Fan Liu, Wei Han,* and Takeshi Oriyama*

Department of Chemistry, Faculty of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan; E-mail: wei.han.pq39@vc.ibaraki.ac.jp; takeshi.oriyama.sci@vc.ibaraki.ac.jp

Abstract – An efficient, simple, environment-friendly, and low-cost protocol for the hydrophosphonation of isatins using inexpensive and non-toxic MS 4A as a recyclable additive in water has been developed. This protocol is also suitable for the aldol reaction of isatin with acetone or acetophenone.

α-Hydroxyphosphonate derivatives have garnered significant attention for their diverse biological activities such as anticancer, antifungal, antibacterial, anti-inflammatory, and antiviral activities.1–5 These derivatives are widely used in pharmaceutical applications, including enzyme inhibitors of renin,6 EPSP synthase,7 and HIV protease.8 In addition, several studies have reported that α-oxindole-phosphonates could be obtained from α-hydroxyphosphates via the Brook rearrangement reaction in the presence of specific bases (Figure 1).9–12 Furthermore, α-oxindole-phosphonates are also useful synthetic intermediates of α-substituted phosphonyl compounds.13–16 Recently, Miao et al.13 (Scheme 1c) and Guiry et al.14 used α-oxindole-phosphonates as synthetic intermediates to construct tetrabenzohydrofuran spirooxindoles and α-aryl oxindoles, respectively.

Figure 1. α-Hydroxyphosphates and α-oxindole-phosphonates

For the aforementioned reasons, many protocols have been reported for the hydrophosphonation of isatins, such as nano-rod ZnO,17 Amberlyst-15,18 strong organic base (Scheme 1a),9 γ-Fe2O3-immobilized
1,5,7-triazabicyclo[4.4.0]dec-5-ene, PEG-400, Cu catalyst, and n-BuLi. These protocols also resulted in the corresponding product in high yields, but were limited to the use of metal catalysts or strong bases, toxic solvents, heating and sonication conditions, and high cost of reactants.

From the perspective of green chemistry, it is considerable to use water rather than organic solvents. However, to the best of our knowledge, there is only one protocol of the hydrophosphonation of isatins in water using β-CD with heating pretreatment that has been reported (Scheme 1b). Therefore, the hydrophosphonation of isatin with a simpler experimental operation in water requires further research.

Scheme 1. Previous works and this work

On the other hand, molecular sieves (MS) are deemed as good additives not only for their dehydration property and weak basicity for promoting reactions, but also for their inexpensiveness, non-toxicity, and
recyclability. Based on the aforementioned background, in this paper, we wish to report an efficient, simple, environment-friendly, and low-cost protocol for the hydrophosphonation of isatins using inexpensive and non-toxic MS 4A as a recyclable additive in water (Scheme 1d). This protocol is also suitable for the aldol reaction of isatin with acetone or acetylphenone.

Table 1. Optimization of reaction conditions

<table>
<thead>
<tr>
<th>Entry</th>
<th>Additive</th>
<th>Yield%/</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MS 3A (10 mg)</td>
<td>38</td>
</tr>
<tr>
<td>2</td>
<td>MS 4A (10 mg)</td>
<td>49</td>
</tr>
<tr>
<td>3</td>
<td>MS 5A (10 mg)</td>
<td>23</td>
</tr>
<tr>
<td>4</td>
<td>MS 13X (10 mg)</td>
<td>41</td>
</tr>
<tr>
<td>5</td>
<td>NaOH (1 M)</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>none</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>MS 4A (1 mg)</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>MS 4A (5 mg)</td>
<td>35</td>
</tr>
<tr>
<td>9</td>
<td>MS 4A (15 mg)</td>
<td>58</td>
</tr>
<tr>
<td>10</td>
<td>MS 4A (20 mg)</td>
<td>66</td>
</tr>
<tr>
<td>11</td>
<td>MS 4A (25 mg)</td>
<td>83</td>
</tr>
<tr>
<td>12</td>
<td>MS 4A (50 mg)</td>
<td>82</td>
</tr>
<tr>
<td>13</td>
<td>MS 4A (75 mg)</td>
<td>75</td>
</tr>
<tr>
<td>14</td>
<td>MS 4A (100 mg)</td>
<td>74</td>
</tr>
<tr>
<td>15</td>
<td>MS 4A (25 mg)</td>
<td>84</td>
</tr>
<tr>
<td>16</td>
<td>MS 4A (25 mg)</td>
<td>88</td>
</tr>
<tr>
<td>17</td>
<td>MS 4A (25 mg)</td>
<td>100</td>
</tr>
<tr>
<td>18</td>
<td>MS 4A (25 mg)</td>
<td>89</td>
</tr>
</tbody>
</table>

aReaction conditions: 1a (0.1 mmol), 2a (0.15 mmol), and H2O (2 mL) at rt for 30 min. bIsolated yield. c0.12 mmol 2a was used. d1 h. e2 h. fCommercially MS dried up by a heat gun without being powered by a mortar prior to use.

Initially, isatin 1a (0.1 mmol) was reacted with diethyl phosphite 2a (0.15 mmol) in H2O with various MS (Table 1, Entries 1-4). MS 4A resulted in the desired product 3aa in the highest yield compared to other MS (Entry 2). No desired product was obtained when NaOH (1 M) was used as an additive or no additive (Entries 5 and 6). The effect of the amount of MS 4A was also tested, and the yield of product 3aa was improved up to 83% (Entries 7-15). Decrease of diethyl phosphite 2a from 0.15 to 0.12 mmol did not affect the yield of product 3aa (Entry 16). Longer reaction times improved yields (Entries 16-18). Quantitative 3aa was obtained when 0.12 mmol diethyl phosphite 2a was used, and the reaction time was
extended to 2 h (Entry 18). MS without being powdered by a mortar decreased yield to 89% (Entry 19).

Overall, the optimal reaction conditions were determined to be isatin 1 (0.1 mmol), phosphite 2 (0.12 mmol) with MS 4A (25 mg) in water (2 mL) at rt.

\[R^1 \text{N} - \text{O} + \text{H} - \text{PO} - \text{OR}^3 \xrightarrow{\text{MS 4A (25 mg)}} \text{R}^1\text{N} - \text{O} \]

Scheme 2. Substrate scope of isatins and phosphites\(^{a,b}\)

With the optimal reaction conditions in hand, we subsequently investigated the phospha-aldol-Brook rearrangement reaction of isatins 1 with phosphites 2 (Scheme 2). Isatins bearing halogen atoms, such as fluoro-, resulted in the corresponding products in quantitative and excellent yields in a short reaction time, respectively (3ab and 3ae). However, the chloro-atom lowered the dispersibility of isatin in water to afford a 32% yield (3ac). N-Methylisatin and halogen-substituted N-methylisatin resulted in the desired products in high yields (3ad-3af). The aromatic group-substituted phosphite, for instance, diphenyl

\(^{a}\)Reaction conditions: 1 (0.1 mmol), 2 (0.12 mmol), and MS 4A (25 mg) in H\(_2\)O (2 mL) at rt. \(^{b}\)Isolated yield.
phosphite resulted in the desired product in moderate yields (3ag and 3ah). Fortunately, dimethyl phosphite and diisopropyl phosphite also reacted with \(N\)-methylisatin to provide the corresponding products in good to high yields (3ai and 3aj). Poor results were obtained when benzyl-protected and benzyloxycarbonyl-protected isatins were used (3ak and 3al).

\[\text{Scheme 3. Proposed reaction mechanism} \]

Considering previous studies,\(^{28,29}\) the proposed reaction mechanism is shown in Scheme 3. First, diethyl phosphite was deprotonated by MS 4A, which is a weak base to generate intermediate A. Second, the aldol reaction occurred between intermediate A and isatin to generate alkoxide B. Thereafter, the 1,2-phospho-Brook rearrangement reaction proceeded in alkoxide B to yield intermediate C. Finally, product 3aa was obtained after protonation.

\[\text{Scheme 4. MS 4A-promoted aldol reaction of isatin with ketones}^{a,b} \]

\(^{a}\)Reaction conditions: 1 (0.1 mmol), 2 (0.12 mmol), and MS 4A (25 mg) in \(H_2O\) (2 mL) at rt. \(^{b}\)Isolated yield. \(^{c}\)1 mmol 2 was used.
Furthermore, the aldol reaction of isatin with acetone or acetophenone also occurred via this procedure (Scheme 4). Isatin reacted with acetone under the optimized reaction conditions to result in the corresponding product in only 10% yield because of the lack of acetone. An increase in acetone to 10 equivalents afforded the product in 92% yield (3am). The desired product was obtained in 90% yield under the same reaction conditions when 10 equivalents of acetophenone were used (3an).

Finally, we also conducted gram-scale recovery/reuse experiments under the optimized reaction conditions using recycled MS 4A several times (Table 2). Phospho-aldol-Brook rearrangement product 3aa was obtained in 96% yield in the first run (Entry 1). After each reaction, the MS 4A was washed with MeOH and H2O three times. To our satisfaction, the corresponding product 3aa was obtained in excellent yield even after four runs (Entries 2-4).

Table 2. Gram-scale recovery/reuse experiments\(^{a,b}\)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Run</th>
<th>Yield(^c/%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1st</td>
<td>96</td>
</tr>
<tr>
<td>2</td>
<td>2nd</td>
<td>98</td>
</tr>
<tr>
<td>3</td>
<td>3rd</td>
<td>95</td>
</tr>
<tr>
<td>4</td>
<td>4th</td>
<td>93</td>
</tr>
</tbody>
</table>

\(^{a}\)Reaction conditions: 1a (7 mmol), 2a (8.4 mmol), and MS 4A (1 g) in H2O (20 mL) at rt for 2 h. \(^{b}\)The recovered MS 4A was washed with MeOH and H2O. \(^{c}\)Isolated yield.

In conclusion, we developed an efficient, simple, environment-friendly, and low-cost protocol for the hydrophosphonation of isatins using inexpensive and non-toxic MS 4A as a recyclable additive in water. Gram-scale recovery/reuse experiments indicated that large-scale synthesis is possible and that MS 4A can be used as a recyclable additive. This protocol can also be used for the reaction of isatin with acetone or acetophenone. Further investigations for extending reactions in water to the development of green chemistry are currently underway in our laboratory.
EXPERIMENTAL

1H and 13C NMR spectra were recorded in 500 MHz and 125 MHz, respectively, using a Bruker spectrometer. Chemical shifts are expressed in parts per million (δ-value), using TMS as an internal standard. IR spectra were recorded on a Bruker TENSOR 27 spectrometer using KBr discs. MS was powdered by a mortar and dried up by a heat gun prior to use. All reactions were performed under open air condition.

General Procedure for Synthesis of Products 3. In a 30 mL two-necked flask, isatins 1 (0.1 mmol) and phosphites 2 (0.12 mmol), H$_2$O (2 mL) was added in the presence of MS 4A (25 mg). The reaction mixture was stirred at rt. After the reaction, the reaction mixture was extracted with EtOAc (3 × 10 mL). The combined organic layer was washed with water and saturated brine, then dried with Na$_2$SO$_4$. After filtration, the solvents were removed by evaporation under reduced pressure. The residue was purified by thin-layer chromatography (TLC) with hexane/EtOAc = 3/1 to afford the corresponding products 3.

ACKNOWLEDGEMENTS

This work was supported by Grant-in-Aid for Scientific Research (C) (Japan Society for the Promotion of Science KAKENHI Grant Number JP21K05065 to T.O.). F.L. appreciates the Fellowship to Create Materials for Decarbonization based on Quantum Beam Science established by Ministry of Education, Culture, Sports, Science and Technology.

SUPPORTING INFORMATION

Supplementary data associated with this article can be found, in the online version, at URL: https://www.heterocycles.jp/newlibrary/downloads/PDFsi/27427/104/1

REFERENCES

