RESEARCH ON UNIQUE MASKEDortho-BENZQUINONE, MONOHEMIAMINAL: SYNTHESIS AND REACTIONS

Yuri Matsumoto, Akihiko Nakamura, Emi Saito, and Masahisa Nakada*

Department of Chemistry and Biochemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan; E-mail: mnakada@waseda.jp

Abstract – Synthesis of ortho-benzoquinone monohemiaminals via the oxidative dearomatization/O-cyclization cascades of phenols bearing an ortho substituent derived from an amino alcohol with PIDA is described. The cascade reactions of substrates bearing a chiral substituent were found to proceed in a stereoselective manner. The Diels–Alder reactions of the ortho-benzoquinone monohemiaminals proceed in a highly stereoselective manner. The oxidative dearomatization/O-cyclization cascade affording the ortho-benzoquinone monohemiaminal had never been reported; hence, there is still ample scope for further investigation.

INTRODUCTION

Masked ortho-benzoquinones (MOBs) are 2,4-cyclohexadienones which are chiefly formed by the oxidative dearomatization of phenols. MOBs can undergo a variety of reactions, including 1,2- and 1,4-additions, Diels–Alder reactions, and epoxidations among others (Scheme 1).

Scheme 1. Synthetically useful transformations of masked ortho-benzoquinones (MOBs)
Hence, MOBs are useful synthetic intermediates and have been utilized in natural product synthesis.\(^2\) However, reports of the preparation and reactions of chiral MOBs have been limited despite their promise in enantioselective total syntheses of natural products.\(^3\) Indeed, to the best of our knowledge, only a few examples of chiral MOBs have been reported.\(^4,5\)

Scheme 2. Stereoselective synthesis and reactions of chiral MOBs

Quideau and co-workers reported the first stereoselective synthesis of a chiral ortho-benzoquinone monoketal (compound 3, Scheme 2a), which is an important class of MOBs, by the stereoselective anodic oxidation of 1, which contains a chiral side-chain, and subsequent hydrolysis of the resultant 2 (Scheme
2a). The overall yield of 3 from 1 was low; however, the authors subsequently reported the oxidative dearomatization of 4 using phenylidinium(III) diacetate (PhI(OAc)₂, PIDA), which induced to afford 5 with high yield and stereoselectivity (Scheme 2b). They also reported the stereoselective reaction of 5 and Grignard reagent to afford 6, which was then converted to 7 by hydrolysis to accomplish the total synthesis of (+)-biscarvacrol via a [4+2] cycloaddition (Scheme 2b). However, the stereoselectivity of the Michael reaction of chiral 3 with dimethyl malonate was low, due to the asymmetric induction caused by the chiral ketal moiety (Scheme 2c).

Scheme 3. Presumed stereoselective Diels–Alder reaction of ortho-benzoquinone monohemiaminal

We envisioned that ortho-benzoquinone monohemiaminal 9 (Scheme 3) would be a useful synthetic intermediate for stereoselective reactions, because the substituent of the nitrogen atom would sterically hinder reaction at one side of the diene in 9; e.g., the Diels–Alder reaction of 9 with alkenes would stereoselectively afford 10. Moreover, the hemiaminal moiety of the product 10 is a masked carbonyl group, which could be hydrolyzed to afford chiral compounds in the overall transformations starting from chiral 9.

2,4-Cyclohexadienones containing a five-membered spiro-ring, e.g., spiro-isooxazolins, dioxolanes, spiro-tetrahydrofurans, spiro-lactones, spiro-lactams, spiro-amides, spiro-cyclopentanes, and spiro-oxindoles among others, have been prepared by the oxidative dearomatization of phenols. However, to the best of our knowledge, only one example of the formation of a cyclic hemiaminal by the oxidative dearomatization of the corresponding phenol derivative has been reported. Hence, we decided to undertake a feasibility study of the formation of an ortho-benzoquinone monohemiaminal by the oxidative dearomatization of a simple achiral compound.

RESULTS AND DISCUSSION

As shown in Scheme 4, two methods for synthesizing ortho-benzoquinone monohemiaminal 12 are possible; O-cyclization of 11 to form the spiro-ring by the reaction of the hydroxy group, and
N-cyclization of 13 to form the spiro-ring by the reaction of the protected-amine group. We were interested in the two methods and first examined O-cyclization of 11, and herein we report the results of this study.

Scheme 4. Two methods for synthesizing ortho-benzoquinone monohemiaminals

Generally, MOBs dimerize easily by [4+2] cycloaddition owing to their high reactivity.\(^1\) However, the dimerization of MOBs prepared by the oxidative dearomatization of phenols bearing a bulky or electron-donating substituent at the \textit{para} position is known to be inhibited.\(^{4b,14}\) Hence, in order to investigate the oxidative dearomatization/O-cyclization cascade, we introduced a \textit{tert}-butyl group at the \textit{para} position of the phenols to avoid the dimerization of the ortho-benzoquinone monohemiaminal products. Additionally, the amine in the substrates was protected as a bulky amide to prevent undesired side-reactions under the oxidative reaction conditions and to provide effective steric hindrance of one side of the diene moiety of the products for the subsequent stereoselective reactions.

Scheme 5. Plan for preparing achiral substrate for oxidative dearomatization/O-cyclization cascade
We planned to prepare the simple achiral compound 14 as shown in Scheme 5 to investigate the oxidative dearomatization/O-cyclization cascade. Compound 14 was expected to be prepared by debenzylation of 15, which would be obtained via protection of the amino group of the product obtained by the Buchwald–Hartwig coupling of 16 and 17, which in turn would be prepared from commercially available 18. Hence, the preparation of 14 was commenced with the bromination of 18.

Scheme 6. Preparation of achiral substrates 20 and 21 for oxidative dearomatization/O-cyclization

The ortho-selective bromination of 18 and subsequent benzylation afforded 16 (Scheme 6). The Buchwald–Hartwig coupling of 16 with 17 afforded 19, which then underwent N-protection with a pivaloyl and tosyl group and removal of the benzyl groups to afford 20 and 21, respectively.

The results of the oxidative dearomatization/O-cyclization cascades of 20 and 21 are summarized in Table 1. The reaction of pivalamide 20 with PIDA in CH₂Cl₂ at 0 °C afforded 22 in 44% yield (entry 1) while the yield of 23 from the corresponding reaction with tosylamide 21 was 31% (entry 2). Use of 2,2,2-trifluoroethanol (TFE) as the solvent accelerated the reactions producing 22 and 23, and their yields were improved to 95% (entry 3) and 99% (entry 4), respectively.

The reactions shown in Table 1 revealed that the oxidative dearomatization/O-cyclization cascade of 20 and 21 afforded the ortho-benzoquinone monohemiaminals 22 and 23 in high yield. Hence, we next investigated their reactivity (Table 4). The reactions of 22 and 23 with n-butyl vinyl ether gave no products even at 90 °C and both compounds gradually decomposed, indicating that their Diels–Alder reactions with an electron-rich alkene would require harsh reaction conditions (entries 1 and 2). On the other hand, the reactions of 22 and 23 with an electron-deficient alkene, methyl vinyl ketone, afforded 24 (entry 3) and 25a (entry 4) as single products, respectively. The reaction of 23 with N-phenylmaleimide...
also stereoselectively afforded 25b (entry 5). The yield was excellent in the cases of entries 3-5 and their structural analysis by NOE studies revealed that their reactions stereoselectively took place at the sterically less-hindered side of 22 and 23 as depicted in Scheme 3.

Table 1. Oxidative dearomatization/O-cyclization cascade of 20 and 21

<table>
<thead>
<tr>
<th>entry</th>
<th>substrate</th>
<th>solvent</th>
<th>time (min)</th>
<th>yield (%)<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>CH₂Cl₂</td>
<td>30</td>
<td>44 (22)</td>
</tr>
<tr>
<td>2</td>
<td>21</td>
<td>CH₂Cl₂</td>
<td>30</td>
<td>31 (23)</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>TFE</td>
<td>15</td>
<td>95 (22)</td>
</tr>
<tr>
<td>4</td>
<td>21</td>
<td>TFE</td>
<td>15</td>
<td>99 (23)</td>
</tr>
</tbody>
</table>

^aIsolated yield.

Table 2. Diels–Alder reactions of 22 and 23, and NOE correlations observed in the NOESY spectra of 24, 25a, and 25b

<table>
<thead>
<tr>
<th>entry</th>
<th>substrate</th>
<th>alkene</th>
<th>temp (°C)</th>
<th>time (h)</th>
<th>yield (%)<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22</td>
<td>n-butyl vinyl ether</td>
<td>90</td>
<td>13</td>
<td>NR</td>
</tr>
<tr>
<td>2</td>
<td>23</td>
<td>n-butyl vinyl ether</td>
<td>90</td>
<td>13</td>
<td>NR</td>
</tr>
<tr>
<td>3</td>
<td>22</td>
<td>methyl vinyl ketone</td>
<td>130</td>
<td>48</td>
<td>81 (24)<sup>c</sup></td>
</tr>
<tr>
<td>4</td>
<td>23</td>
<td>methyl vinyl ketone</td>
<td>100</td>
<td>13</td>
<td>95 (25a)<sup>c</sup></td>
</tr>
<tr>
<td>5</td>
<td>23</td>
<td>N-phenylmaleimide</td>
<td>100</td>
<td>13</td>
<td>97 (25b)<sup>c</sup></td>
</tr>
</tbody>
</table>

^aIsolated yield. ^bReaction in a sealed tube. ^cSingle isomer.
Next, cascade reactions of phenols bearing a chiral substituent were pursued. To examine the relationship between the stereoselectivity of the O-cyclization and structure of the chiral substituent, we prepared a substrate possessing a substituent with a chiral carbon center bearing a protected amino group (28).

![Scheme 7. Preparation of 28](image)

Table 3. Oxidative dearomatization/\(O\)-cyclization cascade of 28

<table>
<thead>
<tr>
<th>entry</th>
<th>solvent</th>
<th>yield (%)a</th>
<th>dr (29:29')b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TFE</td>
<td>57</td>
<td>4:1</td>
</tr>
<tr>
<td>2</td>
<td>TFE/CH$_2$Cl$_2$</td>
<td>42</td>
<td>3:1</td>
</tr>
</tbody>
</table>

aIsolated yield. bDetermined by 1H NMR analysis.

To prepare the substrate possessing a substituent with a chiral carbon center bearing amino group, we selected L-valinol as the substituent for the substrate (Scheme 7). The Buchwald–Hartwig coupling of 16 with L-valinol derivative 2617 afforded 27 in 57% yield. The reaction of 27 with pivaloyl chloride did not proceed at room temperature, probably due to the steric hindrance of the adjacent isopropyl group. However, reaction at 100 °C in toluene successfully afforded the product in 94% yield, which was converted to 28 by hydrogenolysis of the benzyl group. Unfortunately, all the attempted reactions of 27 with alkyl and aryl sulfonyle chlorides failed to afford the corresponding sulfonamides. Hence, compound 28 was used for the oxidative dearomatization/\(O\)-cyclization cascade.

The reaction of 28 with PIDA was carried out under the optimized conditions in Table 1 (Table 3). The
ortho-benzoquinone monohemiaminal 29 was obtained in 57% yield as an inseparable mixture of diastereomers with a ratio of 4:1 (entry 1). The configuration of 29 was elucidated based on the NOE correlations observed in the NOESY spectrum of 29 (Figure 1). Both the yield and stereoselectivity decreased when a mixed solvent (TFE/CH₂Cl₂ = 1:1) was used (entry 2).

![Figure 1. NOE correlation observed in the NOESY spectra of 29](image)

Scheme 8. Preparation of 31

We next prepared 31, which possessed a substituent with a chiral carbon center bearing hydroxy group in order to investigate the selectivity in the oxidative dearomatization/O-cyclization cascade (Scheme 8). The preparation of 31 was commenced with the nitration of commercially available 18, followed by formation of the benzyl ether and reduction of the nitro group to afford 30. Subsequent formation of the tosyl amide, N-alkylation with phenacyl bromide, and de-benzylation with concomitant reduction of the ketone under the catalytic hydrogenation conditions afforded 31.

Scheme 9. Stereoselective oxidative dearomatization/O-cyclization cascade of 31
Because the solubility of 31 in TFE was low, the reaction of 31 with PIDA was carried out in the mixed solvent (TFE/CH₂Cl₂ = 1:1) (Scheme 9). The reaction proceeded smoothly to afford 32 and 32' in 93% yield as an inseparable mixture with a ratio of 5:2, with 32 being the major product. The configuration of 37 was elucidated based on the NOE correlations observed in the NOESY spectrum of 32 (Figure 2).

![Figure 2](image_url)

Figure 2. NOE correlations observed in the NOESY spectra of 32

Treatment of the mixture of products with PPTS in acetone at reflux temperature did not cause isomerization. Therefore, the oxidative dearomatization/O-cyclization cascades are kinetically controlled reactions. The stereoselectivity observed in the O-cyclization of 28 could be explained by transition-state models in Scheme 10. Based on molecular modeling, the energetically favorable transition states of the reaction of 28 could be TS1 and TS2, which are envelope-forms with an equatorial isopropyl group. However, TS2, which leads to the formation of 29', would be unfavorable because of the steric strain

Scheme 10. Proposed rationale for the stereoselective formation of 29
between the pseudoaxial hydrogen atom of the methylene group and the oxygen lone pair of the phenol. Hence, TS1 would be energetically more favorable, so that 29 was preferentially formed. The stereoselectivity observed in the reaction of 31 could be also explained by the same transition-state models as TS1 and TS2 in Scheme 10.

In summary, we found that oxidative dearomatization/O-cyclization cascades of phenols bearing an ortho substituent derived from an amino alcohol with PIDA afforded the corresponding ortho-benzoquinone monohemiaminals for the first time. The cascade reactions of substrates bearing a chiral substituent were found to proceed in a stereoselective manner. Because the oxidative dearomatization/O-cyclization cascade affording the ortho-benzoquinone monohemiaminal had never been reported, there is still ample scope for further investigation. Accordingly, further related studies are now underway, and the results will be reported in due course.

EXPERIMENTAL

\(^1\)H and \(^{13}\)C NMR spectra were recorded on a JEOL AL-400 spectrometer or a JEOL ECZ500R or a JEOL ECX500 spectrometer. Chemical shifts are reported in ppm with the residual solvent resonance as internal standard (CDCl\(_3\) \(^1\)H, \(\delta = 7.26\) ppm, \(^{13}\)C, \(\delta = 77.0\) ppm; (CD\(_3\))\(_2\)SO \(^1\)H, \(\delta = 2.50\) ppm, \(^{13}\)C, \(\delta = 39.52\) ppm.) The following abbreviations were used to explain the multiplicities: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; sep, septet; br, broad. IR spectra were recorded on a JASCO FT/IR-8300 using an attenuated total reflectance (ATR). Melting points (mp) are uncorrected, recorded on a Yanaco micro melting point apparatus. Mass spectra analyses were provided at the Materials Characterization Central Laboratory, Waseda University. All reactions were carried out under an argon atmosphere with dry, freshly distilled solvents under anhydrous conditions, unless otherwise noted. All reactions were monitored by thin-layer chromatography carried out on 0.25 mm E. Merck silica gel plates (60F-254) using UV light as visualizing agent, and phosphomolybdic acid, basic potassium permanganate, p-anisaldehyde, or ninhydrin and heat as developing agents. Kanto Chemical Silica Gel 60N (spherical, neutral, 63-210 \(\mu\)m or 40-50 \(\mu\)m partial size) was used for flash chromatography. Preparative thin-layer chromatography (PTLC) separations were carried out on self-made 0.3 mm E. Merck silica gel plates (60F-254). TLC \(R_f\)s of purified compounds were included. In general, reactions were carried out in dry solvents under an argon atmosphere. Unless otherwise noted, materials obtained from commercial suppliers were used without further purification. THF and Et\(_2\)O were distilled from sodium/benzophenone ketyl, and CH\(_2\)Cl\(_2\), benzene, and hexane from calcium hydride. DMSO were distilled from calcium hydride under reduced pressure. Toluene and EtOH were distilled from sodium. MeOH was distilled from magnesium and I\(_2\). All reagents were purchased from Aldrich, TCI, Merck, or Kanto Chemical Co. Ltd.
2-Bromo-4-tert-butylphenol (16A). To a stirred solution of 4-tert-butylphenol 18 (5.00 g, 33.3 mmol) in AcOH (67 mL) and 48% aq. HBr (110 mL) was added DMSO (33 mL) dropwise. After stirring at room temperature for 3 h, the reaction mixture was quenched with 5 M aqueous NaOH solution (150 mL) and saturated aqueous NaHCO₃ solution (150 mL). The aqueous layer was extracted with Et₂O (200 mL × 3), and the combined organic layer was washed with brine (300 mL × 1), dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash silica gel column chromatography (hexane/EtOAc = 30/1) to afford 16A (5.97 g, 78%) as a colorless oil. Spectroscopic analyses of 16A were in agreement with previous literature report: Rᵣ = 0.50 (hexane/EtOAc = 4/1); ¹H NMR (500 MHz, CDCl₃) δ 7.44 (d, J = 2.3 Hz, 1H), 7.23 (dd, J = 2.3, 8.7 Hz, 1H), 6.95 (d, J = 8.7 Hz, 1H), 5.35 (br s, 1H, -OH), 1.28 (s, 9H) ppm.

1-Benzzyloxy-2-bromo-4-tert-butylbenzene (16). To a stirred solution of 16A (5.31 g, 23.2 mmol) in acetone (33 mL) were added K₂CO₃ (6.41 g, 46.4 mmol) and benzyl bromide (3.3 mL, 27.8 mmol). After stirring at reflux for 3 h, the reaction mixture was quenched with 5 M aqueous HCl solution (30 mL). The aqueous layer was extracted with Et₂O (20 mL × 3), and the combined organic layer was washed with brine (50 mL × 1), dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash silica gel column chromatography (hexane/EtOAc = 50/1) to afford 16 (6.92 g, 94%) as a colorless oil: Rᵣ = 0.68 (hexane/EtOAc = 4/1); ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, J = 2.3 Hz, 1H), 7.47 (d, J = 7.3 Hz, 2H), 7.39 (t, J = 7.3 Hz, 2H), 7.31 (t, J = 7.3 Hz, 1H), 7.22 (dd, J = 2.3, 8.7 Hz, 1H), 6.86 (d, J = 8.7 Hz, 1H), 5.13 (s, 2H), 1.28 (s, 9H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 152.8, 145.5, 136.9, 130.6, 128.7, 128.0, 127.1, 125.3, 113.6, 112.2, 71.0, 34.3, 31.5 ppm; IR (ATR) ν max: 2960, 2904, 1740, 1599, 1499, 1228, 1079, 880, 604, 582 cm⁻¹; HRMS (ESI) [M+Na⁺] calcd for C₁₇H₁₉OBrNa: 341.0511, found 341.0506.

2-Benzzyloxy-N-2-benzzyloxyethyl-5-tert-butylaniline (19). To a stirred solution of 16 (2.30 g, 7.20 mmol) in toluene (45 mL) were added 2-phenylmethoxyethanamine 17 (1.24 g, 8.19 mmol), sodium tert-butoxide (2.09 g, 21.7 mmol), Pd₂(dba)₃ (336 mg, 0.367 mmol), and (S)-BINAP (547 mg, 0.879 mmol). After stirring at 80 °C for 19 h, the reaction mixture was cooled to room temperature and then diluted with Et₂O (20 mL). The mixture was filtered through a Celite pad and the residue was washed with Et₂O for several times. The combined filtrate was concentrated under reduced pressure, and the residue was purified by flash silica gel column chromatography (hexane/EtOAc = 30/1) to afford 19 (2.06 g, 73%) as a white solid: Rᵣ = 0.50 (hexane/EtOAc = 10/1); ¹H NMR (400 MHz, CDCl₃) δ 7.43-7.27 (m, 10H), 6.79-6.68 (m, 3H), 5.06 (s, 2H), 4.55 (s, 2H), 3.74 (t, J = 5.5 Hz, 2H), 3.40 (t, J = 5.5 Hz, 2H), 1.29 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 144.5, 144.4, 138.3, 137.8, 137.5, 128.6, 128.5, 127.9, 127.7, 127.6, 113.2, 110.7, 108.3, 73.1, 70.6, 68.8, 43.7, 34.4, 31.7 ppm; IR (ATR) ν max: 3386, 3063, 2966, 2859, 1604, 1451, 1391, 1213, 1035, 695, 650 cm⁻¹; HRMS (ESI) [M+H⁺] calcd for C₂₆H₃₂NO₂: 390.2428,
found 390.2419; mp 56.7 °C.

N-(2-Benzyloxy-5-tert-butylphenyl-N-2-benzyloxyethyl)pivalamide (20A). To a stirred solution of 19 (1.02 g, 2.63 mmol) in CH₂Cl₂ (25 mL) were added pivaloyl chloride (0.35 mL, 2.84 mmol) and triethylamine (0.50 mL, 3.59 mmol). The reaction mixture was stirred at room temperature for 2 h, and then, the mixture was quenched with H₂O (20 mL). The aqueous layer was extracted with CH₂Cl₂ (10 mL × 3), dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash silica gel column chromatography (hexane/EtOAc = 20/1 to 6/1) to afford 20A (1.24 g, 100%) as a white solid:

R_f = 0.50 (hexane/EtOAc = 4/1);

¹H NMR (400 MHz, DMSO-d₆> δ 7.43-7.23 (m, 12H), 7.09 (d, J = 8.7 Hz, 1H), 5.11 (d, J = 6.9 Hz, 2H), 4.38 (s, 2H), 4.21-4.14 (m, 1H), 3.61-3.53 (m, 1H), 3.50-3.43 (m, 1H), 3.14-3.05 (m, 1H), 1.19 (s, 9H), 0.90 (s, 9H) ppm;

¹³C NMR (125 MHz, CDCl₃ δ 178.4, 152.5, 143.4, 138.6, 136.8, 132.1, 129.5, 128.7, 128.4, 128.0, 127.7, 127.5, 126.9, 125.7, 111.9, 73.0, 69.9, 67.8, 51.1, 40.9, 34.0, 31.4, 29.0 ppm; IR (ATR) ν_{max}: 2957, 2863, 1623, 1342, 1204, 1025, 744, 721, 541 cm⁻¹; HRMS (ESI) [M+Na⁺] calcd for C₃₁H₃₉O₃NNa: 496.2822, found 496.2811; mp 38.8 °C.

(N-5-tert-Butyl-2-hydroxyphenyl-N-2-hydroxyethyl)pivalamide (20). To a stirred solution of 20A (1.24 g, 2.63 mmol) in MeOH (25 mL) was added palladium on activated carbon (250 mg, 20 wt%). The suspension was sparged with H₂ via a balloon and subsequently stirred under hydrogen atmosphere at room temperature for 2 days. Then, the reaction mixture was sparged with argon to remove excess hydrogen, diluted with EtOAc (20 mL), filtered through a Celite pad and the residue was washed with EtOAc for several times. The combined filtrate was concentrated under reduced pressure, and the residue was purified by flash silica gel column chromatography (hexane/EtOAc = 5/1) to afford 20 (462 mg, 60%) as a white solid:

R_f = 0.30 (hexane/EtOAc = 2/1);

¹H NMR (400 MHz, DMSO-d₆> δ 7.19 (dd, J = 2.3, 8.2 Hz, 1H), 7.09 (d, J = 8.2 Hz, 1H), 6.82 (d, J = 8.2 Hz, 1H), 3.72 (br s, 1H), 3.53 (br s, 2H), 3.20 (br s, 1H), 1.23 (s, 9H), 0.92 (s, 9H) ppm;

¹³C NMR (125 MHz, CDCl₃ δ 181.5, 151.2, 143.4, 130.2, 127.1, 117.4, 59.8, 54.8, 41.3, 34.1, 31.5, 28.9 ppm; IR (ATR) ν_{max}: 3170, 2962, 2871, 1583, 1422, 1291, 722 cm⁻¹; HRMS (ESI) [M+Na⁺] calcd for C₁₇H₂₇O₃NNa: 316.1883, found 316.1876; mp 155.4 °C.

N-2-Benzylxyloxy-5-tert-butylphenyl-N-2-benzyloxyethyl-4-methylbenzenesulfonamide (21A). To a stirred solution of 19 (1.01 g, 2.59 mmol) in CH₂Cl₂ (25 mL) was added triethylamine (0.5 mL, 3.59 mmol) and p-toluenesulfonyl chloride (555 mg, 2.91 mmol). The reaction mixture was stirred at room temperature for 17 h, and then quenched with saturated aqueous NH₄Cl solution (10 mL). The aqueous layer was extracted with CH₂Cl₂ (30 mL × 3), dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash silica gel column chromatography (hexane/EtOAc = 20/1 to 10/1) to afford 21A (1.09 g, 78%) as a white solid:

R_f = 0.50 (hexane/EtOAc = 4/1);

¹H NMR (400 MHz, DMSO-d₆> δ 7.49 (d, J = 8.2 Hz, 2H), 7.35-7.13 (m, 13H), 7.01 (d, J = 6.4 Hz, 1H), 7.00 (s, 1H), 4.89 (br
N-5-tert-Butyl-2-hydroxyphenyl-N-2-hydroxyethyl-4-methylbenzenesulfonamide (21). To a stirred solution of 21A (1.09 g, 2.01 mmol) in MeOH (16 mL) and THF (4.0 mL) was added palladium on activated carbon (219 mg, 20 wt%). The suspension was sparged with hydrogen via a balloon and subsequently stirred under hydrogen atmosphere at room temperature for 2 days. Then, the reaction mixture was sparged with argon to remove excess hydrogen, diluted with EtOAc (10 mL), filtered through a Celite pad and the residue was washed with EtOAc for several times. The combined filtrate was concentrated under reduced pressure, and the residue was purified by flash silica gel column chromatography (hexane/EtOAc = 6/1) to afford 21 (560 mg, 77%) as a white solid: Rf = 0.30 (hexane/EtOAc = 2/1); 1H NMR (400 MHz, DMSO-d6) δ 7.56 (d, J = 8.2 Hz, 2H), 7.37 (d, J = 8.2 Hz, 2H), 7.16 (dd, J = 2.3, 8.2 Hz, 1H), 6.76 (d, J = 8.2 Hz, 1H), 6.65 (d, J = 2.3 Hz, 1H), 3.53 (t, J = 6.4 Hz, 2H), 3.38 (t, J = 6.4 Hz, 2H), 2.39 (s, 3H), 1.10 (s, 9H) ppm; 13C NMR (125 MHz, CDCl3) δ 153.2, 144.1, 143.7, 135.2, 129.7, 128.1, 127.4, 125.1, 125.0, 117.2, 60.0, 54.2, 34.0, 31.2, 21.7 ppm; IR (ATR) ν max: 3491, 3178, 2952, 2865, 1598, 1325, 1106, 813, 724, 534 cm⁻¹; HRMS (ESI) [M+Na⁺] calcd for C19H25O4NNaS: 386.1397, found 386.1392; mp 120.9 °C.

(R)-9-tert-Butyl-4-pivaloyl-1-oxa-4-azaspiro[4.5]deca-7,9-dien-6-one (22) (Table 1, entry 3). To a stirred solution of 20 (20.8 mg, 0.0710 mmol) in TFE (1.7 mL) was added PIDA (25.8 mg, 0.0801 mmol) at 0 °C and the reaction mixture was stirred at 0 °C for 15 min. Then, the mixture was quenched with saturated aqueous NaHCO₃ solution (1.0 mL) and saturated aqueous Na₂S₂O₃ solution (1.0 mL), and the aqueous layer was extracted with CH₂Cl₂ (3.0 mL × 3), dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash silica gel column chromatography (hexane/EtOAc = 10/1 to 5/1) to afford a yellow solid. It was further purified by PTLC (hexane/EtOAc = 2/1) to afford 22 (19.6 mg, 95%) as a pale yellow solid: Rf = 0.30 (hexane/EtOAc = 2/1); 1H NMR (500 MHz, CDCl3) δ 7.06 (dd, J = 2.3, 10.1 Hz, 1H), 6.13 (d, J = 10.1 Hz, 1H), 5.72 (d, J = 2.3 Hz, 1H), 4.48-4.41 (m, 1H), 4.22-4.12 (m, 2H), 3.83-3.75 (m, 1H), 1.25 (s, 9H), 1.15 (s, 9H) ppm; 13C NMR (125 MHz, CDCl3) δ 196.0, 175.7, 145.5, 140.3, 127.6, 125.4, 87.1, 66.4, 46.6, 38.5, 34.3, 28.6, 27.0 ppm; IR (ATR) ν max: 2962, 1678, 1618, 1363, 1136, 824 cm⁻¹; HRMS (ESI) [M+Na⁺] calcd for C₁₇H₂₅O₃NNa: 314.1727, found 314.1726; mp 72.7 °C.

9-tert-Butyl-4-tosyl-1-oxa-4-azaspiro[4.5]deca-7,9-dien-6-one (23) (Table 1, entry 4). To a stirred solution of 21 (26.6 mg, 0.0732 mmol) in TFE (1.83 mL) was added PIDA (28.5 mg, 0.0885 mmol) at
0 °C and the reaction mixture was stirred at 0 °C for 15 min. Then, the mixture was quenched with saturated aqueous NaHCO₃ solution (1.0 mL) and saturated aqueous Na₂S₂O₃ solution (1.0 mL), and the aqueous layer was extracted with CH₂Cl₂ (3.0 mL × 3), dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash silica gel column chromatography (hexane/EtOAc = 10/1 to 5/1) to afford a yellow solid. It was further purified by PTLC (hexane/EtOAc = 2/1) to afford 23 (26.3 mg, 99%) as a pale yellow solid: Rₚ = 0.50 (hexane/EtOAc = 2/1); ¹H NMR (500 MHz, CDCl₃) δ 7.67 (d, J = 8.2 Hz, 2H), 7.29 (d, J = 8.2 Hz, 2H), 7.07 (dd, J = 2.3, 10.5 Hz, 1H), 6.06 (d, J = 10.5 Hz, 1H), 5.75 (d, J = 2.3 Hz, 1H), 4.45-4.40 (m, 1H), 4.18-4.14 (m, 1H), 3.87-3.82 (m, 1H), 3.67-3.61 (m, 1H), 2.43 (s, 3H), 1.58 (s, 9H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 197.1, 146.4, 143.8, 141.1, 137.2, 129.6, 127.8, 127.5, 124.7, 86.0, 65.8, 46.8, 34.5, 28.2, 21.6 ppm; IR (ATR) νmax: 2954, 1682, 1151, 994, 825, 547 cm⁻¹; HRMS (ESI) [M+Na⁺] calcd for C₁₉H₂₃O₄NNaS: 384.124, found 384.124; mp 104.9 °C.

(1R*,2R*,4R*,8R*)-8-Acetyl-6-tert-butyl-3'-pivaloylspiro[bicyclo[2.2.2]octane-2,2'-oxazolidin]-5-en-3-one (24). To a stirred solution of 22 (22.2 mg, 0.0762 mmol) in toluene (0.76 mL) was added methyl vinyl ketone (0.062 mL, 0.761 mmol) and the reaction mixture was stirred at 130 °C in a sealed tube for 48 h. After the reaction was complete, the mixture was cooled to room temperature and the mixture was concentrated under reduced pressure. The residue was purified by flash silica gel column chromatography (hexane/EtOAc = 10/1 to 2/1) to afford 24 as a white solid (22.2 mg, 81%): Rₚ = 0.13 (hexane/EtOAc = 2/1); ¹H NMR (400 MHz, CDCl₃) δ 5.80 (dd, J = 2.3, 6.4 Hz, 1H), 4.18-4.08 (m, 3H), 3.68 (dd, J = 1.8, 6.4 Hz, 1H), 3.59-3.49 (m, 1H), 3.00 (ddd, J = 1.8, 5.5, 9.6 Hz, 1H), 2.97 (dd, J = 2.3, 5.5 Hz, 1H), 2.17 (s, 3H), 2.16-2.11 (m, 1H), 1.76 (ddd, J = 2.8, 5.5, 12.8 Hz, 1H), 1.20 (s, 9H), 1.01 (s, 9H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 206.0, 202.9, 174.7, 149.7, 118.4, 88.9, 66.2, 50.0, 49.8, 46.5, 42.5, 38.7, 34.6, 28.4, 28.0, 27.5, 23.8 ppm; IR (ATR) νmax: 2959, 2892, 1740, 1703, 1640, 1475, 1361, 1140, 785 cm⁻¹; HRMS (ESI) [M+Na⁺] calcd for C₂₁H₃₁O₄NNa: 384.2145, found 384.2147; mp 185.2 °C.

(1R*,2R*,4R*,8R*)-8-Acetyl-6-tert-butyl-3'-tosylspiro[bicyclo[2.2.2]octane-2,2'-oxazolidin]-5-en-3-one (25a). To a stirred solution of 23 (30.2 mg, 0.0836 mmol) in toluene (0.84 mL) was added methyl vinyl ketone (0.070 mL, 0.859 mmol) and the reaction mixture was stirred at 100 °C with a reflux condenser for 13 h. After the reaction was complete, the mixture was cooled to room temperature and the mixture was concentrated under reduced pressure. The residue was purified by flash silica gel column chromatography (hexane/EtOAc = 10/1 to 2/1) to afford 25a as a white solid (34.3 mg, 95%): Rₚ = 0.51 (hexane/EtOAc = 1/1); ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, J = 8.2 Hz, 2H), 7.31 (d, J = 8.2 Hz, 2H), 5.90 (dd, J = 2.3, 6.4 Hz, 1H), 3.94-3.88 (m, 1H), 3.72 (dd, J = 2.3, 6.4 Hz, 1H), 3.64-3.59 (m, 1H), 3.59-3.53 (m, 1H), 3.52-3.43 (m, 1H), 3.07 (dd, J = 2.3, 5.5 Hz, 1H), 2.96 (ddd, J = 2.3, 4.6, 9.2 Hz, 1H), 2.42 (s, 3H), 2.19 (s, 3H), 2.07-1.99 (m, 1H), 1.96-1.89 (m, 1H), 1.17 (s, 9H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 205.0, 204.2, 152.8, 144.0, 135.5, 129.6, 128.8, 116.2, 92.0, 65.1, 50.7, 50.0, 46.4, 43.9, 35.1,
28.3, 28.2, 22.1, 21.7 ppm; IR (ATR) \(\nu_{\text{max}} \): 2966, 2892, 1748, 1708, 1466, 1360, 1158, 1002, 815, 586 cm\(^{-1}\); HRMS (ESI) \([M+Na]^+\) calcd for C\(_{23}\)H\(_{29}\)O\(_5\)NNaS: 454.1659, found 454.1659; mp 150.3 °C.

\((2R^*,3a'R^*,4'R^*,7'R^*,7a'S^*)-5'-\text{tert}-\text{Butyl-2'-phenyl-3-tosyl-3a',4',7',7a'-tetrahydro-1'H-spiro[oxazidine-2,9'-[4,7]ethanoisoindole]-1',3',8'(2'H)-trione (25b). To a stirred solution of 23 (31.3 mg, 0.0866 mmol) in toluene (0.90 mL) was added N-phenylmaleimide (0.139 g, 0.804 mmol) and the reaction mixture was stirred at 100 °C with a reflux condenser for 13 h. After the reaction was completed, the mixture was cooled to room temperature and the mixture was concentrated under reduced pressure. The residue was purified by flash silica gel column chromatography (hexane/EtOAc = 10/1) to afford 25b as a white solid (45.0 mg, 97%): \(R_f = 0.46 \) (hexane/EtOAc = 1/1); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \): 7.82 (d, \(J = 8.2 \) Hz, 2H), 7.49-7.44 (m, 2H), 7.42-7.37 (m, 1H), 7.34 (d, \(J = 8.2 \) Hz, 2H), 7.24-7.20 (m, 2H), 6.27 (dd, \(J = 2.3, 6.4 \) Hz, 1H), 4.05-3.96 (m, 2H), 3.77-3.69 (m, 1H), 3.65-3.62 (m, 1H), 3.61-3.48 (m, 3H), 3.35 (dd, \(J = 3.2, 8.7 \) Hz, 1H), 2.44 (s, 3H), 1.16 (s, 9H) ppm; \(^13\)C NMR (125 MHz, CDCl\(_3\)) \(\delta \): 201.6, 176.0, 174.6, 150.5, 144.3, 135.1, 131.5, 129.6, 129.2, 128.8, 128.7, 126.1, 119.5, 90.6, 65.5, 47.8, 46.4, 46.3, 43.6, 39.5, 34.4, 28.9, 21.5 ppm; IR (ATR) \(\nu_{\text{max}} \): 2959, 2885, 1755, 1715, 1380, 1347, 1160, 1048, 813, 669, 579 cm\(^{-1}\); HRMS (ESI) \([M+Na]^+\) calcd for C\(_{29}\)H\(_{30}\)O\(_6\)N\(_2\)NaS: 557.1717, found 557.1717; mp 307.9 °C.

\((S)-2\text{-Benzyloxy-1-benzyloxy-3-methylbutan-2-yl-5-\text{tert}-butylaniline (27). To a stirred solution of 16 (2.95 g, 9.24 mmol) in toluene (15 mL) were added (S)-1-benzyloxy-3-methylbutan-2-amine 26\(^{17}\) (1.95 g, 10.1 mmol) in toluene (15 mL), sodium tert-butoxide (2.67 g, 27.8 mmol), Pd\(_2\)(dba\(_3\)) (421 mg, 0.460 mmol), and (S)-BINAP (692 mg, 1.11 mmol). After stirring at 90 °C for 14 h, the reaction mixture was cooled to room temperature and then diluted with Et\(_2\)O (20 mL). The solution was filtered through a Celite pad and the residue was washed with Et\(_2\)O for several times. The combined filtrate was concentrated under reduced pressure, and the residue was purified by flash silica gel column chromatography (hexane/EtOAc = 10/1) to afford 27 (2.28 g, 57%) as a yellow oil: \(R_f = 0.60 \) (hexane/EtOAc = 1/1); \(^1\)H NMR (500 MHz, DMSO-\(d_6\)) \(\delta \): 7.43-7.25 (m, 10H), 6.79 (d, \(J = 8.7 \) Hz, 1H), 6.64 (d, \(J = 2.3 \) Hz, 1H), 6.49 (dd, \(J = 2.3, 8.7 \) Hz, 1H), 5.07 (s, 2H), 4.50-4.42 (m, 3H), 3.52 (dd, \(J = 4.6, 10.0 \) Hz, 1H), 3.49 (dd, \(J = 4.6, 10.0 \) Hz, 1H), 3.42-3.36 (m, 1H), 2.01-1.93 (m, 1H), 1.21 (s, 9H), 0.94 (d, \(J = 5.5 \) Hz, 3H), 0.92 (d, \(J = 5.0 \) Hz, 3H) ppm; \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta \): 144.6, 144.3, 138.6, 138.0, 137.8, 128.7, 128.5, 127.9, 127.7, 127.6, 127.4, 112.5, 111.1, 108.5, 73.5, 70.8, 70.5, 58.2, 34.5, 31.8, 29.9, 19.8, 18.4 ppm; IR (ATR) \(\nu_{\text{max}} \): 3432, 3032, 2956, 2866, 1593, 1453, 1208, 1101, 732, 647 cm\(^{-1}\); HRMS (ESI) \([M+H]^+\) calcd for C\(_{29}\)H\(_{38}\)O\(_2\)N: 432.2897, found 432.2895; \([\alpha]_D^{23} = -29.7 \) (c 0.58, CHCl\(_3\)).

\((S)-N-1\text{-Benzyloxy-3-methylbutan-2-yl-N-2-benzyloxy-5-\text{tert}-butylphenyl)pivalamide (28A). To a stirred solution of 27 (692 mg, 1.60 mmol) in toluene (5.3 mL) were added DIPEA (1.4 mL, 8.04 mmol), DMAP (196 mg, 1.60 mmol) and pivaloyl chloride (0.96 mL, 7.80 mmol). After stirring at 100 °C for 40
h, the reaction mixture was cooled to room temperature and then quenched with H2O (10 mL). The aqueous layer was extracted with EtOAc (10 mL × 3), and the combined organic layer was washed with saturated aqueous NH4Cl solution (30 mL × 1) and brine (30 mL × 1), dried over Na2SO4, and concentrated under reduced pressure. The residue was purified by flash silica gel column chromatography (hexane/EtOAc = 20/1) to afford product 28A (773 mg, 94%) as a yellow oil: Rf = 0.60 (hexane/EtOAc = 4/1); 1H NMR (500 MHz, CDCl3, 2:1 mixture of two rotamers) δ 7.44-7.27 (m, 6H), 7.25-7.16 (m, 5H), 7.05-6.94 (m, 1H), 6.85-6.78 (m, 1H), 5.08-4.93 (m, 2H), 4.31-3.49 (m, 5H), 2.42-2.18 (m, 1H), 1.26 (s, 6H), 1.26 (s, 3H), 1.02 (d, J = 6.9 Hz, 3H), 1.00 (s, 9H), 0.91 (d, J = 6.9 Hz, 1H), 0.84 (d, J = 6.9 Hz, 2H) ppm; 13C NMR (125 MHz, DMSO-d6, mixture of two rotamers) δ 178.5, 177.8, 154.2, 153.4, 142.9, 142.7, 142.7, 139.0, 138.9, 137.2 (2), 129.9, 129.0, 128.9, 128.6, 128.5 (2), 128.4, 128.2, 128.1, 127.8, 127.6, 127.5 (2), 126.2, 125.8, 112.6, 112.4, 79.7 (2), 72.3, 72.0, 71.2 (2), 70.2, 69.8, 41.7, 41.4, 34.1, 31.6 (2), 29.6 (2), 29.4 (2), 29.2 (2), 22.7, 21.0, 20.6, 20.1 ppm; IR (ATR) νmax: 2959, 2869, 1630, 1454, 1287, 1025, 732, 663, 543 cm⁻¹; HRMS (ESI) [M+H⁺] calc’d for C34H46O3N: 516.3472, found 516.3483; [α]D26 +0.4 (c 1.04, CHCl3).

To a stirred solution of 28A (621 mg, 1.20 mmol) in MeOH (4.0 mL) was added palladium on activated carbon (124 mg, 20 wt%). The suspension was sparged with hydrogen via a balloon and subsequently stirred under hydrogen atmosphere at room temperature for 2 days. Then, the reaction mixture was sparged with argon to remove excess hydrogen, diluted with EtOAc (10 mL), filtered through a Celite pad and the residue was washed with EtOAc for several times. The combined filtrate was concentrated under reduced pressure, and the residue was purified by flash silica gel column chromatography (hexane/EtOAc = 20/1 to 10/1) to afford 28 (247 mg, 61%) as a yellow oil: Rf = 0.13 (hexane/EtOAc = 4/1); 1H NMR (500 MHz, DMSO-d6, observed as a 3:2 mixture of two rotamers) δ 7.27 (dd, J = 2.3, 8.7 Hz, 0.4 H), 7.22-7.19 (m, 1.2 H), 7.04 (d, J = 2.3 Hz, 0.4 H), 6.83 (d, J = 8.7 Hz, 0.4 H), 6.78-6.76 (m, 0.6 H), 4.62-4.56 (m, 0.4 H), 3.99 (t, J = 10.1 Hz, 0.6 H), 3.69-3.61 (m, 1H), 3.03 (t, J = 10.5 Hz, 0.4 H), 2.86 (dt, J = 4.1, 9.6 Hz, 0.6 H), 2.43-2.32 (m, 0.6 H), 1.65-1.56 (m, 0.4 H), 1.23 (s, 9H), 1.06-1.02 (m, 3H), 0.92 (s, 3.6 H), 0.91 (s, 5.4 H), 0.84-0.81 (m, 3H) ppm; 13C NMR (125 MHz, CDCl3, observed as a mixture of two rotamers) for the major rotamer: δ 182.6, 154.0, 142.3, 129.3, 127.2, 124.4, 117.8, 63.5, 61.0, 42.0, 34.0, 31.4, 29.0, 27.5, 21.5, 19.5 ppm; for the minor rotamer: δ 180.1, 151.0, 141.0, 128.3, 126.6, 131.8, 117.4, 75.3, 61.0, 41.5, 34.1, 31.5, 29.5, 28.9, 21.7, 21.4 ppm; IR (ATR) νmax: 3380, 2959, 2871, 1604, 1287, 1191, 1013, 720, 583 cm⁻¹; HRMS (ESI) [M+Na⁺] calc’d for C20H33O3NNa: 358.2352, found 358.2353; [α]D26 −63.4 (c 0.62, CHCl3).

(3S,5R)- and (3S,5S)-9-tert-Butyl-3-isopropyl-4-pivaloyl-1-oxa-4-azaspiro[4.5]deca-7,9-dien-6-one (29 and 29’) (Table 3, entry 1). To a stirred solution of 28 (27.0 mg, 0.0805 mmol) in TFE (2.0 mL) was
added PIDA (30.5 mg, 0.0947 mmol) and the reaction mixture was stirred at 0 °C for 30 min. Then, the mixture was quenched with saturated aqueous NaHCO₃ solution (1.0 mL) and saturated aqueous Na₂S₂O₃ solution (1.0 mL). The aqueous layer was extracted with CH₂Cl₂ (3.0 mL × 3), dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash silica gel column chromatography (hexane/EtOAc = 10/1) to afford a mixture of two diastereomers (29 and 29′) as a yellow oil (15.4 mg, 57%, 29:29′ = 4:1, determined by ¹H NMR analysis): R₇ = 0.70 (hexane/EtOAc = 2/1); ¹H NMR (400 MHz, CDCl₃, 4:1 mixture of diastereomers) δ 7.05 (dd, J = 2.3, 10.5 Hz, 0.8 H), 7.00 (dd, J = 2.3, 10.5 Hz, 0.2 H), 6.15 (d, J = 10.5 Hz, 0.2 H), 6.10 (d, J = 10.5 Hz, 0.8 H), 5.91 (d, J = 2.3 Hz, 0.8 H), 5.79 (s, 0.2 H), 4.39 (dd, J = 6.4, 8.2 Hz, 0.8 H), 4.27-4.24 (m, 0.8 H), 4.23-4.10 (m, 0.6 H), 3.95 (d, J = 8.7 Hz, 0.8 H), 2.39-2.31 (m, 0.2 H), 2.29-2.20 (m, 0.8 H), 1.27 (s, 7.2 H), 1.24 (s, 1.8 H), 1.17 (s, 7.2 H), 1.13 (s, 1.8 H), 1.05 (d, J = 6.4 Hz, 3H), 1.01 (d, J = 7.3 Hz, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) for the major isomer 32: δ 195.8, 177.8, 145.1, 140.1, 128.0, 125.7, 88.5, 65.8, 61.8, 40.0, 34.3, 31.7, 28.6, 28.2, 20.2, 17.4 ppm; IR (ATR) ν max: 2961, 2873, 1751, 1608, 1364, 1115, 816, 733, 560 cm⁻¹; HRMS (ESI) [M+Na⁺] calcd for C₂₀H₃₁O₃NNa: 356.2196, found 356.2193.

4-tert-Butyl-2-nitrophenol (30A). To a stirred solution of 4-tert-butylphenol 18 (2.89 g, 19.2 mmol) in CH₂Cl₂ (64 mL) was added SiO₂ (1.93 g), H₂O (1.9 mL), Oxone ® (5.90 g, 9.60 mmol) and NaNO₂ (1.33 g, 19.3 mmol). After stirred for 30 min at room temperature, the reaction mixture was diluted with CH₂Cl₂ (20 mL), filtered through a Celite pad and the residue was washed with CH₂Cl₂ for several times. The combined filtrate was concentrated under reduced pressure, and the residue was purified by silica gel chromatography (hexane/EtOAc = 50/1 to 20/1) to afford 30A (1.67 g, 45%) as a white solid. 4-tert-butylphenol 18 was also recovered (975 mg, 34% recovered). Spectroscopic analyses of 30A were in agreement with previous literature report.²¹

1-Benzylxy-4-tert-butyl-2-nitrobenzene (30B). To a stirred solution of 30A (1.67 g, 8.57 mmol) in acetone (30 mL) were added K₂CO₃ (2.37 g, 17.2 mmol) and benzyl bromide (1.0 mL, 8.59 mmol). The reaction mixture was stirred at reflux temperature for 2 days and then quenched with saturated aqueous NH₄Cl solution (10 mL). The aqueous layer was extracted with Et₂O (10 mL × 3), and the combined organic layer was washed with brine (30 mL × 1), dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by silica gel chromatography (hexane/EtOAc = 20/1) to afford 30B (2.26 g, 93%) as a pale yellow solid: R₇ = 0.50 (hexane/EtOAc = 4/1); ¹H NMR (500 MHz, CDCl₃) δ 7.85 (d, J = 1.8 Hz, 1H), 7.51 (dd, J = 1.8, 8.7 Hz, 1H), 7.47-7.31 (m, 5H), 7.04 (d, J = 8.7 Hz, 1H), 5.22 (s, 2H), 1.31 (s, 9H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 149.8, 144.2, 139.9, 135.9, 131.2, 128.8, 128.2, 127.0, 122.6, 115.0, 71.3, 34.4, 31.3 ppm; IR (ATR) ν max: 2960, 2868, 1619, 1521, 1478, 1254, 1015, 842, 736, 692 cm⁻¹; HRMS (ESI) [M+Na⁺] calcd for C₁₇H₁₉O₃NNa: 308.1257, found 308.125; mp 48.7 °C.
2-Benzylxy-5-tert-butylineline (30). To a stirred solution of 30B (3.14 g, 11.0 mmol) in EtOAc (18 mL) and EtOH (18 mL) was added SnCl2 (5.23 g, 27.6 mmol) and the reaction mixture was stirred at room temperature for 5 h. Then, the mixture was warmed up to 70 °C and stirred at 70 °C for 20 h. After the reaction was complete, the mixture was cooled to 0 °C and quenched with H2O (50 mL). The aqueous layer was extracted with EtOAc (30 mL × 3), and the combined organic layer was washed with brine (100 mL × 1), dried over Na2SO4, and concentrated under reduced pressure. The residue was purified by silica gel chromatography (hexane/EtOAc = 30/1) to afford 30 (1.84 g, 66%) as a yellow solid: Rf = 0.50 (hexane/EtOAc = 4/1); 1H NMR (400 MHz, CDCl3) δ 7.85 (d, J = 2.8 Hz, 1H), 7.51 (dd, J = 2.8, 8.7 Hz, 1H), 7.47-7.30 (m, 5H), 7.04 (d, J = 8.7 Hz, 1H), 5.22 (s, 2H), 1.32 (s, 9H) ppm; 13C NMR (125 MHz, CDCl3) δ 149.8, 144.3, 139.8, 136.0, 131.2, 128.8, 128.2, 127.0, 122.6, 115.0, 71.3, 34.4, 31.3 ppm; IR (ATR) νmax: 2960, 2868, 1619, 1462, 1348, 1264, 1015, 823, 735, 692 cm⁻1; HRMS (ESI) [M+H⁺] calcd for C17H22ON: 256.1696, found 256.169; mp 47.3 °C.

N-2-Benzylxy-5-tert-butyphenyl-4-methylbenzenesulfonamide (31A). To a stirred solution of 30 (981 mg, 3.84 mmol) in CH2Cl2 (20 mL) were added pyridine (1.9 mL, 23.0 mmol) and p-toluenesulfonyl chloride (872 mg, 4.57 mmol) and the reaction mixture was stirred at room temperature for 2.5 h. The mixture was quenched with saturated aqueous NH4Cl solution (10 mL) and the aqueous layer was extracted with CH2Cl2 (20 mL × 3), and the combined organic layer was dried over Na2SO4, and concentrated under reduced pressure. The residue was purified by silica gel chromatography (hexane/EtOAc = 50/1 to 10/1) to afford 31A (1.57 g, 100%) as a white solid: Rf = 0.25 (hexane/EtOAc = 4/1); 1H NMR (400 MHz, CDCl3) δ 7.93 (d, J = 8.7 Hz, 2H), 7.85 (d, J = 2.5 Hz, 1H), 7.50 (dd, J = 2.5 Hz, 8.7 Hz, 1H), 7.47-7.31 (m, 7H), 7.04 (d, J = 8.7 Hz, 1H), 5.22 (s, 2H), 2.50 (s, 3H), 1.31 (s, 9H) ppm; 13C NMR (125 MHz, CDCl3) δ 149.8, 144.3, 139.8, 136.0, 131.2, 128.8, 128.2, 127.0, 122.6, 115.0, 71.3, 34.4, 31.3, 21.9 ppm; IR (ATR) νmax: 3256, 3213, 2949, 2865, 1598, 1330, 1164, 1090, 695, 680, 543 cm⁻1; HRMS (ESI) [M+Na⁺] calcd for C24H27O3NNaS: 432.1604, found 432.1608; mp 88.6 °C.

N-2-Benzylxy-5-tert-butyphenyl-4-methyl-N-(2-oxo-2-phenylethyl)benzenesulfonamide (31B). To a stirred solution of 31A (1.56 g, 3.82 mmol) in acetone (20 mL) were added K2CO3 (797 mg, 5.77 mmol) and phenacyl bromide (798 mg, 4.01 mmol) and the reaction mixture was stirred at room temperature for 30 min. Then, the mixture was warmed up to 50 °C and stirred at 50 °C for 1 h. After the reaction was complete, the mixture was cooled to room temperature and quenched with H2O (20 mL). The aqueous layer was extracted with EtOAc (30 mL × 3), and the combined organic layer was washed with brine (100 mL × 1), dried over Na2SO4, and concentrated under reduced pressure. The residue was purified by silica gel chromatography (hexane/EtOAc = 9/1) to afford 31B (1.92 g, 95%) as a white solid: Rf = 0.25 (hexane/EtOAc = 4/1); 1H NMR (400 MHz, CDCl3) δ 7.88 (dd, J = 1.4, 8.2 Hz, 2H), 7.60-7.52 (m, 3H), 7.14-7.06 (m, 3H), 7.03-6.95 (m, 3H), 6.93 (s, 1H), 6.88 (s, 1H), 6.78 (d, J = 8.2 Hz, 1H), 6.67 (d, J = 1.4 Hz, 1H), 5.21 (s, 2H), 2.50 (s, 3H), 1.31 (s, 9H) ppm; 13C NMR (125 MHz, CDCl3) δ 149.8, 144.3, 139.8, 136.0, 131.2, 130.3, 128.8, 128.2, 127.1, 127.1, 122.6, 115.0, 71.3, 34.4, 31.3, 21.9 ppm; IR (ATR) νmax: 3256, 3213, 2949, 2865, 1598, 1330, 1164, 1090, 695, 680, 543 cm⁻1; HRMS (ESI) [M+Na⁺] calcd for C24H27O3NNaS: 432.1604, found 432.1608; mp 88.6 °C.
7.44-7.30 (m, 5H), 7.27 (d, J = 2.3 Hz, 1H), 7.22-7.17 (m, 3H), 7.13 (d, J = 8.2 Hz, 2H), 6.77 (d, J = 8.7 Hz, 1H), 5.09 (s, 2H), 4.80 (s, 2H), 2.36 (s, 3H), 1.17 (s, 9H) ppm; 13C NMR (125 MHz, CDCl3) δ 194.8, 153.0, 143.8, 143.1, 137.3, 136.7, 135.5, 133.4, 131.5, 129.2, 128.7, 128.5, 128.3, 127.9, 127.1, 126.4, 126.3, 112.2, 70.2, 56.2, 34.1, 31.3, 21.7 ppm; IR (ATR) ν max: 2961, 2868, 1702, 1605, 1328, 1217, 1153, 985, 744, 543 cm⁻¹; HRMS (ESI) [M+Na+] calcd for C32H33O4NNaS: 550.2023, found 550.2012; mp 136.4 °C.

(R*)-N-5-tert-Butyl-2-hydroxyphenyl-N-2-hydroxy-2-phenylethyl-4-methylbenzenesulfonamide (31).

To a stirred solution of 31B (252 mg, 0.477 mmol) in MeOH (4.8 mL) and THF (2.4 mL) was added palladium on activated carbon (25.0 mg, 10 wt%). The suspension was sparged with hydrogen via a balloon and subsequently stirred under hydrogen at room temperature for 20 h. Then, the reaction mixture was sparged with argon to remove excess hydrogen, diluted with EtOAc (5.0 mL), filtered through a Celite pad and the residue was washed with EtOAc for several times. The combined filtrate was concentrated under reduced pressure, and the residue was purified by silica gel chromatography (hexane/EtOAc = 10/1) to afford 31 (170 mg, 81%) as a white solid: Rf = 0.30 (hexane/EtOAc = 2/1); 1H NMR (400 MHz, DMSO-d6) δ 9.26 (br s, 1H, -OH), 7.50-7.20 (m, 9H), 7.11 (d, J = 7.8 Hz, 1H), 6.71 (d, J = 8.7 Hz, 1H), 6.58 (s, 1H), 5.56 (br s, 1H, -OH), 4.60 (br s, 1H), 3.74-3.53 (m, 2H), 2.37 (s, 3H), 1.09 (s, 9H) ppm; 13C NMR (125 MHz, CDCl3) δ 144.2, 143.7, 140.6, 136.1, 129.7, 128.8, 128.4, 128.1, 127.5, 126.2, 124.7, 117.2, 74.4, 70.9, 61.1, 59.0, 34.0, 31.3, 21.7 ppm; IR (ATR) ν max: 3556, 3265, 2951, 2860, 1597, 1506, 1345, 1160, 1047, 812, 556 cm⁻¹; HRMS (ESI) [M+Na+] calcd for C25H29O4NNaS: 462.171, found 462.1703; mp 143.7 °C.

(2R*,5S*)- and (2R*,5R*)-9-tert-Butyl-2-phenyl-4-tosyl-1-oxa-4-azaspiro[4.5]deca-7,9-dien-6-one (32 and 32').

To a stirred solution of 31 (114 mg, 0.258 mmol) in TFE (3.2 mL) and CH2Cl2 (3.2 mL) was added PhI(OAc)2 (93.7 mg, 0.291 mmol) and the reaction mixture was stirred at 0 °C for 30 min. Then, the reaction mixture was quenched with saturated aqueous NaHCO3 solution (3.0 mL) and saturated aqueous Na2S2O3 solution (3.0 mL). The aqueous layer was extracted with CH2Cl2 (15 mL × 3), dried over Na2SO4, and concentrated under reduced pressure. The residue was purified by flash silica gel column chromatography (hexane/EtOAc = 10/1) to afford an inseparable mixture of two diastereomers 32 and 32' (106 mg, 93%, 32:32' = 5:2, determined by 1H NMR analysis) as a yellow solid: Rf = 0.60 (hexane/EtOAc = 2/1); 1H NMR (500 MHz, CDCl3) for 32: δ 7.68 (d, J = 8.2 Hz, 2H), 7.36-7.27 (m, 7H), 7.09 (dd, J = 2.3, 10.1 Hz, 1H), 6.12 (d, J = 10.1 Hz, 1H), 5.83 (d, J = 1.8 Hz, 1H), 5.71 (dd, J = 6.4, 8.7 Hz, 1H), 4.14 (dd, J = 6.4, 8.2 Hz, 1H), 3.42 (dd, J = 8.2, 8.7 Hz, 1H), 2.44 (s, 3H), 1.17 (s, 9H) ppm; for 32': δ 7.64 (d, J = 8.2 Hz, 2H), 7.43-7.39 (m, 2H), 7.35-7.27 (m, 5H), 7.12 (dd, J = 2.3, 10.5 Hz, 1H), 6.09 (d, J = 10.5 Hz, 1H), 6.08 (d, J = 2.3 Hz, 1H), 5.34 (dd, J = 5.5, 9.6 Hz, 1H), 4.06 (dd, J = 5.5, 8.2 Hz, 1H), 3.71 (dd, J = 8.2, 9.6 Hz, 1H), 2.43 (s, 3H), 1.18 (s, 9H) ppm; 13C NMR (125 MHz, CDCl3) for
32: δ 197.2, 146.6, 143.9, 141.1, 137.2, 129.7, 129.0, 128.8, 127.8, 127.5, 126.9, 124.8, 127.8, 127.5, 126.9, 124.8, 86.7, 78.5, 77.3, 53.3, 34.6, 28.2 ppm; for 32': δ 196.6, 145.2, 144.0, 141.8, 136.5, 136.4, 129.6, 129.1, 129.1, 128.7, 127.6, 124.7, 86.0, 80.4, 54.9, 34.5, 28.2, 21.7 ppm; IR (ATR) ν_{max}: 2964, 2872, 1686, 1649, 1597, 1466, 1346, 1156, 1009, 699 cm$^{-1}$; HRMS (ESI) [M+Na$^+$] calcd for C$_{25}$H$_{27}$O$_4$NNaS: 460.1553, found 460.1551.

ACKNOWLEDGEMENTS

We acknowledge supports of the Materials Characterization Central Laboratory, Waseda University, for characterization of new compounds. This work was financially supported in part by the Grant-in-Aid for Scientific Research on Innovative Areas 2707 Middle molecular strategy from MEXT and a Waseda University Grant for Special Research Projects.

REFERENCES AND NOTES

5. For a catalyst-controlled asymmetric synthesis of MOBs, see: M. Uyanik, N. Sasakura, M. Mizuno, and K. Ishihara, ACS Catal., 2017, 7, 872.

