HYBRID LINKER MODE C₂-SYMMETRICAL 1,3,5-TRIAZINE DERIVATIVES AND THEIR BIOLOGICAL EVALUATION

Shunsuke Shimomura,¹ Kazumi Yokomizo,² Jian-Rong Zhou,² Kaori Ota,¹ Nobuko Mibu,¹ Makoto Furutachi,¹ and Kunihiro Sumoto¹*

¹Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan. ²Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan. E-mail: kunihiro@fukuoka-u.ac.jp

Abstract – We report the preparation of some new multivalent hybrid-type C₂-symmetrical molecules having a methylene linker group and 1,3,5-triazine (TAZ) moieties in the molecule and the results of biological evaluation of their anti-herpes simplex virus type 1 (anti-HSV-1) activity and cytotoxic activity against Vero cells. Some of the mid-sized C₂-symmetrical multivalent hybrid-type molecules (3a) showed considerably high levels of anti-HSV-1 activity (EC₅₀ = 28.8 ~ 32.0 μM) with low levels of cytotoxicity (CC₅₀ = > 200 μM) against Vero cells. Among the tested hybrid-type TAZ derivatives, we reconfirmed that the hybrid-type C₂-symmetrical multivalent molecule (3a-4) is an interesting candidate in the search for new hybrid-type multivalent mid-sized antiviral compounds.

Faced with the possibility of pandemics of viral infections such as COVID-19, the development of new antiviral drugs is needed. Carbohydrate-containing glycoproteins, proteoglycans and glycolipids on the cell surface interact with various factors for virus invasion and propagation to control cell activity for the processes of viral infection.¹-³ Moreover, supramolecular interaction by macromolecules with two-fold (C₂) or three-fold (C₃) geometry is one of the common stages of progression in many crucial biological responses.⁴ To develop new oligovalent symmetrical bioactive molecules, we have designed and synthesized a few new compounds with such molecular geometry and evaluated their bioactivities in order to find new types of bioactive leads.⁶-¹⁷ Application of the isosterism concept for the development of new compounds with enhanced biological activity led to significant advances in medicinal chemistry. The symmetrical 1,3,5-triazine scaffold may increase the level of molecular diversity and allow covering of the chemical space in important areas of medicinal chemistry.¹⁸ In connection with these projects, we have
recently reported the preparation of a few new hybrid-type $C_2$-symmetrical trivalent 1,3,5-triazine (TAZ) derivatives and the results of biological evaluation of the synthesized symmetrical TAZ derivatives.$^{13,17,19}$

Among previously tested symmetrical TAZ molecules, we found that a hybrid-type $C_2$-symmetrical tri-substituted TAZ derivative A ($3a$-$4$) showed a considerably high level of anti-HSV-1 activity ($EC_{50} = 7.6 \mu M$) and a low level of cytotoxic activity ($CC_{50} = > 200 \mu M$) against Vero cells.$^{19}$ Considering TAZ as a promising scaffold$^{5,18}$ for its biological behavior, this non-peptide synthetic multivalent TAZ derivative is considered to be a potential new lead in the search for hybrid-type antiviral active molecules (Figure 1). The carbohydrate recognition property of a few $C_3$-symmetrical TAZ derivatives$^{7,14}$ with high levels of anti-herpes simplex virus type 1 (anti-HSV-1) activity also prompted us to investigate this new $C_2$-symmetrical multivalent TAZ derivative A and related compounds to find a more promising new antiviral candidate.

As a further extension of modification of this hybrid linker mode TAZ derivative A,$^{19}$ we synthesized such multivalent hybrid-type $C_2$-symmetrical TAZ derivatives having longer methylene linker groups. In this paper, we describe the results of evaluation of their anti-HSV-1 activities and the structure-activity relationships (SARs) of these unique multivalent symmetrical TAZ-related derivatives.

![Figure 1. Anti-HSV-1 active hybrid-type $C_2$-symmetrical TAZ derivative (A)](image)

**RESULTS AND DISCUSSION**

For the preparation of various new target mid-sized multivalent hybrid-type TAZ molecules ($3a$ and $3b$), we used a conventional synthetic route consisting of stepwise coupling of intermediate TAZ derivatives ($2a$ and $2b$)$^{13}$ with various diaminoalkanes ($1 \rightarrow 2 \rightarrow 3$, see Scheme 1). The structures of the obtained new hybrid-type $C_2$-symmetrical multivalent TAZ derivatives ($3a$ and $3b$) were established by spectroscopic methods and elemental analysis. Correct molecular ion peaks were observed in high-resolution positive FAB-MS spectra of all TAZ derivatives (3). All $^{13}$C-NMR spectra of the target $C_2$-symmetrical TAZ derivatives showed magnetically equivalent spectroscopic signal patterns, indicating a symmetrical molecular feature in solution. The details of the stepwise preparation of these new $C_2$-symmetrical TAZ derivatives ($3a$ and $3b$) are given in EXPERIMENTAL.
The structures of target hybrid-type $C_2$-symmetrical multivalent TAZ derivatives obtained in this study are shown in Table 1. As can be seen in EXPERIMENTAL, the yields obtained by this procedure with the starting TCTAZ (1) to target new hybrid-type $C_2$-symmetrical trivalent 1,3,5-triazine (TAZ) derivatives (3a-n) were good, and this method for synthesis of hybrid-type TAZ derivatives was reproducible and was reconfirmed to be useful as a general procedure for synthesis of hybrid-type $C_2$-symmetrical multivalent TAZ derivatives. The results of biological evaluation of these hybrid-type derivatives [anti-HSV-1 activity ($EC_{50}$) and cytotoxicity ($CC_{50}$)] together with a previously reported lead compound (A: $n=4$) and the data for aciclovir are also shown in Table 1.

Some of the new linear methylene linker mode multivalent $C_2$-symmetrical TAZ derivatives 3a-6 and 3a-8 in the 3a series showed considerably high levels of anti-HSV-1 activity ($EC_{50} = 28.8 \sim 32.0 \mu M$) with low levels of cytotoxicity ($CC_{50} = > 200 \mu M$) (see Table 1). In contrast, all of the hybrid-type multivalent TAZ derivatives 3b-5 ~ 3b-9 (3b series) having methylenedioxy groups on the phenyl ring in benzyl groups had low levels of cytotoxicity ($CC_{50} = > 200 \mu M$) but did not show anti-HSV-1 activity ($EC_{50} = > 100 \mu M$). It is noteworthy that both of the single-drug type of $C_3$-symmetrical trivalent TAZ derivatives (4a and 4b) corresponding to the fragment structures of 3a and 3b showed considerably high levels of anti-HSV-1 activity ($EC_{50} = 0.98$ and $5.4 \mu M$, respectively).
Through these molecular modification studies, we confirmed that hybrid-type $C_2$-symmetrical multivalent TAZ derivative $3a$-$4$ showed the highest anti-HSV-1 activity, which was slightly less potent than that of aciclovir (see Table 1). We are considering to continue studies for further structural modifications including changes in other new types of linkers and partial structures in the hybrid-type $C_2$-symmetrical multivalent TAZ structure $3a$-$4$.

**Table 1.** Anti-HSV-1 activity ($EC_{50}$) and cytotoxicity ($CC_{50}$) against Vero cells of target hybrid-type TAZ derivatives (3)

<table>
<thead>
<tr>
<th>Compound</th>
<th>n</th>
<th>Structure</th>
<th>EC$_{50}$ ($\mu$M)</th>
<th>CC$_{50}$ ($\mu$M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$3a$-$4$ a)</td>
<td>4</td>
<td><img src="3a.png" alt="Structure" /></td>
<td>7.6</td>
<td>&gt;200</td>
</tr>
<tr>
<td>$3a$-$5$ b)</td>
<td>5</td>
<td><img src="3b.png" alt="Structure" /></td>
<td>&gt;100</td>
<td>&gt;200</td>
</tr>
<tr>
<td>$3a$-$6$</td>
<td>6</td>
<td><img src="3c.png" alt="Structure" /></td>
<td>28.8</td>
<td>&gt;200</td>
</tr>
<tr>
<td>$3a$-$7$</td>
<td>7</td>
<td><img src="3d.png" alt="Structure" /></td>
<td>&gt;100</td>
<td>&gt;200</td>
</tr>
<tr>
<td>$3a$-$8$</td>
<td>8</td>
<td><img src="3e.png" alt="Structure" /></td>
<td>32.0</td>
<td>&gt;200</td>
</tr>
<tr>
<td>$3a$-$9$</td>
<td>9</td>
<td></td>
<td>&gt;100</td>
<td>&gt;200</td>
</tr>
<tr>
<td>$3b$-$5$</td>
<td>5</td>
<td><img src="3f.png" alt="Structure" /></td>
<td>&gt;100</td>
<td>&gt;200</td>
</tr>
<tr>
<td>$3b$-$6$</td>
<td>6</td>
<td><img src="3g.png" alt="Structure" /></td>
<td>&gt;100</td>
<td>&gt;200</td>
</tr>
<tr>
<td>$3b$-$7$</td>
<td>7</td>
<td><img src="3h.png" alt="Structure" /></td>
<td>&gt;100</td>
<td>&gt;200</td>
</tr>
<tr>
<td>$3b$-$8$</td>
<td>8</td>
<td><img src="3i.png" alt="Structure" /></td>
<td>&gt;100</td>
<td>&gt;200</td>
</tr>
<tr>
<td>$3b$-$9$</td>
<td>9</td>
<td></td>
<td>&gt;100</td>
<td>&gt;200</td>
</tr>
<tr>
<td>aciclovir c)</td>
<td></td>
<td></td>
<td>1.1</td>
<td>&gt;444</td>
</tr>
</tbody>
</table>

a) Data were taken from reference 19. b) Data were taken from reference 17. c) Data were taken from reference 21.
EXPERIMENTAL

Melting points were determined using a micro melting point apparatus (Yanaco MP-S3) without correction. IR spectra were measured by a Shimadzu FTIR-8100 IR spectrophotometer. Low- and high-resolution mass spectra (LR-MS and HR-MS) were obtained by a JEOL JMS HX-110 double-focusing model equipped with an FAB ion source interfaced with a JEOL JMA-DA 7000 data system. $^1$H- and $^{13}$C-NMR spectra were obtained by ECG600R. Chemical shifts are expressed in $\delta$ ppm relative to the solvent peaks for $^1$H-NMR [CDCl$_3$ (7.26 ppm), DMSO-$d_6$ (2.50 ppm)] and $^{13}$C-NMR [CDCl$_3$ (77.16 ppm), DMSO-$d_6$ (39.52 ppm)]. The signal assignments were confirmed by two-dimensional (2D)-NMR analyses: $^1$H-$^1$H 2D correlation spectroscopy (COSY), $^1$H-$^{13}$C heteronuclear multiple-quantum coherence (HMQC), and $^1$H-$^{13}$C heteronuclear multiple-bond connectivity (HMBC). Microanalysis was performed with a Yanaco MT-6 CHN corder. Routine monitoring of reactions was carried out using precoated Kieselgel 60F$_{254}$ plates (E. Merck). Detection of products was accomplished with UV light and iodine. Flash column chromatography separations of the reaction products were performed on silica gel with a Biotage Select Two Channel Extended Collection Bed UV Detector. Commercially available starting materials were used without further purification, and dry solvents were used in all reactions. Intermediate di-benzylamino-substituted TAZ derivatives (2a and 2b)$^{13}$ were prepared from TCTAZ (1) and an appropriate benzylamine by a previously reported procedure.$^{13}$ The hybrid-type C$_2$-symmetrical multivalent TAZ derivatives 3a-4 (A) and 3a-5 were prepared by previously reported procedures.$^{17,19}$

Procedure for C$_2$-Symmetrical Multivalent Hybrid-type TAZ Derivatives (Table 1)

**Synthesis of $N^2,N^2'$-(Hexane-1,6-diyil)bis($N^4,N^6$-bis(3,4-dimethoxybenzyl)-1,3,5-triazine-2,4,6-triamine) (3a-6).**

To a solution of intermediate (2a)$^{13}$ (1.110 g, 2.50 mmol) in DMF (2 mL) were added 1,6-diaminohexane (116.2 mg, 1.00 mmol) and K$_2$CO$_3$ (691.0 mg, 5.00 mmol) at room temperature with stirring. The reaction mixture was refluxed in an oil bath for 8 h with stirring. After addition of water (20 mL), the resulting mixture was extracted with CH$_2$Cl$_2$ (20 mL×3). The combined organic layer was washed with brine (20 mL) and dried over MgSO$_4$. After evaporation of the solvent, the residual oil was purified by silica gel column chromatography with CH$_2$Cl$_2$/MeOH as an eluent to give the desired product (3a-6) (742.0 mg, 79% yield) as a yellow solid. Mp 68-73 °C; FAB-MS (positive) $m/z$ 935 (M+H)$^+$. HR-FAB-MS $m/z$ 935.4886 (Calcd for C$_{46}$H$_{63}$N$_{11}$O$_8$: 935.4886). $^1$H-NMR (CDCl$_3$) $\delta$: 1.34 [4H, bs, (Ar-NH-CH$_2$-CH$_2$-CH$_2$-)$_2$ or (Ar-NH-CH$_2$-CH$_2$-CH$_2$-)$_2$], 1.50 [4H, bs, (Ar-NH-CH$_2$-CH$_2$-CH$_2$-)$_2$ or (Ar-NH-CH$_2$-CH$_2$-CH$_2$-)$_2$], 3.33 [4H, s, (Ar-NH-CH$_2$-CH$_2$-CH$_2$-)$_2$], 3.73-3.98 [24H, m, C$_6$H$_3$(OCH$_3$)$_2$], 4.48 (8H, s, Ar-$\text{CH}_2$-NH), 6.67-7.08 (12H, m, Ar H-2, Ar H-5, Ar H-6 in C$_6$H$_3$). $^{13}$C-NMR (CDCl$_3$) $\delta$: 26.6 ([Ar-NH-CH$_2$-CH$_2$-CH$_2$-]$_2$ or (Ar-NH-CH$_2$-CH$_2$-CH$_2$-)$_2$), 29.7 ([Ar-NH-CH$_2$-CH$_2$-CH$_2$-]$_2$ or (Ar-NH-CH$_2$-CH$_2$-CH$_2$-)$_2$), 40.5 ([Ar-NH-CH$_2$-CH$_2$-CH$_2$-]$_2$), 44.7 (Ar-$\text{CH}_2$-NH), 56.0, 56.1 [C$_6$H$_3$(OCH$_3$)$_2$], 111.0 (Ar C-2 or Ar C-5 or Ar C-6 in
C₆H₅), 111.2 (Ar C-2 or Ar C-5 Ar C-6 in C₆H₅), 119.9 (Ar C-2 or Ar C-5 or Ar C-6 in C₆H₅), 132.3 (Ar C-1 or Ar C-3 or Ar C-4 in C₆H₅), 148.3 (Ar C-3 or Ar C-4 in C₆H₅), 149.2 (Ar C-1 or Ar C-3 or Ar C-4 in C₆H₅), 166.2 (C-2, C-4, and C-6 in triazine). Anal. Calcd for C₄₈H₆₂N₁₂O₈·3H₂O: C, 58.29; H, 6.93; N, 16.99. Found: C, 58.26; H, 6.85; N, 17.06.

Synthesis of N²,N²'-(Heptane-1,7-diyl)bis(N⁴,N⁶-bis(3,4-dimethoxybenzyl)-1,3,5-triazine-2,4,6-triamine) (3a-7).

To a solution of intermediate (2a)¹³ (1.110 g, 2.50 mmol) and 1,7-diaminoheptane (130.2 mg, 1.00 mmol) in DMF (2 mL) was added K₂CO₃ (691.0 mg, 5.00 mmol) at room temperature with stirring. The reaction mixture was refluxed in an oil bath for 8 h with stirring. After addition of water (20 mL), the resulting mixture was extracted with CH₂Cl₂ (20 mL×3). The combined organic layer was washed with brine (20 mL) and dried over MgSO₄. After evaporation of the solvent, the residual oil was purified by silica gel column chromatography with CH₂Cl₂/MeOH as an eluent to give the desired product (3a-7) (589.7 mg, 62% yield) as a white solid. Mp 74-82 °C; FAB-MS (positive) m/z 949 (M+H)⁺. HR-FAB-MS m/z 949.5035 (Calcd for C₄₉H₆₉N₁₂O₈⁺: 949.5043). ¹H-NMR (CDCl₃) δ: 1.31 [6H, bs, (Ar-NH-CH₂-CH₂)₂CH₂, (Ar-NH-CH₂-CH₂-CH₂)₂CH₂], 1.50 [4H, bs, (Ar-NH-CH₂-CH₂-CH₂)₂CH₂], 3.34 [4H, s, (Ar-NH-CH₂-CH₂-CH₂)₂CH₂], 3.77-3.90 [24H, m, C₆H₃(OCH₃)₂], 4.49 (8H, s, Ar-CH₂-NH), 6.67-6.95 (12H, m, Ar H-2, Ar H-5, Ar H-6 in C₆H₅). ¹³C-NMR (CDCl₃) δ: 26.9 [(Ar-NH-CH₂-CH₂-CH₂)₂CH₂ or (Ar-NH-CH₂-CH₂-CH₂)₂CH₂], 29.1 [(Ar-NH-CH₂-CH₂-CH₂)₂CH₂ or (Ar-NH-CH₂-CH₂-CH₂)₂CH₂], 29.8 [(Ar-NH-CH₂-CH₂-CH₂)₂CH₂], 40.8 [(Ar-NH-CH₂-CH₂-CH₂)₂CH₂], 44.7 (Ar-C₂H₂-NH), 56.0, 56.1 (C₆H₅(OCH₃)₂), 111.1 (Ar C-2 or Ar C-5 or Ar C-6 in C₆H₅), 111.3 (Ar C-2 or Ar C-5 or Ar C-6 in C₆H₅), 120.0 (Ar C-2 or Ar C-5 or Ar C-6 in C₆H₅), 132.0 (Ar C-1 or Ar C-3 or Ar C-4 in C₆H₅), 148.4 (Ar C-1 or Ar C-3 or Ar C-4 in C₆H₅), 149.2 (Ar C-1 or Ar C-3 or Ar C-4 in C₆H₅), 166.0 (C-2, C-4, and C-6 in triazine). Anal. Calcd for C₄₉H₆₉N₁₂O₈·1.7H₂O: C, 60.07; H, 6.93; N, 17.16. Found: C, 60.08; H, 6.74; N, 17.06.

Synthesis of N²,N²'-(Octane-1,8-diyl)bis(N⁴,N⁶-bis(3,4-dimethoxybenzyl)-1,3,5-triazine-2,4,6-triamine) (3a-8).

To a solution of intermediate (2a)¹³ (1.110 g, 2.50 mmol) in DMF (2 mL) were added 1,8-diaminooctane (144.3 mg, 1.00 mmol) and K₂CO₃ (691.0 mg, 5.00 mmol) at room temperature with stirring. The reaction mixture was refluxed in an oil bath for 8 h with stirring. After addition of water (20 mL), the resulting mixture was extracted with CH₂Cl₂ (20 mL×3). The combined organic layer was washed with brine (20 mL) and dried over MgSO₄. After evaporation of the solvent, the residual oil was purified by silica gel column chromatography with CH₂Cl₂/MeOH as an eluent to give the desired product (3a-8) (716.4 mg, 74% yield) as a yellow solid. Mp 68-83 °C; FAB-MS (positive) m/z 963 (M+H)⁺. HR-FAB-MS m/z 963.5197 (Calcd for C₅₀H₇₀N₁₂O₈⁺: 963.5199). ¹H-NMR (CDCl₃) δ: 1.28 [8H, bs, (Ar-NH-CH₂-CH₂-CH₂-CH₂-)₂ and/or (Ar-NH-CH₂-CH₂-CH₂-CH₂-)₂ and/or (Ar-NH-CH₂-CH₂-CH₂-CH₂-)₂], 1.50 [4H, s, (Ar-NH-
CH₂CH₂CH₂CH₂)₂ or (Ar-NH-CH₂-CH₂-CH₂-CH₂)₂ or (Ar-NH-CH₂-CH₂-CH₂-CH₂)₂, 3.34 [4H, bs, (Ar-NH-CH₂-CH₂-CH₂-CH₂)₂], 3.63-4.02 [24H, m, C₆H₅(OCH₃)₂], 4.50 (8H, s, Ar-NH₂-NH), 6.62-7.11 (12H, m, Ar-H-2, Ar-H-5, Ar-H-6 in C₆H₅). ¹³C-NMR (CDCl₃) δ: 26.8 [(Ar-NH-CH₂-CH₂-CH₂-CH₂)₂ or (Ar-NH-CH₂-CH₂-CH₂-CH₂)₂ or (Ar-NH-CH₂-CH₂-CH₂-CH₂)₂], 29.3 [(Ar-NH-CH₂-CH₂-CH₂-CH₂)₂ or (Ar-NH-CH₂-CH₂-CH₂-CH₂)₂ or (Ar-NH-CH₂-CH₂-CH₂-CH₂)₂ or (Ar-NH-CH₂-CH₂-CH₂-CH₂)₂], 29.9 [(Ar-NH-CH₂-CH₂-CH₂-CH₂)₂ or (Ar-NH-CH₂-CH₂-CH₂-CH₂)₂ or (Ar-NH-CH₂-CH₂-CH₂-CH₂)₂ or (Ar-NH-CH₂-CH₂-CH₂-CH₂)₂], 40.7 [(Ar-NH-CH₂-CH₂-CH₂-CH₂)₂ or (Ar-NH-CH₂-CH₂-CH₂-CH₂)₂ or (Ar-NH-CH₂-CH₂-CH₂-CH₂)₂, 44.7 (Ar-CH₂-NH), 56.0, 56.1 [C₆H₅(OCH₃)₂], 111.1 (Ar-C-2 or Ar-C-5 or Ar-C-6 in C₆H₅), 111.2 (Ar-C-2 or Ar-C-5 or Ar-C-6 in C₆H₅), 120.0 (Ar-C-2 or Ar-C-5 or Ar-C-6 in C₆H₅), 132.1 (Ar-C-1 in C₆H₅), 148.3 (Ar-C-3 or Ar-C-4 in C₆H₅), 149.2 (Ar-C-3 or Ar-C-4 in C₆H₅), 166.3 (C-2, C-4, and C-6 in triazine). Anal. Calcd for C₉₀H₆₆N₁₂O₈•1.7H₂O: C, 60.43; H, 7.04; N, 16.91. Found: C, 60.39; H, 7.11; N, 17.15.

**Synthesis of N³,N³’-(Nonane-1,9-diyl)bis(N⁴,N⁶-bis(3,4-dimethoxybenzyl)-1,3,5-triazine-2,4,6-triamine) (3a-9).**

To a solution of intermediate (2a)¹³ (1.110 g, 2.50 mmol) and 1,9-diaminononane (158.3 mg, 1.00 mmol) in DMF (2 mL) was added K₂CO₃ (691.0 mg, 5.00 mmol) at room temperature with stirring. The reaction mixture was refluxed in an oil bath for 8 h with stirring. After addition of water (20 mL), the resulting mixture was extracted with CH₂Cl₂ (20 mL×3). The combined organic layer was washed with brine (20 mL) and dried over MgSO₄. After evaporation of the solvent, the residual oil was purified by silica gel column chromatography with CH₂Cl₂/MeOH as an eluent to give the desired product (3a-9) (410.4 mg, 42% yield) as a yellow solid. Mp 89-100 °C; FAB-MS (positive) m/z 977 (M+H)⁺. HR-FAB-MS m/z 977.5353 (Calcd for C₅₁H₆₉N₁₂O₈⁺: 977.5356). ¹H-NMR (CDCl₃) δ: 1.26 [(10H, bs, (Ar-NH-CH₂-CH₂-CH₂-CH₂)₂CH₂, (Ar-NH-CH₂-CH₂-CH₂-CH₂)₂CH₂, (Ar-NH-CH₂-CH₂-CH₂-CH₂)₂CH₂, (Ar-NH-CH₂-CH₂-CH₂-CH₂)₂CH₂], 1.51 [4H, s, (Ar-NH-CH₂-CH₂-CH₂-CH₂)₂CH₂], 3.35 [4H, bs, (Ar-NH-CH₂-CH₂-CH₂-CH₂)₂CH₂], 3.62-4.00 [24H, m, C₆H₅(OCH₃)₂], 4.50 (8H, s, Ar-NH₂-NH), 6.61-7.03 (12H, m, Ar-H-2, Ar-H-5, Ar-H-6 in C₆H₅). ¹³C-NMR (CDCl₃) δ: 26.9 [(Ar-NH-CH₂-CH₂-CH₂-CH₂)₂CH₂ or (Ar-NH-CH₂-CH₂-CH₂-CH₂)₂CH₂ or (Ar-NH-CH₂-CH₂-CH₂-CH₂)₂CH₂, 29.2 [(Ar-NH-CH₂-CH₂-CH₂-CH₂)₂CH₂ or (Ar-NH-CH₂-CH₂-CH₂-CH₂)₂CH₂ or (Ar-NH-CH₂-CH₂-CH₂-CH₂)₂CH₂ or (Ar-NH-CH₂-CH₂-CH₂-CH₂)₂CH₂], 29.4 [(Ar-NH-CH₂-CH₂-CH₂-CH₂)₂CH₂ or (Ar-NH-CH₂-CH₂-CH₂-CH₂)₂CH₂ or (Ar-NH-CH₂-CH₂-CH₂-CH₂)₂CH₂ or (Ar-NH-CH₂-CH₂-CH₂-CH₂)₂CH₂], 40.8 [(Ar-NH-CH₂-CH₂-CH₂-CH₂)₂CH₂], 44.7 (Ar-CH₂-NH), 56.0, 56.1 [C₆H₅(OCH₃)₂], 111.1 (Ar-C-2 or Ar-C-5 or Ar-C-6 in C₆H₅), 111.3 (Ar-C-2 or Ar-C-5 or Ar-C-6 in C₆H₅), 120.0 (Ar-C-2 or Ar-C-5 or Ar-C-6 in C₆H₅), 131.8 (Ar-C-1 or Ar-C-3 or Ar-C-4 in C₆H₅), 148.4 (Ar-C-1 or Ar-C-3 or Ar-C-4 in C₆H₅), 149.2 (Ar-C-1 or Ar-C-3 or Ar-C-4 in C₆H₅), 165.8 (C-2, C-4, and C-6 in triazine). Anal. Calcd for C₅₁H₆₉N₁₂O₈: C, 62.69; H, 7.01; N, 17.20. Found: C, 62.67; H, 6.92; N, 17.11.

**Synthesis of N²,N²’-(Pentane-1,5-diyl)bis(N⁴,N⁶-bis(benzo[d][1,3]dioxol-5-ylmethyl)-1,3,5-triazine-2,4,6-triamine) (3b-5).**
To a solution of intermediate (2b)\textsuperscript{13} (1.030 g, 2.50 mmol) in DMF (2 mL) were added 1,5-diaminopentane (117.1 μL, 1.00 mmol) and K\textsubscript{2}CO\textsubscript{3} (691.0 mg, 5.00 mmol) at room temperature with stirring. The reaction mixture was refluxed in an oil bath for 8 h with stirring. After addition of water (20 mL), the resulting mixture was extracted with CH\textsubscript{2}Cl\textsubscript{2} (20 mL×3). The combined organic layer was washed with brine (20 mL) and dried over MgSO\textsubscript{4}. After evaporation of the solvent, the residual oil was purified by silica gel column chromatography with CH\textsubscript{2}Cl\textsubscript{2}/MeOH as an eluent to give the desired product (3b-5) (420.5 mg, 49% yield) as a brown solid. Mp 79-90 °C; FAB-MS (positive) \textit{m}/\textit{z} 857 (M+H)\textsuperscript{+}. HR-FAB-MS \textit{m}/\textit{z} 857.3482 (Calcd for C\textsubscript{43}H\textsubscript{45}N\textsubscript{12}O\textsubscript{8}: 857.3478). \textsuperscript{1}H-NMR (CDCl\textsubscript{3}) \textit{δ}: 1.32 [2H, bs, (Ar-NH-CH\textsubscript{2}-CH\textsubscript{2})\textsubscript{2}CH\textsubscript{2}], 1.49 [4H, bs, (Ar-NH-CH\textsubscript{2}-CH\textsubscript{2})\textsubscript{2}CH\textsubscript{2}], 3.30 [4H, bs, (Ar-NH-CH\textsubscript{2}-CH\textsubscript{2})\textsubscript{2}CH\textsubscript{2}], 4.42 (8H, s, Ar-CH\textsubscript{2}-NH), 5.89 (8H, s, O-CH\textsubscript{2}-O), 6.41-6.98 (12H, m, Ar H-4, Ar H-6, Ar H-7 in C\textsubscript{6}H\textsubscript{3}). \textsuperscript{13}C-NMR (CDCl\textsubscript{3}) \textit{δ}: 24.2 [(Ar-NH-CH\textsubscript{2}-CH\textsubscript{2})\textsubscript{2}CH\textsubscript{2}], 29.6 [(Ar-NH-CH\textsubscript{2}-CH\textsubscript{2})\textsubscript{2}CH\textsubscript{2}], 40.7 [(Ar-NH-CH\textsubscript{2}-CH\textsubscript{2})\textsubscript{2}CH\textsubscript{2}], 44.5 (Ar-CH\textsubscript{2}-NH), 101.0 (O-CH\textsubscript{2}-O), 108.2 (Ar C-4 or Ar C-6 or Ar C-7 in C\textsubscript{6}H\textsubscript{3}), 108.3 (Ar C-4 or Ar C-6 or Ar C-7 in C\textsubscript{6}H\textsubscript{3}), 120.7 (Ar C-4 or Ar C-6 or Ar C-7 in C\textsubscript{6}H\textsubscript{3}), 133.6 (Ar C-5 in C\textsubscript{6}H\textsubscript{3}), 146.7 (Ar C-3a or Ar C-7a in C\textsubscript{6}H\textsubscript{3}), 147.8 (Ar C-3a or Ar C-7a in C\textsubscript{6}H\textsubscript{3}), 166.2 (C-2, C-4, and C-6 in triazine). \textit{Anal.} Calcd for C\textsubscript{43}H\textsubscript{45}N\textsubscript{12}O\textsubscript{8}•1.5H\textsubscript{2}O: C, 58.43; H, 5.36; N, 19.02. Found: C, 58.44; H, 5.44; N, 19.24.

**Synthesis of N\textsuperscript{2},N\textsuperscript{2\textprime}-(Hexane-1,6-diyl)bis(N\textsuperscript{4},N\textsuperscript{6}-bis(benzo[d][1,3]dioxol-5-ylmethyl)-1,3,5-triazine-2,4,6-triamine) (3b-6).**

To a solution of intermediate (2b)\textsuperscript{13} (1.030 g, 2.50 mmol) in DMF (2 mL) were added 1,6-diaminohexane (116.2 mg, 1.00 mmol) and K\textsubscript{2}CO\textsubscript{3} (691.0 mg, 5.00 mmol) at room temperature with stirring. The reaction mixture was refluxed in an oil bath for 8 h with stirring. After addition of water (20 mL), the resulting mixture was extracted with CH\textsubscript{2}Cl\textsubscript{2} (20 mL×3). The combined organic layer was washed with brine (20 mL) and dried over MgSO\textsubscript{4}. After evaporation of the solvent, the residual oil was purified by silica gel column chromatography with CH\textsubscript{2}Cl\textsubscript{2}/MeOH as an eluent to give the desired product (3b-6) (775.0 mg, 89% yield) as a pale yellow solid. Mp 69-79 °C; FAB-MS (positive) \textit{m}/\textit{z} 871 (M+H)\textsuperscript{+}. HR-FAB-MS \textit{m}/\textit{z} 871.3654 (Calcd for C\textsubscript{64}H\textsubscript{47}N\textsubscript{12}O\textsubscript{8}: 871.3634). \textsuperscript{1}H-NMR (CDCl\textsubscript{3}) \textit{δ}: 1.36 [4H, bs, (Ar-NH-CH\textsubscript{2}-CH\textsubscript{2}-CH\textsubscript{2}-CH\textsubscript{2})\textsubscript{2}], 1.54 [4H, s, (Ar-NH-CH\textsubscript{2}-CH\textsubscript{2}-CH\textsubscript{2}-CH\textsubscript{2})\textsubscript{2}], 3.36 [4H, s, (Ar-NH-CH\textsubscript{2}-CH\textsubscript{2}-CH\textsubscript{2}-CH\textsubscript{2})\textsubscript{2}], 4.47 (8H, bs, Ar-CH\textsubscript{2}-NH), 5.92 (8H, s, O-CH\textsubscript{2}-O), 6.54-6.98 (12H, m, Ar H-4, Ar H-6, Ar H-7 in C\textsubscript{6}H\textsubscript{3}). \textsuperscript{13}C-NMR (CDCl\textsubscript{3}) \textit{δ}: 26.6 [(Ar-NH-CH\textsubscript{2}-CH\textsubscript{2}-CH\textsubscript{2})\textsubscript{2}], 29.5 [(Ar-NH-CH\textsubscript{2}-CH\textsubscript{2}-CH\textsubscript{2})\textsubscript{2}], 40.6 [(Ar-NH-CH\textsubscript{2}-CH\textsubscript{2}-CH\textsubscript{2})\textsubscript{2}], 44.6 (Ar-CH\textsubscript{2}-NH), 101.1 (O-CH\textsubscript{2}-O), 108.3 (Ar C-4 or Ar C-6 or Ar C-7 in C\textsubscript{6}H\textsubscript{3}), 108.4 (Ar C-4 or Ar C-6 or Ar C-7 in C\textsubscript{6}H\textsubscript{3}), 120.8 (Ar C-4 or Ar C-6 or Ar C-7 in C\textsubscript{6}H\textsubscript{3}), 133.5 (Ar C-5 in C\textsubscript{6}H\textsubscript{3}), 146.8 (Ar C-3a or Ar C-7a in C\textsubscript{6}H\textsubscript{3}), 147.9 (Ar C-3a or Ar C-7a in C\textsubscript{6}H\textsubscript{3}), 166.2 (C-2, C-4, and C-6 in triazine). \textit{Anal.} Calcd for C\textsubscript{64}H\textsubscript{47}N\textsubscript{12}O\textsubscript{8}•1.7H\textsubscript{2}O: C, 58.62; H, 5.52; N, 18.64. Found: C, 58.64; H, 5.41; N, 18.60.

**Synthesis of N\textsuperscript{2},N\textsuperscript{2\textprime}-(Heptane-1,7-diyl)bis(N\textsuperscript{4},N\textsuperscript{6}-bis(benzo[d][1,3]dioxol-5-ylmethyl)-1,3,5-triazine-2,4,6-triamine) (3b-7).**
To a solution of intermediate (2b)\textsuperscript{13} (1.030 g, 2.50 mmol) in DMF (2 mL) were added 1,7-diaminoheptane (130.2 mg, 1.00 mmol) and K\textsubscript{2}CO\textsubscript{3} (691.0 mg, 5.00 mmol) at room temperature with stirring. The reaction mixture was refluxed in an oil bath for 8 h with stirring. After addition of water (20 mL), the resulting mixture was extracted with CH\textsubscript{2}Cl\textsubscript{2} (20 mLx3). The combined organic layer was washed with brine (20 mL) and dried over MgSO\textsubscript{4}. After evaporation of the solvent, the residual oil was purified by silica gel column chromatography with CH\textsubscript{2}Cl\textsubscript{2}/MeOH as an eluent to give the desired product (3b-7) (668.1 mg, 75% yield) as a pale yellow solid. Mp 59-68 °C; FAB-MS (positive) m/z 885 (M+H)\textsuperscript{+}. HR-FAB-MS m/z 885.3791 (Calcd for C\textsubscript{43}H\textsubscript{49}N\textsubscript{12}O\textsubscript{8}: 885.3791). \textsuperscript{1}H-NMR (CDCl\textsubscript{3}) \( \delta \): 1.29 [6H, bs, (Ar-NH-CH\textsubscript{2}-CH\textsubscript{2}-CH\textsubscript{2})\textsubscript{2}CH\textsubscript{2} and (Ar-NH-CH\textsubscript{2}-CH\textsubscript{2}-CH\textsubscript{2})\textsubscript{2}CH\textsubscript{2} and (Ar-NH-CH\textsubscript{2}-CH\textsubscript{2}-CH\textsubscript{2})\textsubscript{2}CH\textsubscript{2}] 1.49 [4H, bs, (Ar-NH-CH\textsubscript{2}-CH\textsubscript{2}-CH\textsubscript{2})\textsubscript{2}CH\textsubscript{2} or (Ar-NH-CH\textsubscript{2}-CH\textsubscript{2}-CH\textsubscript{2})\textsubscript{2}CH\textsubscript{2}], 3.32 [4H, s, (Ar-NH-CH\textsubscript{2}-CH\textsubscript{2}-CH\textsubscript{2})\textsubscript{2}CH\textsubscript{2}], 4.45 (8H, s, Ar-CH\textsubscript{2}-NH), 5.91 (8H, s, O-CH\textsubscript{2}-O), 6.63-6.92 (12H, m, Ar H-4, Ar H-6, Ar H-7 in C\textsubscript{6}H\textsubscript{3}). \textsuperscript{13}C-NMR (CDCl\textsubscript{3}) \( \delta \): 26.8 [(Ar-NH-CH\textsubscript{2}-CH\textsubscript{2}-CH\textsubscript{2})\textsubscript{2}CH\textsubscript{2} or (Ar-NH-CH\textsubscript{2}-CH\textsubscript{2}-CH\textsubscript{2})\textsubscript{2}CH\textsubscript{2} or (Ar-NH-CH\textsubscript{2}-CH\textsubscript{2}-CH\textsubscript{2})\textsubscript{2}CH\textsubscript{2}], 29.1 [(Ar-NH-CH\textsubscript{2}-CH\textsubscript{2}-CH\textsubscript{2})\textsubscript{2}CH\textsubscript{2} or (Ar-NH-CH\textsubscript{2}-CH\textsubscript{2}-CH\textsubscript{2})\textsubscript{2}CH\textsubscript{2} or (Ar-NH-CH\textsubscript{2}-CH\textsubscript{2}-CH\textsubscript{2})\textsubscript{2}CH\textsubscript{2}], 40.7 [(Ar-NH-CH\textsubscript{2}-CH\textsubscript{2}-CH\textsubscript{2})\textsubscript{2}CH\textsubscript{2} or (Ar-NH-CH\textsubscript{2}-CH\textsubscript{2})\textsubscript{2}CH\textsubscript{2} or (Ar-NH-CH\textsubscript{2}-CH\textsubscript{2}-CH\textsubscript{2})\textsubscript{2}CH\textsubscript{2}], 44.6 (Ar-CH\textsubscript{2}-NH), 101.1 (O-CH\textsubscript{2}-O), 108.3 (Ar C-4 or Ar C-6 or Ar C-7 in C\textsubscript{6}H\textsubscript{3}), 108.4 (Ar C-4 or Ar C-6 or Ar C-7 in C\textsubscript{6}H\textsubscript{3}), 120.9 (Ar C-4 or Ar C-6 or Ar C-7 in C\textsubscript{6}H\textsubscript{3}), 133.3 (Ar C-5 in C\textsubscript{6}H\textsubscript{3}), 146.8 (Ar C-3a or Ar C-7a in C\textsubscript{6}H\textsubscript{3}), 147.9 (Ar C-3a or Ar C-7a in C\textsubscript{6}H\textsubscript{3}), 166.0 (C-2, C-4, and C-6 in triazine). Anal. Calcd for C\textsubscript{45}H\textsubscript{48}N\textsubscript{12}O\textsubscript{8}: 1.4H\textsubscript{2}O: C, 59.38; H, 5.63; N, 18.47. Found: C, 59.37; H, 5.57; N, 18.21.

**Synthesis of \( N\textsuperscript{2},N\textsuperscript{2}'-(\text{Octane}-1,8-diyl)bis(\text{N}^\text{4},\text{N}^\text{6}-\text{bis}(\text{benzo}[d][1,3]dioxol-5-ylmethyl)-1,3,5-triazine-2,4,6-triamine) \) (3b-8).**

To a solution of intermediate (2b)\textsuperscript{13} (1.030 g, 2.50 mmol) in DMF (2 mL) were added 1,8-diaminooctane (144.3 mg, 1.00 mmol) and K\textsubscript{2}CO\textsubscript{3} (691.0 mg, 5.00 mmol) at room temperature with stirring. The reaction mixture was refluxed in an oil bath for 8 h with stirring. After addition of water (20 mL), the resulting mixture was extracted with CH\textsubscript{2}Cl\textsubscript{2} (20 mLx3). The combined organic layer was washed with brine (20 mL) and dried over MgSO\textsubscript{4}. After evaporation of the solvent, the residual oil was purified by silica gel column chromatography with CH\textsubscript{2}Cl\textsubscript{2}/MeOH as an eluent to give the desired product (3b-8) (874.2 mg, 97% yield) as a white solid. Mp 60-68 °C; FAB-MS (positive) m/z 899 (M+H)\textsuperscript{+}. HR-FAB-MS m/z 899.3953 (Calcd for C\textsubscript{46}H\textsubscript{51}N\textsubscript{12}O\textsubscript{8}: 899.3947). \textsuperscript{1}H-NMR (CDCl\textsubscript{3}) \( \delta \): 1.28 [(8H, bs, (Ar-NH-CH\textsubscript{2}-CH\textsubscript{2}-CH\textsubscript{2})\textsubscript{2}CH\textsubscript{2} and/or (Ar-NH-CH\textsubscript{2}-CH\textsubscript{2}-CH\textsubscript{2})\textsubscript{2}CH\textsubscript{2} and/or (Ar-NH-CH\textsubscript{2}-CH\textsubscript{2}-CH\textsubscript{2})\textsubscript{2}CH\textsubscript{2})\textsubscript{2}CH\textsubscript{2} or (Ar-NH-CH\textsubscript{2}-CH\textsubscript{2}-CH\textsubscript{2})\textsubscript{2}CH\textsubscript{2} or (Ar-NH-CH\textsubscript{2}-CH\textsubscript{2}-CH\textsubscript{2})\textsubscript{2}CH\textsubscript{2}], 1.49 [4H, s, (Ar-NH-CH\textsubscript{2}-CH\textsubscript{2}-CH\textsubscript{2})\textsubscript{2}CH\textsubscript{2} or (Ar-NH-CH\textsubscript{2}-CH\textsubscript{2}-CH\textsubscript{2})\textsubscript{2}CH\textsubscript{2} or (Ar-NH-CH\textsubscript{2}-CH\textsubscript{2}-CH\textsubscript{2})\textsubscript{2}CH\textsubscript{2}], 3.33 [4H, bs, (Ar-NH-CH\textsubscript{2}-CH\textsubscript{2}-CH\textsubscript{2})\textsubscript{2}CH\textsubscript{2}], 4.45 (8H, s, Ar-CH\textsubscript{2}-NH), 5.92 (8H, s, O-CH\textsubscript{2}-O), 6.55-6.99 (12H, m, Ar H-4, Ar H-6, Ar H-7 in C\textsubscript{6}H\textsubscript{3}). \textsuperscript{13}C-NMR (CDCl\textsubscript{3}) \( \delta \): 26.8 [(Ar-NH-CH\textsubscript{2}-CH\textsubscript{2}-CH\textsubscript{2})\textsubscript{2}CH\textsubscript{2} or (Ar-NH-CH\textsubscript{2}-CH\textsubscript{2})\textsubscript{2}CH\textsubscript{2} or (Ar-NH-CH\textsubscript{2}-CH\textsubscript{2}-CH\textsubscript{2})\textsubscript{2}CH\textsubscript{2}], 29.2 [(Ar-NH-CH\textsubscript{2}-CH\textsubscript{2}-CH\textsubscript{2})\textsubscript{2}CH\textsubscript{2} or (Ar-NH-CH\textsubscript{2}-CH\textsubscript{2}-CH\textsubscript{2})\textsubscript{2}CH\textsubscript{2} or (Ar-NH-CH\textsubscript{2}-CH\textsubscript{2}-CH\textsubscript{2})\textsubscript{2}CH\textsubscript{2}].
CH₂-CH₂-CH₂-CH₂-)₂ or (Ar-NH-CH₂-CH₂-CH₂-CH₂-)₂], 29.7 [(Ar-NH-CH₂-CH₂-CH₂-CH₂-)₂ or (Ar-NH-CH₂-CH₂-CH₂-CH₂-)₂ or (Ar-NH-CH₂-CH₂-CH₂-CH₂-)₂], 40.7 [(Ar-NH-CH₂-CH₂-CH₂-CH₂-)₂], 44.6 (Ar-CH₂-NH), 101.1 (O-CH₂-O), 108.3 (Ar C-4 or Ar C-6 or Ar C-7 in C₆H₃), 108.4 (Ar C-4 or Ar C-6 or Ar C-7 in C₆H₃), 120.9 (Ar C-4 or Ar C-6 or Ar C-7 in C₆H₃), 123.3 (Ar C-5 in C₆H₃), 146.8 (Ar C-3a or Ar C-7a in C₆H₃), 147.9 (Ar C-3a or Ar C-7a in C₆H₃), 165.6 (C-2, C-4, and C-6 in triazine). Anal. Calcd for C₄₈H₅₀N₁₂O₈•1.4H₂O: C, 59.78; H, 5.76; N, 18.19. Found: C, 59.72; H, 5.50; N, 18.45.

**Synthesis of N²,N²'-(Nonane-1,9-diyl)bis(N⁴,N⁶-bis(benzo[d][1,3]dioxol-5-ylmethyl)-1,3,5-triazine-2,4,6-triamine (3b-9).**

To a solution of intermediate (2b)¹³ (1.030 g, 2.50 mmol) in DMF (2 mL) were added 1,9-diaminononane (158.3 mg, 1.00 mmol) and K₂CO₃ (691.0 mg, 5.00 mmol) at room temperature with stirring. The reaction mixture was refluxed in an oil bath for 8 h with stirring. After addition of water (20 mL), the resulting mixture was extracted with CH₂Cl₂ (20 mL x 3). The combined organic layer was washed with brine (20 mL) and dried over MgSO₄. After evaporation of the solvent, the residual oil was purified by silica gel column chromatography with CH₂Cl₂/MeOH as an eluent to give the desired product (3b-9) (668.9 mg, 73% yield) as a white solid. Mp 63-70 °C; FAB-MS (positive) m/z 913 (M+H)⁺. HR-FAB-MS m/z 913.4119 (Calcd for C₄₇H₅₃N₁₂O₈⁺: 913.4104).¹¹H-NMR (CDCl₃) δ: 1.26 [10H, bs, (Ar-NH-CH₂-CH₂-CH₂-CH₂)₂CH₂ and/or (Ar-NH-CH₂-CH₂-CH₂-CH₂)₂CH₂], 1.50 [4H, bs, (Ar-NH-CH₂-CH₂-CH₂-CH₂)₂CH₂ or (Ar-NH-CH₂-CH₂-CH₂-CH₂)₂CH₂], 3.33 [4H, bs, (Ar-NH-CH₂-CH₂-CH₂-CH₂)₂CH₂], 4.45 (8H, s, Ar-CH₂-NH), 5.91 (8H, s, O-CH₂-O), 6.63-6.95 (12H, m, Ar H-4, Ar H-6, Ar H-7 in C₆H₃).¹³C-NMR (CDCl₃) δ: 26.9 [(Ar-NH-CH₂-CH₂-CH₂-CH₂)₂CH₂ or (Ar-NH-CH₂-CH₂-CH₂-CH₂)₂CH₂ or (Ar-NH-CH₂-CH₂-CH₂-CH₂)₂CH₂ or (Ar-NH-CH₂-CH₂-CH₂-CH₂)₂CH₂ or (Ar-NH-CH₂-CH₂-CH₂-CH₂)₂CH₂ or (Ar-NH-CH₂-CH₂-CH₂-CH₂)₂CH₂], 29.2 [(Ar-NH-CH₂-CH₂-CH₂-CH₂)₂CH₂ or (Ar-NH-CH₂-CH₂-CH₂-CH₂)₂CH₂ or (Ar-NH-CH₂-CH₂-CH₂-CH₂)₂CH₂ or (Ar-NH-CH₂-CH₂-CH₂-CH₂)₂CH₂ or (Ar-NH-CH₂-CH₂-CH₂-CH₂)₂CH₂ or (Ar-NH-CH₂-CH₂-CH₂-CH₂)₂CH₂ or (Ar-NH-CH₂-CH₂-CH₂-CH₂)₂CH₂ or (Ar-NH-CH₂-CH₂-CH₂-CH₂)₂CH₂], 29.8 [(Ar-NH-CH₂-CH₂-CH₂-CH₂)₂CH₂ or (Ar-NH-CH₂-CH₂-CH₂-CH₂)₂CH₂ or (Ar-NH-CH₂-CH₂-CH₂-CH₂)₂CH₂ or (Ar-NH-CH₂-CH₂-CH₂-CH₂)₂CH₂], 40.8 [(Ar-NH-CH₂-CH₂-CH₂-CH₂)₂CH₂ or (Ar-NH-CH₂-CH₂-CH₂-CH₂)₂CH₂], 44.6 (Ar-CH₂-NH), 101.1 (O-CH₂-O), 108.3 (Ar C-4 or Ar C-6 or Ar C-7 in C₆H₃), 108.4 (Ar C-4 or Ar C-6 or Ar C-7 in C₆H₃), 120.9 (Ar C-4 or Ar C-6 or Ar C-7 in C₆H₃), 133.3 (Ar C-5 in C₆H₃), 146.8 (Ar C-3a or Ar C-7a in C₆H₃), 147.9 (Ar C-3a or Ar C-7a in C₆H₃), 165.9 (C-2, C-4, and C-6 in triazine). Anal. Calcd for C₄₇H₅₂N₁₂O₈•1.3H₂O: C, 60.28; H, 5.88; N, 17.95. Found: C, 60.26; H, 5.66; N, 18.04.

**Antiviral Activity Assay and Cytotoxicity**

The anti-HSV-1 activities (EC₅₀) of the synthesized hybrid linker mode C₂-symmetrical TAZ derivatives (3) were measured by using a plaque reduction assay,²⁰ and their cytotoxicity against Vero cells (CC₅₀) was
also evaluated as we described previously. The results are summarized in Table 1 together with data for aciclovir.\textsuperscript{21}

**REFERENCES AND NOTES**


18. Trisubstituted TAZ scaffolds have been applied in the search for many bioactive compounds. For example, see P. Singla, V. Luxami, and K. Paul, *Eur. J. Med. Chem.*, 2015, 102, 39.

