INTRAMOLECULAR HECK INSERTION OF A DIENE-ALLYLIC AMINATION CASCADE TO SYNTHESIZE A 2-ALKENYL-3,4-FUSED INDOLE STRUCTURE

Takahito Kuribara, a Jun Ueda, a Yuito Tanaka, a Masaya Nakajima, a Shingo Harada, a and Tetsuhiro Nemoto a,b*

a Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan. E-mail: tnemoto@faculty.chiba-u.jp
b Molecular Chirality Research Center, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan

Dedicated with respect to Professor Kiyoshi Tomioka on his 70th birthday

Abstract – Iodoanilines bearing a diene side-chain at the 3-position were converted to tricyclic fused indole derivatives under palladium catalysis. This cascade reaction proceeds through an intramolecular Heck insertion of the diene, followed by an allylic amination reaction sequence. Experimental and computational studies indicated that η^3 π-allylpalladium complex-mediated substitution was operative for the latter cyclization.

Functionalized indole derivatives are an important class of heteroaromatic scaffolds present as the core structure in a wide variety of biologically active molecules. Among them, synthetic organic chemists have focused considerable attention on 3,4-fused indole frameworks as a privileged molecular architecture due to their structural complexity as well as their ubiquity in natural products. Recent efforts have been directed toward constructing 3,4-fused tricyclic indole skeletons based on synthetic strategies using transition metal-catalyzed intramolecular formal (3+2) annulation reactions. Our group also reported a palladium-catalyzed tandem cyclization through intramolecular Heck insertion of an allene–allylic amination cascade for the straightforward synthesis of a 3,4-fused indole skeleton (scheme 1, eq 1). A detailed mechanistic analysis of the reaction, however, has not yet been performed, and whether the allylic amination step proceeds via η^3 π-allylpalladium complex-mediated substitution (path B) or reductive elimination from a palladacycle intermediate (path A) remains unknown. Given the paucity of studies of the
reaction mechanism and the ubiquity of these tricyclic structures, our group has endeavored to design and develop a relevant reaction sequence4 as well as synthetic application of these structures.5

Palladium-catalyzed Heck insertion reaction of 1,3-dienes enables C-C bond formation accompanied by concomitant generation of π-allylpalladium species, enabling sequential functionalization with an external nucleophile.6 We envisaged that an intramolecular Heck insertion-allylic amination cascade of 2-iodoaniline derivatives possessing a diene side-chain would be feasible for the synthesis of 3,4-fused indolines, which could be converted into indole derivatives under oxidative conditions (eq 2). In this reaction system, it would be possible to determine which reaction pathways are operative for the allylic amination step based on the relative configurations of the products (path A’ or B’). Herein, we describe development of a palladium-catalyzed sequential reaction process to produce 2-substituted tricyclic indolines and its conversion into the corresponding 3,4-fused indole derivatives. Mechanistic studies on computational analysis were also performed to clarify the detailed mechanism.

We began our investigation with 2-iodo-aniline derivative 1a possessing a diene side-chain at the 3-position as a model substrate (Table 1). Reaction of 1a with Pd(dba)$_2$/TFP and K$_2$CO$_3$ in DMF solvent at 90 °C for 15 h afforded a functionalized tricyclic indoline 2a in 35% yield ($\text{syn} : \text{anti} = 1 : 0.16$, entry 1).7 The diastereomeric ratio of the product was identical to that of the substrate, supporting a

Scheme 1. Synthesis of tricyclic indolines using Pd catalysis
stereospecificity of the reaction process. Solvent screening showed that toluene was a suitable reaction medium, improving the yield to 66% (entries 2-5). Subsequent survey of (bis)phosphine ligands showed no increase in the reaction efficiency (entries 6-9). After examining potentially applicable bases, the reaction conditions using potassium phosphate were determined to be optimal for this transformation (entry 15).

Table 1. Optimization of the reaction conditions

<table>
<thead>
<tr>
<th>entry</th>
<th>solvent</th>
<th>ligand</th>
<th>base</th>
<th>yield of 2a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DMF</td>
<td>TFP</td>
<td>K₂CO₃</td>
<td>35%</td>
</tr>
<tr>
<td>2</td>
<td>DMSO</td>
<td>TFP</td>
<td>K₂CO₃</td>
<td>36%</td>
</tr>
<tr>
<td>3</td>
<td>toluene</td>
<td>TFP</td>
<td>K₂CO₃</td>
<td>66%</td>
</tr>
<tr>
<td>4</td>
<td>dioxane</td>
<td>TFP</td>
<td>K₂CO₃</td>
<td>64%</td>
</tr>
<tr>
<td>5</td>
<td>PhCF₃</td>
<td>TFP</td>
<td>K₂CO₃</td>
<td>37%</td>
</tr>
<tr>
<td>6</td>
<td>toluene</td>
<td>PPh₃</td>
<td>K₂CO₃</td>
<td>46%</td>
</tr>
<tr>
<td>7</td>
<td>toluene</td>
<td>dppe</td>
<td>K₂CO₃</td>
<td>51%</td>
</tr>
<tr>
<td>8</td>
<td>toluene</td>
<td>dppf</td>
<td>K₂CO₃</td>
<td>43%</td>
</tr>
<tr>
<td>9</td>
<td>toluene</td>
<td>AsPh₃</td>
<td>K₂CO₃</td>
<td>40%</td>
</tr>
<tr>
<td>10</td>
<td>toluene</td>
<td>TFP</td>
<td>Li₂CO₃</td>
<td>trace</td>
</tr>
<tr>
<td>11</td>
<td>toluene</td>
<td>TFP</td>
<td>Cs₂CO₃</td>
<td>65%</td>
</tr>
<tr>
<td>12</td>
<td>toluene</td>
<td>TFP</td>
<td>KOt-Bu</td>
<td>43%</td>
</tr>
<tr>
<td>13</td>
<td>toluene</td>
<td>TFP</td>
<td>Et₃N</td>
<td>18%</td>
</tr>
<tr>
<td>14</td>
<td>toluene</td>
<td>TFP</td>
<td>NaHCO₃</td>
<td>19%</td>
</tr>
<tr>
<td>15</td>
<td>toluene</td>
<td>TFP</td>
<td>K₃PO₄</td>
<td>75%</td>
</tr>
</tbody>
</table>

TFP is tri-2-furylphosphine. dppf is 1,1'-bis(diphenylphosphino)ferrocene. dppe is 1,2-bis(diphenylphosphino)ethane.
Having established the reaction conditions for the synthesis of indoline derivatives, we tested other substrates (table 2). Iodoaniline 1b having a phenyl group on the diene moiety was converted into the corresponding indoline 2b possessing a styryl group in excellent yield (96%, entry 1). The product 2c containing an azepane ring was also accessible from sulfonamide-tethered diene 1c under the optimum conditions (entry 2). Interestingly, an amino functionality with a highly electron-withdrawing group could be applied as the nucleophile on the allylic amination, furnishing 2d in 75% yield (entry 3).

Table 2. Substrate scope
The synthesized indoline derivatives 2b were transformed into 3,4-fused indole 3 through removal of the Ts group followed by DDQ oxidation (Scheme 2).

Next, we initiated studies to gain mechanistic insight into the developed tandem cyclization. Treatment of syn-2c with Pd catalyst under the optimized conditions gave syn-2c as a sole isomer (eq 3), indicating that compound 2 obtained through the Heck insertion-allylic amination cascade was a kinetically controlled product.

To further elucidate the reaction mechanism, we performed density functional theory (DFT) calculations. The calculated potential energy profiles are summarized in Figure 1. Intramolecular migratory insertion of the (E,E)-diene CP1 into the carbon-palladium bond proceeds with an activation energy of 27.5 kcal/mol, giving σ-allyl complex INT1. Two possible pathways exist for the latter allylic amination: reductive elimination from palladacycle intermediate INT2 (depicted in blue) or η^1 π-allylpalladium complex-mediated substitution (depicted in red).
Figure 1. DFT-computed pathways for the Heck reaction and allylic amination. Optimization of geometries and frequencies are computed at the B3LYP/LanL2DZ (for Pd, I), 6-31+G* (others) levels, and single point energies are computed at the B3LYP/SDD (for Pd, I), 6-311++G** (others) levels.

Activation energy for the reductive elimination from INT2 to TSA was 14.5 kcal/mol, affording the anti-product PD_{anti} through metal dissociation from CP_{anti}. On the other hand, \(\eta^3 \)-\(\pi \)-allyl complex INT3 is more thermodynamically stable than INT2. Furthermore, because the activation energy of the allylic amination via TSb was 1.1 kcal/mol, this route, which gives syn-product PD_{syn}, was considered an advantageous pathway. Both the DFT calculations and experimental analysis demonstrated that the reaction pathway through nucleophilic attack to the \(\eta^3 \) \(\pi \)-allylpalladium complex was kinetically favorable. As the syn-product was obtained as a major product from the cyclization precursor comprising (E,E)-diene as the main component, these computational data are consistent with the present experimental results.\(^8\)

In summary, we developed a Pd-catalyzed cyclization cascade for the synthesis of tricyclic indolines that could be transformed into the corresponding 2-alkenyl-3,4-fused indole derivatives. DFT calculations to
clarify the detailed reaction mechanism indicated that the tandem reaction proceeds \textit{via} intramolecular Heck insertion of a diene, followed by nucleophilic attack to the η^3 π-allylpalladium species.

EXPERIMENTAL

1. **General**

 Infrared (IR) spectra were recorded on a Fourier transform infrared spectrophotometer, equipped with ATR. NMR spectra were recorded with a 400 MHz or 600 MHz spectrometer. Chemical Shifts in CDCl$_3$ were reported downfield from TMS (= 0 ppm) for 1H NMR. For 13C NMR, chemical shifts were reported in the scale relative to the solvent signal [CHCl$_3$ (77.0 ppm)] as an internal reference. Positive-ion mass spectra were recorded by electrospray ionization (ESI-TOF). Column chromatography was performed with 63-230 mesh spherical neutral silica gel. Reactions were carried out in dry solvent. Other reagents were purified by the usual methods.

2. **General Procedure for Pd-Catalyzed Cascade Cyclization**

 ![General Procedure Diagram]

 General Procedure: To a suspension of 1a (29.4 mg, 0.0481 mmol), TFP (2.68 mg, 0.0115 mmol) and K$_3$PO$_4$ (40.8 mg, 0.192 mmol) in toluene (2.4 mL) was added Pd(db)$_2$ (2.77 mg, 0.00481 mmol), and the mixture was stirred at 90 $^\circ$C for 15 h. The reaction was quenched with water at 0 $^\circ$C, followed by extraction with AcOEt (\times3). The combined organic layer was washed with brine, dried over Na$_2$SO$_4$, and concentrated \textit{in vacuo}. The residue was purified by flash column chromatography (hexane/AcOEt = 5/1) to give an inseparable mixture of \textit{syn} and \textit{anti}-2a (17.5 mg, 75% yield) as colorless amorphous.

Compound 2a \textit{(syn+anti)}: colorless amorphous. IR (ATR) v 1731, 1455, 1354, 1245, 1165, 1091, 1062, 732, 707, 674 cm$^{-1}$; 1H NMR (CDCl$_3$): δ 1.48-1.59 (m, 1H), 1.70-1.87 (m, 5H), 2.38 [s, 3H (\textit{syn})], 2.39 [s, 3H (\textit{anti})], 2.50-2.55 [m, 1H (\textit{syn})], 2.80 [m, 1H (\textit{anti})], 3.00 [d, $J = 14.2$ Hz, 1H (\textit{syn})], 3.10-3.26 [m, 2H (\textit{syn}), 3H (\textit{anti})], 3.41 [s, 3H (\textit{anti})], 3.58 [s, 3H (\textit{syn})], 3.71 (m, 3H), 4.04-4.07 [m, 1H (\textit{anti})], 4.74 [dd, $J = 9.4$, 9.4 Hz, 1H (\textit{syn})], 5.39 [ddd, $J = 1.8$, 8.7, 15.2 Hz, 1H (\textit{syn})], 5.54 [ddd, $J = 1.8$, 7.3, 15.2 Hz, 1H (\textit{anti})], 5.71-5.86 (m, 1H), 6.80-6.82 (m, 1H), 7.07-7.27 (m, 3H), 7.45 [d, $J = 8.2$ Hz, 1H (\textit{syn})], 7.50 [d, $J = 8.2$ Hz, 2H (\textit{anti})], 7.54-7.58 [m, 2H (\textit{syn}), 1H (\textit{anti})]; 13C NMR (CDCl$_3$, \textit{syn}): δ 17.7, 21.5, 25.2, 35.0,
39.7, 44.6, 52.2, 52.9, 56.0, 68.2, 114.6, 126.3, 127.2, 127.3, 127.8, 129.4, 129.5, 134.4, 135.4, 135.5, 140.6, 143.7, 170.1, 172.5; (+)-ESI-HRMS. Calcd for C_{26}H_{29}NNaO_{6}S (M+Na^+): 506.1608, found: 506.1606.

Compound 2b (syn+anti): colorless amorphous. IR (ATR) ν 1732, 1456, 1355, 1248, 1166, 1062, 734 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)): δ 1.58-1.64 (m, 1H), 1.77-1.90 (m, 2H), 2.34 [s, 3H (syn)], 2.38 [s, 3H (anti)], 2.40-2.47 [m, 1H (anti)], 2.49-2.54 [m, 1H (syn)], 2.94-2.98 [m, 1H (anti)], 3.01-3.05 [m, 1H (syn)], 3.11-3.14 [m, 1H (anti)], 3.22-3.28 (m, 1H), 3.32-3.38 [m, 1H (syn)], 3.43 [s, 3H (anti)], 3.57 [s, 3H (syn)], 3.70 (m, 3H), 4.29-4.32 [m, 1H (anti)], 4.97 [dd, \(J = 9.4, 9.4\) Hz, 1H (syn)], 6.05 [dd, \(J = 9.2, 15.6\) Hz, 1H (syn)], 6.22 [dd, \(J = 7.3, 16.0\) Hz, 1H (anti)], 6.33 [d, \(J = 16.0\) Hz, 1H (syn)], 6.69 [d, \(J = 15.6\) Hz, 1H (anti)], 6.83-6.85 (m, 1H), 7.10-7.37 (m, 8H), 7.49 [d, \(J = 8.2\) Hz, 1H (syn)], 7.54 [d, \(J = 8.2\) Hz, 2H (anti)], 7.58-7.63 [m, 2H (syn), 1H (anti)]; \(^{13}\)C NMR (CDCl\(_3\), syn): δ 21.5, 25.4, 35.0, 39.7, 45.1, 52.2, 52.9, 56.0, 68.4, 114.3, 125.6, 126.3, 126.7, 127.3, 127.9, 128.0, 128.5, 129.3, 132.2, 134.5, 135.0, 135.7, 136.2, 140.6, 143.8, 170.1, 172.4; (+)-ESI-HRMS. Calcd for C_{31}H_{31}NNaO_{6}S (M+Na^+): 568.1764, found: 568.1774.

Compound 2c (syn): colorless amorphous. IR (ATR) ν 1334, 1154, 1089, 969, 813, 733, 705, 607, 652, 608 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)): δ 1.41-1.51 (m, 1H), 1.61-1.77 (m, 4H), 2.37 (s, 6H), 3.05-3.18 (m, 2H), 3.84-3.88 (m, 1H), 4.08 (d, \(J = 16.0\) Hz, 1H), 4.55 (d, \(J = 16.0\) Hz, 1H), 4.73 (dd, \(J = 8.9, 8.9\) Hz, 1H), 5.06 (ddd, \(J = 1.4, 9.2, 15.1\) Hz, 1H), 5.71 (qd, \(J = 6.9, 15.1\) Hz, 1H), 6.88 (d, \(J = 7.3\) Hz, 1H), 7.14-7.20 (m, 5H), 7.48 (d, \(J = 8.2\) Hz, 1H), 7.53 (d, \(J = 8.2\) Hz, 2H), 7.57 (d, \(J = 8.2\) Hz, 2H); \(^{13}\)C NMR (CDCl\(_3\)): δ 17.6, 21.4, 21.5, 28.6, 44.0, 49.8, 52.5, 68.2, 115.4, 123.3, 126.5, 127.00, 127.00, 128.2,
129.49, 129.49, 129.7, 133.7, 135.8, 136.0, 136.9, 141.4, 143.2, 143.8; (+)-ESI-HRMS. Calcd for C_{28}H_{30}N_{2}NaO_{4}S_{2} (M+Na+): 545.1539, found: 545.1526.

Compound 2c (anti): colorless amorphous. IR (ATR) ν 1354, 1334, 1155, 1090, 813, 723, 704, 657 cm-1; 1H NMR (CDCl\textsubscript{3}): δ 1.00-1.10 (m, 1H), 1.65-1.75 (m, 4 H), 2.40 (s, 6H), 2.87-2.99 (m , 2 H), 3.89-3.97 (m, 3H), 4.57 (d, J = 15.1 Hz, 1H), 5.55 (ddd, 1.4, 7.8, 15.1 Hz, 1H), 5.73 (qd, J = 6.4, 15.1 Hz, 1H), 6.87 (d, 7.3 Hz, 1H), 7.16 (dd, J = 8.2, 8.2 Hz, 1H), 7.23 (d, J = 7.8 Hz, 4H), 7.55-7.64 (m, 5H); 13C NMR (CDCl\textsubscript{3}): δ 17.6, 21.4, 21.5, 33.1, 48.3, 50.7, 53.2, 70.5, 115.0, 123.0, 126.9, 127.3 127.7, 128.4, 129.61, 129.61, 130.8, 132.4, 134.0, 135.6, 136.3, 141.7, 143.3, 144.3; (+)-ESI-HRMS. Calcd for C_{28}H_{30}N_{2}NaO_{4}S_{2} (M+Na+): 545.1539, found: 545.1532.

\[
\begin{align*}
\text{MeO}_2\text{C} & \quad \text{CO}_2\text{Me} \\
\text{Ph} & \quad \text{H} \\
\text{O} & \quad \text{S} = \text{O} \\
\text{CF}_3 & \quad \text{H}
\end{align*}
\]

Compound 2d (syn): colorless amorphous. IR (ATR) ν 1731, 1322, 1248, 1170, 1134, 1109, 1062, 714, 611 cm-1; 1H NMR (CDCl\textsubscript{3}): δ 1.60-1.67 (m, 1H), 1.82-1.95 (m, 2H), 2.45-2.48 (m, 1H), 2.90-2.98 (m, 1H), 3.13 (d, J = 14.5 Hz, 1H), 3.27 (d, J = 14.5 Hz, 1H), 3.41 (s, 3H), 3.71 (s, 3H), 6.11-6.15 (m, 1H), 6.20 (d, J = 15.8 Hz, 1H), 6.87 (d, J = 7.6 Hz, 1H), 7.17 (dd, J = 7.6, 7.6 Hz, 1H), 7.26-7.34 (m, 5H), 7.58 (d, J = 7.6 Hz, 1H), 7.64 (d, J = 6.9 Hz, 2H), 7.82 (d, J = 7.6 Hz, 1H), 7.92-7.95 (m, 5H); 13C NMR (CDCl\textsubscript{3}): δ 25.3, 34.8, 39.6, 45.0, 52.2, 52.9, 56.0, 68.7, 113.5, 123.1 (q, J = 273 Hz), 124.8, 126.0 (q, J = 2.9 Hz), 126.6, 126.6, 127.7, 128.2, 128.2, 128.5, 133.9, 134.4 (q, J = 33 Hz), 134.5, 135.0, 135.7, 140.0, 142.6, 170.1, 172.3; (+)-ESI-HRMS. Calcd for C_{31}H_{28}F_{3}NNaO_{6}S (M+Na+): 622.1482, found: 622.1495.

Compound 2d (anti): colorless amorphous. IR (ATR) ν 1733, 1363, 1322, 1249, 1171, 1134, 1063, 714, 613 cm-1; 1H NMR (CDCl\textsubscript{3}): δ 1.20-1.26 (m, 1H), 1.68-1.71 (m, 1H), 1.81-1.85 (m, 1H), 2.45-2.48 (m, 1H), 3.00-3.02 (m, 1H), 3.13 (d, J = 14.5 Hz, 1H), 3.27 (d, J = 14.5 Hz, 1H), 3.41 (s, 3H), 3.71 (s, 3H), 4.37-4.38 (m, 1H), 6.11-6.15 (m, 1H), 6.70 (d, J = 15.8 Hz, 1H), 6.87 (d, J = 7.6 Hz, 1H), 7.17 (dd, J = 7.6, 7.6 Hz, 1H), 7.26-7.34 (m, 5H), 7.58 (d, J = 7.6 Hz, 1H), 7.64 (d, J = 6.9 Hz, 2H), 7.82 (d, J = 7.6 Hz, 1H), 7.92-7.95 (m, 5H); 13C NMR (CDCl\textsubscript{3}): δ 25.3, 34.8, 39.6, 45.0, 52.2, 52.9, 56.0, 68.7, 113.5, 123.1 (q, J = 273 Hz), 124.8, 126.0 (q, J = 2.9 Hz), 126.6, 126.6, 127.7, 128.2, 128.2, 128.5, 133.9, 134.4 (q, J = 33 Hz), 134.5, 135.0, 135.7, 140.0, 142.6, 170.1, 172.3; (+)-ESI-HRMS. Calcd for C_{31}H_{28}F_{3}NNaO_{6}S (M+Na+): 622.1482, found: 622.1495.
Hz, 2H); 13C NMR (CDCl$_3$): δ 29.5, 35.5, 39.4, 48.9, 51.7, 53.0, 55.6, 71.1, 114.2, 123.1 (q, $J = 275$ Hz), 126.0 (q, $J = 2.9$ Hz), 126.5, 126.6, 127.6, 128.0, 128.1, 128.3, 128.6, 131.7, 134.1, 134.7 (q, $J = 33$ Hz), 134.8, 135.9, 140.0, 141.4, 169.1, 172.4; (+)-ESI-HRMS. Calcd for C$_{31}$H$_{28}$F$_3$NNaO$_6$S (M+Na$^+$): 622.1482, found: 622.1485.

3. Oxidation of Indoline to Indole

![Reaction Scheme]

To a stirred solution of $2b$ (18.1 mg, 0.0332 mmol) in MeOH (1.1 mL) was added Mg (8.07 mg, 0.332 mmol) and the mixture was heated at 60 ºC for 3 h. The reaction was quenched with sat. aq. NH$_4$Cl at room temperature, followed by the extraction with AcOEt (5 mL×3). The combined organic layer was washed with brine, dried over Na$_2$SO$_4$ and concentrated in vacuo. The obtained crude material was directly used in next step without further purification.

To a stirred solution of above crude material in dioxane (0.58 mL) was added DDQ (6.61 mg, 0.0291 mmol) and the mixture was stirred at reflux temperature. After 1 h, the reaction mixture was filtered through a short pad of celite, and filtrate was concentrated in vacuo. The residue was purified by PTLC (hexane/AcOEt = 10/1) to give 3 (3.2 mg, 25% yield) as pale yellow amorphous. IR (ATR) ν 1731, 1435, 1241, 1084, 753, 696, 608 cm$^{-1}$; 1H NMR (CDCl$_3$): δ 2.56-2.58 (m, 2H), 3.10-3.13 (2H, m), 3.62 (s, 2H), 3.71 (s, 6H), 6.76 (d, $J = 16.5$ Hz, 1H), 6.86 (d, $J = 6.9$ Hz, 1H), 7.06 (dd, $J = 6.9, 8.2$ Hz, 1H), 7.13 (d, $J = 16.5$ Hz, 1H), 7.14 (d, $J = 8.2$ Hz, 1H), 7.26-7.28 (m, 1H), 7.36 (dd, $J = 7.3, 7.3$ Hz, 2H), 7.50 (d, $J = 7.3$ Hz, 2H), 8.02 (s, 1H); 13C NMR (CDCl$_3$): δ 21.4, 34.0, 38.6, 52.7, 58.8, 108.9, 116.8, 118.0, 120.2, 123.5, 125.7, 126.1, 127.5, 128.5, 128.8, 130.6, 130.7, 136.3, 137.1, 172.4; (+)-ESI-HRMS. Calcd for C$_{24}$H$_{23}$NNaO$_4$ (M+Na$^+$): 412.1519, found: 412.1513.

4. Substrate Synthesis

4-1. Experimental Procedure for the Synthesis of Side Chains

![Reaction Scheme]
General Procedure: To a stirred solution of SI-1 (790 mg, 7.04 mmol) and PPh₃ (2.22 g, 8.45 mmol) in CH₂Cl₂ (14.1 mL) was added CBr₄ (2.80 g, 8.45 mmol) slowly at 0 ºC, and the mixture was stirred at room temperature for 1 h. The reaction was quenched with water, followed by the extraction with CH₂Cl₂. The combined organic layer was washed with brine, dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by flash column chromatography (hexane/AcOEt = 50/1) to give SI-2 (1.23 g, quantitative yield) as colorless oil.

To a stirred solution of dimethyl malonate (0.97mL, 8.45 mmol) in DMF (12.1 mL) was added NaH (60% oil, 338mg, 8.45 mmol) at 0 ºC, and the mixture was stirred for 15 min. Then SI-2 (1.23 g, 7.04 mmol) in DMF (2.0 mL) was added to the reaction, and the mixture was stirred for 24 h at room temperature. The reaction was quenched with water, followed by the extraction with AcOEt (10 mL × 3). The combined organic layer was washed with brine, dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by flash column chromatography (hexane/AcOEt = 50/1) to give SI-3 (675 mg, 42% yield) as colorless oil. IR (ATR) δ 2953, 1733, 1435, 1198, 1152, 988, 635, 620, 608 cm⁻¹; ¹H NMR (CDCl₃): 1.73 [d, J = 6.4 Hz, 3H (E,E)], 1.77 [d, H = 6.9 Hz, 3H (Z,E)], 1.97-2.03 (m, 2H), 2.10 [dt, J = 7.3, 7.3 Hz, 2H (E,E)], 2.22 [dt, J = 7.3, 7.3 Hz, 2H (Z,E)], 3.37-3.43 (m, 1H), 3.73 [s, 6H (E,E)], 3.74 [s, 6H (Z,E)], 5.23 [dt, J = 7.8, 10.5 Hz, 1H (Z,E)], 5.43-5.51 [m, 1H (E,E)], 5.56-5.65 [m, 1H (E,E)], 5.70 [dq, J = 7.3, 7.3 Hz, 1H (Z,E)], 5.97-6.04 [m, 2H (E,E), 1H (Z,E)], 6.20-6.27 [m, 1H (Z,E)]; ¹³C NMR (CDCl₃, (E,E)): δ 17.9, 28.3, 30.0, 50.8, 126.2, 127.3, 128.5, 128.8, 130.9, 132.0, 132.9, 137.3, 169.7; (+)-ESI-HRMS. Calcd for C₁₂H₁₈NaO₄ (M+Na⁺): 249.1097, found: 249.1087.

Compound SI-4: colorless oil. IR (ATR) δ 2.03-2.08 (m, 2H), 2.20 [dt, J = 6.9, 6.9 Hz, 2H (E,E)], 2.35 [dt, J = 7.6, 7.6 Hz, 2H (Z,E)], 3.40-3.45 (m, 1H), 3.73-3.75 (m, 6H), 5.46 [dt, J = 7.6, 10.3 Hz, 1H (Z,E)], 5.74 [dt, J = 6.9, 14.4 Hz, 1H (E,E)], 6.21 (m, 1H), 6.45 [d, J = 15.1 Hz, 1H (E,E)], 6.54 [d, J = 15.1 Hz, 1H (Z,E)], 6.73 [dd, J = 10.7, 15.5 Hz, 1H (E,E)], 6.99 [dd, J = 11.0, 14.4 Hz, 1H (Z,E)], 7.18-7.23 (m, 1H), 7.28-7.32 (m, 2H), 7.37 [d, J = 7.6 Hz, 2H (E,E)], 7.41 [d, J = 7.6 Hz, 2H (Z,E)]; ¹³C NMR (CDCl₃, (E,E)): δ 28.3, 30.4, 50.8, 52.5, 126.2, 127.3, 128.5, 128.8, 130.9, 132.0, 132.9, 137.3, 169.7; (+)-ESI-HRMS. Calcd for C₁₇H₂₀NaO₄ (M+Na⁺): 311.1254, found: 311.1257.
To a stirred solution of **SI-1** (249 mg, 2.22 mmol), NHTsBoc (602 mg, 2.22 mmol) and PPh₃ (699 mg, 2.66 mmol) in THF (4.4 mL) was added diisopropyl azodicarboxylate (DIAD, 0.52 mL, 2.66 mmol) at 0 °C, and the mixture was stirred at room temperature for 1 h. The reaction was quenched with water followed by the extraction with AcOEt (10 mL×3). The combined organic layer was washed with brine, dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by flash column chromatography (hexane/AcOEt = 6/1) to give **SI-5** (718 mg, 88% yield) as colorless oil. IR (ATR) ν 1725, 1354, 1287, 1153, 1089, 988, 721, 673 cm⁻¹; ¹H NMR (CDCl₃): δ 1.34 [s, 9H (E,E)], 1.35 [s, 9H (Z,E)], 1.74 [d, J = 6.4 Hz, 3H (E,E)], 1.79 [d, J = 6.0 Hz, 3H (Z,E)], 2.44 (s, 3H), 2.50 [dt, J = 7.3, 7.3 Hz, 2H (E,E)], 2.63 [dt, J = 7.8, 7.8 Hz, 2H (Z,E)], 3.82-3.87 (m, 2H, 2H), 5.30 [dt, J = 8.0, 10.5 Hz, 1H (Z,E)], 5.50 [dt, J = 7.3, 14.2 Hz, 1H (E,E)], 5.62 [dt, J = 7.3, 14.2 Hz, 1H (E,E)], 5.73 [dt, J = 6.9, 15.1 Hz, 1H (Z,E)], 5.98-6.11 [m, 2H (E,E), 1H (Z,E)], 6.35-6.42 [m, 1H (Z,E)]; ¹³C NMR (CDCl₃, (E,E)): δ 18.0, 21.6, 27.8, 33.4, 46.6, 84.1, 126.6, 127.9, 128.3, 129.2, 131.2, 133.1, 137.4, 144.0, 150.9; (+)-ESI-HRMS. Calcd for C₁₉H₂₇NNaO₄S (M+Na⁺): 388.1553, found: 388.1561.

To a stirred solution of **SI-5** (718 mg, 1.96 mmol) in MeCN (65 mL) was added BF₃·OEt₂ (1.2 mL, 9.82 mmol) at 0 °C, and the mixture was stirred at room temperature for 1 h. The reaction was quenched with sat. aq. NaHCO₃ followed by the extraction with AcOEt (50 mL×3). The combined organic layer was washed with brine, dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by flash column chromatography (hexane/AcOEt = 6/1) to give **SI-6** (477 mg, 92% yield) as colorless amorphous. IR (ATR) ν 1597, 1433, 1321, 1153, 1092, 986, 812, 658, 610 cm⁻¹; ¹H NMR (CDCl₃): δ 1.72 [d, J = 6.9 Hz, 3H (E,E)], 1.76 [d, J = 6.9 Hz, 3H (Z,E)], 2.19 [dt, J = 6.9, 6.9 Hz, 2H (E,E)], 2.30 [dt, J = 6.9, 6.9 Hz, 2H (Z,E)], 2.43 (s, 3H), 2.96-3.01 (m, 2H), 4.74 (br-s, 1H), 5.08 [dt, J = 7.8, 10.5 Hz, 1H (Z,E)], 5.30 [dt, J = 7.3, 13.3 Hz, 1H (E,E)], 5.59 [dq, J = 6.9, 6.9 Hz, 1H (E,E)], 5.70 [dq, J = 6.9, 6.9 Hz, 1H (Z,E)], 5.90-6.04 [m, 2H (E,E), 1H (Z,E)], 6.15 [dd, J = 4.6, 11.0 Hz, 1H (Z,E)], 7.30-7.32 (m, 2H), 7.73-7.76 (m, 2H); ¹³C NMR (CDCl₃, (E,E)): δ 18.0, 21.5, 32.4, 42.5, 126.2, 127.1, 128.8, 129.6, 130.8, 133.5, 136.8, 143.3; (+)-ESI-HRMS. Calcd for C₁₄H₁₉NNaO₂S (M+Na⁺): 288.1029, found: 288.1017.
4-2. Experimental Procedure for the Synthesis of Benzyl Bromide

To a stirred solution of SI-7 (6.10 g, 20.8 mmol) in THF (41.6 mL) was added BH$_3$-THF (24.9 mL, 0.92 M solution in THF, 31.2 mmol) at 0 °C. After being stirred for 8 h at room temperature, the reaction was quenched with 1N aq. HCl followed by the extraction with AcOEt (50 mL×3). The combined organic layer was washed with brine, dried over Na$_2$SO$_4$, and concentrated in vacuo. The residue was purified by column chromatography (hexane/AcOEt = 5/1) to give SI-8 (5.102 g, 88% yield) as yellow solid.

To a stirred solution of SI-8 (889 mg, 3.18 mmol) and PPh$_3$ (1.00 g, 3.82 mmol) in CH$_2$Cl$_2$ (6.4 mL) was added CBr$_4$ (1.27 g, 3.82 mmol) at 0 °C and kept stirring at the same temperature for 30 min. The reaction was quenched with water followed by extraction with CH$_2$Cl$_2$ (10 mL×3). The combined organic layer was washed with brine, dried over Na$_2$SO$_4$, and concentrated in vacuo. The residue was purified by column chromatography (hexane/AcOEt = 20/1) to give SI-9 (991 mg, 91% yield) as yellow solid.

4-3. Experimental Procedure for the Synthesis of Aniline Derivatives

To a stirred solution of SI-3 (525 mg, 2.32 mmol) in DMF (4.6 mL) was added NaH (60% oil, 111.4 mg, 2.78 mmol) at 0 °C, and the mixture stirred for 15 min. Then, SI-9 (793 mg, 2.32 mmol) in DMF (1.0 mL) was added to the above mixture, and the mixture was stirred for 24 h at room temperature. The reaction was quenched with water followed by extraction with AcOEt (10 mL×3). The combined organic layer was washed with brine, dried over Na$_2$SO$_4$, and concentrated in vacuo. The crude material was filtered through a short pad of silica gel and the obtained residue was used for the next reaction without further purification.
To a stirred solution of the above crude material (924 mg) in AcOEt (19.0 mL) was added SnCl$_2$-2H$_2$O (2.14g, 9.50 mmol). The mixture was heated at reflux temperature for 18 h. The reaction was quenched with sat. aq. NaHCO$_3$ followed by extraction with AcOEt (30 mL×3). The combined organic layer was washed with brine, dried over Na$_2$SO$_4$, and concentrated in vacuo. The obtained crude material was used for the next reaction without further purification.

To a stirred mixture of above crude material, pyridine (0.21 mL, 2.9 mmol) and DMAP (41.5 mg, 0.38 mmol) in CH$_2$Cl$_2$ (3.8 mL) was added TsCl (648 mg, 3.8 mmol) at 0 ºC, and the reaction mixture was stirred for 3 h at room temperature. The reaction was quenched with 1N aq. HCl followed by extraction with CH$_2$Cl$_2$ (5 mL×3). The combined organic layer was washed with brine, dried over Na$_2$SO$_4$, and concentrated in vacuo. The residue was purified by column chromatography (hexane/AcOEt = 6/1) to give 1a (615 mg, 48% yield, 3steps) as colorless amorphous. IR (ATR) v 1728, 1437, 1382, 1328, 1162, 1090, 988, 911, 849, 813 cm$^{-1}$; 1H NMR (CDCl$_3$): δ 1.72-1.77 (m, 3H), 1.80-1.86 (m, 2H), 1.96-2.02 [m, 2H (E,E)], 2.05-2.11 [m, 2H (Z,E)], 2.36 [s, 3H (E,E)], 2.39 [s, 3H (Z,E)], 3.45 [s, 2H (E,E)], 3.47 [s, 2H (Z,E)], 3.61 [s, 3H (E,E)], 3.62 [s, 3H (E,E)], 3.64 [s, 3H (Z,E)], 3.65 [s, 3H (Z,E)], 5.10 [dt, J = 7.3, 10.5 Hz, 1H (Z,E)], 5.39 [dt, J = 6.4, 13.3 Hz, 1H (E,E)], 5.59 [dq, J = 6.4, 13.7 Hz, 1H (E,E)], 5.68 [dq, J = 7.3, 14.6 Hz, 1H (Z,E)], 5.90-6.04 [m, 2H (E,E), 1H (Z,E)], 6.18 [dd, J = 11.9, 14.2 Hz, 1H (Z,E)], 6.89-6.92 (m, 1H), 7.02-7.04 (m, 1H), 7.16-7.23 (m, 3H), 7.53-7.55 (m, 1H), 7.60-7.61 (m, 2H); 13C NMR (CDCl$_3$, (E,E)): δ 18.0, 21.5, 27.8, 32.6, 43.7, 52.4, 58.6, 102.0, 121.2, 126.7, 127.4, 127.8, 128.7, 129.5, 129.6, 131.1, 131.2, 135.8, 137.9, 141.3, 144.1, 171.1; (+)-ESI-HRMS. Calcd for C$_{26}$H$_{30}$INaO$_6$S (M+Na$^+$): 634.0731, found: 634.0751

Compound 1b: colorless amorphous. IR (ATR) v 1727, 1530, 1434, 1363, 1200, 989, 910, 804, 731, 693 cm$^{-1}$; 1H NMR (CDCl$_3$): δ 1.86-1.92 (m, 2H), 2.07-2.12 [m, 2H (E,E)], 2.19-2.25 [m, 2H (Z,E)], 2.35 (m, 3H), 3.47 [s, 2H (E,E)], 3.50 [s, 2H (Z,E)], 3.63 [s, 6H (E,E)], 3.66 [s, 6H (Z,E)], 5.35 [dt, J = 7.3, 10.5 Hz, 1H (Z,E)], 5.67 [dt, J = 7.3, 14.9 Hz, 1H (E,E)], 6.12-6.21 (m, 1H), 6.45 [d, J = 15.6 Hz, 1H (E,E)], 6.53 [d, J = 15.6 Hz, 1H (Z,E)], 6.71 [dd, J = 10.5, 15.6 Hz, 1H (E,E)], 6.83-6.94 [m, 1H (E,E), 2H (Z,E)], 7.03-7.05 (m, 1H), 7.17-7.23 (m, 4H), 7.28-7.34 (m, 2H), 7.36-7.40 (m, 2H), 7.54-7.58 (m, 1H), 7.60-7.62 (m, 2H); 13C NMR (CDCl$_3$, (E,E)): δ 21.5, 28.1, 32.5, 43.8, 52.5, 58.6, 102.0, 121.2, 126.1,
126.7, 127.3, 127.4, 128.5, 128.6, 128.7, 129.6, 130.9, 131.3, 133.2, 137.3, 138.0, 141.3, 144.1, 171.1; (+)-ESI-HRMS. Calcd for C$_{31}$H$_{33}$INO$_6$S (M+H$^+$): 674.1068, found: 674.1051.

Compound 1c: colorless amorphous. IR (ATR) v 1448, 1385, 1322, 1157, 1089, 849, 812 cm$^{-1}$; 1H NMR (CDCl$_3$): δ 1.68-1.74 (m, 3H), 1.93 [dt, $J = 7.3, 7.3$ Hz, 2H (E,E)], 2.02 [dt, $J = 7.8, 7.8$ Hz, 2H (Z,E)], 2.35 (m, 3H), 2.44 (m, 3H), 3.02-3.10 (m, 2H), 4.26 [s, 2H (E,E)], 4.29 [s, 2H (Z,E)], 4.92 [dt, $J = 8.4, 8.4$ Hz, 1H (Z,E)], 5.13 [dt, $J = 7.3, 14.8$ Hz, 1H (E,E)], 5.53 [dq, $J = 6.9, 14.9$ Hz, 1H (E,E)], 5.64 [dq, $J = 6.9, 14.2$ Hz, 1H (Z,E)], 5.74 [dd, $J = 10.5, 15.1$ Hz, 1H (E,E)], 5.82-5.95 [m, 1H (E,E), 2H (Z,E)], 7.02 (m, 1H), 7.18-7.33 (m, 6H), 7.56-7.59 (m, 1H), 7.62-7.64 (m, 2H), 7.68-7.72 (m, 2H); 13C NMR (CDCl$_3$, (E,E)): δ 18.0, 21.5, 21.5, 31.4, 48.6, 57.8, 96.9, 121.5, 126.2, 126.4, 127.1, 127.4, 128.4, 129.1, 129.6, 129.8, 130.9, 132.8, 135.7, 136.3, 137.6, 140.1, 143.5, 144.2; (+)-ESI-HRMS. Calcd for C$_{26}$H$_{31}$IN$_2$NaO$_4$S$_2$ (M+Na$^+$): 673.0662, found: 673.0667.

Compound 1d: colorless amorphous. IR (ATR) v 1731, 1322, 1169, 1133, 1063, 713, 607 cm$^{-1}$; 1H NMR (CDCl$_3$): δ 1.89-1.93 (m, 2H), 2.27-2.13 [m, 2H (E,E)], 2.19-2.25 [m, 2H (Z,E)], 3.46 [s, 2H (E,E)], 3.50 [s, 2H (Z,E)], 3.62 [s, 6H (E,E)], 3.65 [s, 6H (Z,E)], 5.35 [dt, $J = 7.3, 10.5$ Hz, 1H (Z,E)], 5.67 [dt, $J = 6.6, 14.2$ Hz, 1H (E,E)], 6.12-6.21 (m, 1H), 6.45 [d, $J = 15.6$ Hz, 1H (E,E)], 6.53 [d, $J = 15.6$ Hz, 1H (Z,E)], 6.71 [dd, $J = 10.3, 15.8$ Hz, 1H (E,E)], 6.94 [dd, $J = 11.4, 16.4$ Hz, 1H (Z,E)], 6.98-7.00 (m, 1H), 7.04 [s, 1H (Z,E)], 7.06 [s, 1H (E,E)], 7.19-7.26 (m, 2H), 7.28-7.34 (m, 2H), 7.36-7.40 (m, 2H), 7.56-7.59
(m, 1H), 7.69-7.71 (m, 2H), 7.82-7.85 (m, 2H); (+)-ESI-HRMS. Calcd for C$_{31}$H$_{29}$F$_{3}$INaO$_{6}$S (M+Na$^+$): 750.0605, found: 750.0608.

ACKNOWLEDGEMENTS
This work was supported by JSPS KAKENHI Grant Number 15K07850 (T.N.) and grant from Global and Prominent Research, Chiba University.

REFERENCES AND NOTES
7. The relative configuration of each isomer was determined by NOESY experiments.
8. See the Supporting Information for computational details including the calculation of the (Z, E)-diene.