05 (tt, $J = 8.4$, 2.5 Hz, 2H), 5.09 (t, $J = 4.0$ Hz, 1H), 3.94 (d, $J = 5.6$ Hz, 1H), 3.85 (d, $J = 4.0$ Hz, 1H), 2.29–2.19 (m, 2H), 2.16–1.96 (m, 2H); 13C NMR (100 MHz, CDCl$_3$) δ 169.0, 135.0 (d, $J = 8.6$ Hz), 128.6 (d, $J = 3.8$ Hz), 116.7 (d, $J = 22.0$ Hz), 77.8, 61.2, 47.5, 28.8, 28.6; IR (neat) 3071, 2868, 1965, 1489, 1223, 1123, 746 cm$^{-1}$; TLC R$_f$ 0.35 (toluene); HRMS (FAB) m/z: [M+H]$^+$ calcd for C$_{12}$H$_{12}$FO$_2$S: 239.0536, found: 239.0539.

6-Oxa-2-(4-bromophenylthio)-bicyclo[3.2.0]heptan-7-one (3g).

According to the general procedure, product 3g was obtained (18.4 mg, 61.5 μmol, 48% yield) as a brown oil. 1H NMR (400 MHz, CDCl$_3$) δ 7.46 (dt, $J = 8.9$, 2.2 Hz, 2H), 7.23 (dt, $J = 8.9$, 2.2 Hz, 2 H), 5.09 (t, $J = 4.0$ Hz, 1H), 4.01 (d, $J = 5.6$ Hz, 1H), 3.86 (d, $J = 4.0$ Hz, 1H), 2.32–2.20 (m, 2H), 2.16–1.97 (m, 2H); 13C NMR (100 MHz, CDCl$_3$) δ 168.8, 133.2, 132.9, 132.6, 122.0, 77.8, 61.2, 46.5, 28.8, 28.6; IR (neat) 2934, 2382, 1823, 1248, 1009, 804 cm$^{-1}$; TLC R$_f$ 0.37 (toluene); HRMS (ESI) m/z: [M+H]$^+$ calcd for C$_{12}$H$_{12}$BrO$_2$S: 298.9736, found: 298.9746.

6-Oxa-2-(4-methoxyphenylthio)-bicyclo[3.2.0]heptan-7-one (3h).

According to the general procedure, product 3h was obtained (17.3 mg, 69.1 μmol, 34% yield) as a pale yellow oil. 1H NMR (400 MHz, CDCl$_3$) δ 7.36 (dt, $J = 9.0$, 2.6 Hz, 2H), 6.88 (dt, $J = 9.0$, 2.6 Hz, 2 H), 5.08 (t, $J = 3.3$ Hz, 1H), 3.88–3.86 (m, 1H), 3.85 (d, $J = 3.3$ Hz, 1H), 3.82 (s, 3H), 2.24–1.97 (m, 4H); 13C NMR (100 MHz, CDCl$_3$) δ 169.4, 160.2, 135.6, 123.7, 115.1, 77.9, 61.2, 55.5, 48.0, 28.8, 28.5; IR (neat) 3065, 2916, 2847, 1967, 1115, 745 cm$^{-1}$; TLC R$_f$ 0.35 (toluene); HRMS (FAB) m/z: [M+Na]$^+$ calcd for C$_{13}$H$_{14}$O$_3$Na: 273.0555, found: 273.0556.
6-Oxa-2-(2,6-dimethylphenylthio)-bicyclo[3.2.0]heptan-7-one (3i).

According to the general procedure, product 3i was obtained (17.0 mg, 68.4 μmol, 28% yield) as a brown solid. \(^{1}H\) NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.20–7.09 (m, 3H), 5.11–5.08 (m, 1H), 3.84 (d, \(J = 5.5\) Hz, 1H), 3.64 (dd, \(J = 3.8, 0.8\) Hz, 1H), 2.50 (s, 6H), 2.29–2.21 (m, 2H), 2.21–2.10 (m, 1H), 1.95–1.86 (m, 1H); \(^{13}C\) NMR (100 MHz, CDCl\(_3\)) \(\delta\) 169.5, 143.6, 131.0, 129.3, 128.7, 78.1, 61.2, 45.7, 29.1, 28.9, 22.2; IR (KBr) 2963, 2938, 1813, 1460, 1292, 878 cm\(^{-1}\); TLC \(R_f\) 0.50 (toluene/EtOAc = 15/1); HRMS (FAB) \(m/z:\) [M+H]\(^+\) calcd for C\(_{14}\)H\(_{17}\)O\(_2\)S: 249.0944, found: 249.0952; mp 70.9–72.0 °C.

ACKNOWLEDGEMENTS

This research was partially supported by the Naito Foundation, a Grant-in-Aid for Scientific Research on Innovative Areas “Advanced Molecular Transformations by Organocatalysts”, and “Middle Molecular Strategy” from MEXT (Japan). The authors gratefully thank Mr. Kazuki Fujii for fruitful discussions, and the Division of Instrumental Analysis, Department of Instrumental Analysis & Cryogenics, Advanced Science Research Center, Okayama University for high-resolution mass spectrometry measurements (FAB and ESI).

REFERENCES AND NOTES

9. There are previous examples of the MBH reaction of 1d and 1e using a DMAP/DMAP•HCl or PMe\(_3\) system to afford MBH adducts in good yield. See: G. E. Keck and D. S. Welch, *Org. Lett.*, 2002, 4,

