ALICYCLIC ANNULATED TRIAZOLES VERSUS TRIAZINEDIONES BY THE REACTION OF CYCLIC IMIDATES WITH METHYL 2-HYDRAZINYL-2-OXOACETATE

Viacheslav Lysenko, Anton Portiankin, Kostiantyn Nazarenko, Kostiantyn Shvydenko, Tetiana Shvydenko, and Aleksandr Kostyuk*

Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmansk Str. 5, Kyiv 02660, Ukraine. Enamine Ltd, Oleksandra Matrosova Str. 23, Kyiv 01103, Ukraine

Abstract – A simple convenient method for synthesis of esters of annulated triazole-3-carboxylic acids and/or 1,2,4-triazine-5,6-dione derivatives was proposed. Heating cyclic imidates with methyl 2-hydrazinyl-2-oxoacetate afforded either the annulated triazoles or the annulated triazinediones depending on the reaction conditions. Under heating at hydrochloric acid 1,2,4-triazine-5,6-diones were transformed into triazoles.

INTRODUCTION

Over the past decades, fragment-based drug discovery (FBDD) has proved to be a highly successful method in the search for new candidates for generating new chemical leads and drugs.¹⁻⁴ Despite commercial availability of many fragment-like molecules, there is an urgent need to develop and synthesize more new fragments that have small size and apparent simplicity. Recently Rees et al. identified the basic principles that should be considered when designing fragments with optimal chemical properties for FBDD.⁵ Two of them can be singled out that relate directly to the structure of the molecule: a) the presence of polar groups capable of performing key interactions with a biological target (lead-like properties) and b) the increase in their degree of saturation i.e. "three-dimensionality".⁶ These principles can be implemented in partially saturated bicyclic heteroaromatic compounds (PSBH), which combine the well-proven lead-like properties of hydrophilic aromatic heterocycles and the "three-dimensional" nature of their saturated analogs.⁷⁻¹¹ Examples of such scaffolds are alicyclic annulated triazoles. These bicyclic systems are embedded in the structure of many bioactive compounds. A few examples are given in Figure 1. Sitagliptin I is a hypoglycemic drug used to treat type 2 diabetes mellitus.¹² Compound II belongs to γ-secretase modulators as a potential therapeutic agent for treatment of Alzheimer’s disease.¹³,¹⁴ Annulated triazole III
demonstrates excellent selectivity towards the key metabolizing enzyme - 15-hydroxyprostaglandin dehydrogenase (15-PGDH). Bicyclic triazole IV is a part of the structure of biologically active compounds that are regulators of ASK 1 (Figure 1).

Figure 1. Some drugs featuring alicyclic annulated triazoles

A main method for constructing such heterocyclic systems was proposed in the 1950s and is based on the reaction of cyclic imidates V with acid hydrazides (Figure 2).

Figure 2. A main method for synthesis of annulated triazoles

The reaction proceeds in two steps via the formation of cyclic amidrazone VI and its subsequent transformation into annulated triazole VII. Further studies have shown that the reaction conditions that should be applied greatly depend on the size of the saturated cycle of the starting cyclic imidate. Usually, for six-membered and larger cyclic imidates, boiling in alcohol the starting compounds leads to the target triazoles in one step. It is not possible to isolate intermediates VI under these conditions. In the case of five-membered cyclic imidates, under the same conditions only the intermediates VI are formed. More stringent conditions are required to carry out the cyclization. Commonly, it can be accomplished by prolonged refluxing in acetic acid or by disilylation of amidrazones VI followed by cyclization in annulated triazoles VII under acidic conditions. In some cases, the reaction is carried out by boiling the starting compounds in acetic acid. In most cases the need to apply stringent conditions for the cyclization of five-membered amidrazones VI led only to a decrease in the yield of the target triazoles. However, in the case of hydrazides bearing additional functional groups, an alternative reaction can take place. In the literature there are only a few examples of the reactions of cyclic imidates with functionally substituted acid hydrazides. Nevertheless, this approach, on the one hand, makes it possible to obtain 3-functionalized
alicyclic annulated triazoles, and on the other hand, to find new ways of using the well-studied reaction for the synthesis of PSBH.

RESULTS AND DISCUSSION

Therefore, in this work we chose as an object of study the reaction of cyclic imidates with the simplest functionally substituted hydrazide - methyl 2-hydrazinyl-2-oxoacetate 4. It was assumed that either esters of annulated triazole-3-carboxylic acids 3 or 1,2,4-triazine-5,6-dione derivatives 5 can be prepared.

In the literature there is almost no information on such compounds. For example, the synthesis of 5,6,7,8-tetrahydro-1,2,4-triazolo[4,3-a]pyrazine derivative 3, R = R₁ = H, X = NH) was described by reducing the corresponding heteroaromatic bicycle.²⁶ Some 3,4-annulated 1,2,4-triazine-5,6-dione were obtained by a reaction of nitrogen heterocycles bearing hydrazine group with diethyl oxalate.²⁷–²⁹

![Scheme 1](image-url)

Scheme 1. The reaction of cyclic imidates 1 with hydrazide 4

<table>
<thead>
<tr>
<th>Entry</th>
<th>Product</th>
<th>X</th>
<th>R</th>
<th>R₁</th>
<th>MeOH, 60 °C (Method A) in the reaction mixture¹</th>
<th>HOAc, 70 °C (Method B) in the reaction mixture¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>bond</td>
<td>H</td>
<td>H</td>
<td>-</td>
<td>traces</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>bond</td>
<td>OTBDMS</td>
<td>H</td>
<td>-</td>
<td>traces</td>
</tr>
<tr>
<td>3</td>
<td>c</td>
<td>bond</td>
<td>H</td>
<td>CO₂Me</td>
<td>-</td>
<td>traces</td>
</tr>
<tr>
<td>4</td>
<td>d</td>
<td>CH₂</td>
<td>H</td>
<td>H</td>
<td>89.7</td>
<td>traces</td>
</tr>
<tr>
<td>5</td>
<td>e</td>
<td>CH₂</td>
<td>H</td>
<td>CF₃</td>
<td>80.7</td>
<td>traces</td>
</tr>
<tr>
<td>6</td>
<td>f</td>
<td>O</td>
<td>H</td>
<td>H</td>
<td>25.3</td>
<td>traces</td>
</tr>
<tr>
<td>7</td>
<td>g</td>
<td>NBoc</td>
<td>H</td>
<td>H</td>
<td>3.4</td>
<td>96.3</td>
</tr>
<tr>
<td>8</td>
<td>h</td>
<td>(CH₂)₂</td>
<td>H</td>
<td>H</td>
<td>95.3</td>
<td>96.3</td>
</tr>
<tr>
<td>9</td>
<td>i</td>
<td>OCH₂</td>
<td>H</td>
<td>H</td>
<td>92.5</td>
<td>93 (83.1)</td>
</tr>
<tr>
<td>10</td>
<td>j</td>
<td>(CH₂)₃</td>
<td>H</td>
<td>H</td>
<td>89.7</td>
<td>99.3 (94.4)</td>
</tr>
</tbody>
</table>

¹The content was determined by LCMS of the reaction mixture.

²Yield of an isolated product.
For our studies, we selected cyclic imidates with different ring sizes 1a,d-j, featuring substituents 1b,c,e as well as bearing heteroatoms in the ring 1f,g,i. The reaction was carried out in accordance with the standard methods used for the synthesis of triazoles 3. We applied two methods using the following conditions: boiling the reagents in methanol with a 10% excess of a cyclic imidate for 12 hours (Method A) and heating the reagents at the temperature 70 °C in acetic acid (Method B). Thereafter, the solvent was evaporated and the residue was analyzed by LCMS and (or) NMR spectroscopy. The major product was isolated, purified and identified. The results are shown in Table 1. First of all, it should be noted that in none of the cases we were able to isolate the intermediate amidrazone VI, even when the reaction was carried out at room temperature. Applying method A five-membered cyclic imidates 1a-c (entries 1-3) gave 1,2,4-triazinedione derivatives 5a-c almost quantitatively. In acetic acid (method B) the main products remained the same triazinediones 5a-c, but traces of triazoles 3a-c were also found (about 5% according to LCMS data). Seven- and eight-membered cyclic imidates 1h-j gave exclusively triazoles 3h-j regardless of the presence of a heteroatom in the cycle and the reaction conditions (entries 8 - 10) (Table 1, Scheme 1). In the case of six-membered cyclic imidates 1d-g, the result depended on their structure and the reaction conditions. The valerolactam derivative 1d reacted with 4 to give triazole 3d in 90-95% yield depending on the reaction conditions. In both cases (methods A and B), triazinedione 5d was detected in the reaction mixtures by NMR spectroscopy. The presence of a CF₃ substituent at C(5) in 1e led to a sharp increase in the amount of compound 5 in the reaction mixture - 19.3% (method A) and 12.2% (method B). In these cases, we isolated only triazole 3e in an analytically pure form. Replacing a CH₂ group with a heteroatom (entries 6, 7) completely changed the ratio of the products when the reaction had been carried out under by the method A. The amount of triazine-5,6-dione in the reaction mixture increased to 75% for 5f (X = O), and for the case of 5g (X = NBoc) it was formed almost quantitatively. Heating in acetic acid led to the opposite results - the main products were triazoles 3f,g and in the case of the piperazine derivative, a noticeable amount of 5g was observed, as well as decomposition products. Compounds 5f and 5g were easily isolated from the reaction mixture in multi-gram quantities due to their poor solubility in low polar solvents. As can be seen from Table 1, heating in acetic acid promotes the formation of the triazole ring. We tried to shift the reaction towards the formation of pyrrolo[2,1-c]-1,2,4-triazole derivatives by increasing the temperature and the reaction time. However, it turned out that boiling cyclic imidate 1a and compound 4 in acetic acid for 48 hours almost quantitatively gave triazinedione 5a. Like in the case of method B, the amount of triazole 3a, determined by HPLC, in the mixture did not exceed 6 -7%.
At the same time, boiling triazinediones 5a,c,g in concentrated HCl resulted in almost quantitative formation of triazoles 6a,c,g (Scheme 2). It can be assumed that in this case, under the action of aqueous hydrochloric acid, the triazine ring was opened and an intermediate product subsequently cyclized into the thermodynamically more stable triazole. The resulting triazole carboxylic acid was readily decarboxylated affording a triazole hydrochloride salt. A similar transformation was observed earlier for 6,7-dihydro-2H-thiazolo[2,3-c]-2,4,1-triazine-3,4-dione which, when treated with alkali at room temperature, gave 2,6-dihydrothiazolo[2,3-c]-1,2,4-triazole.\(^{30}\) The key role of water in this process is indicated by the fact that when 5a was treated with phosphorus oxychloride under analogous conditions, its recyclization to 6a was not observed. Instead, chloro derivative 8 was formed as a result of the replacement of one of the oxygen atoms with chlorine. The chlorine atom in compound 8 is highly labile, which opens up additional possibilities for further modification of this heterocyclic system.

Summarizing our data, it can be concluded that the reaction of cyclic imidates with methyl 2-hydrazinyl-2-oxoacetate 4 mainly led to more thermodynamically stable triazoles 3. Various structural and electronic factors can hamper the cyclization of amidrazones 2 into the triazoles 3. Due to ring strain ensuing in the formation of the annulated 5+5 bicyclic compounds (entries 1-3), reduced basicity of the saturated cycle (entry 6) or steric hindrances (entries 5, 7) various amount of kinetically controlled compounds 5 was formed as well. In all cases acid catalysis promoted formation of triazole derivatives 3.

Esters 3d-h readily hydrolyzed upon short heating with LiOH hydrate in methanol. The corresponding acids were isolated and identified in multi-gram amounts as lithium salts 11d-h (Scheme 3).
The corresponding free acids turned out to be unstable, and when the salts 7 were treated with inorganic acids, a mixture of products was observed as a result of their decarboxylation, even at room temperature.

We attempted to prepare lithium salt of 5H-6,7-pyrrolo[2,1-c]-1,2,4-triazole-3-carboxylic acid 7a by lithiation of the triazole ring 6a followed by treatment with CO2 (Scheme 4).

As a result, we obtained an inseparable mixture of the starting product 6a and salt 7a. Therefore, a different approach was used to obtain derivatives of 5H-6,7-pyrrolo[2,1-c]-1,2,4-triazole-3-carboxylic acid. Bromination of 6a with elemental bromine in the presence of sodium carbonate gave bromo derivative 9 in a high yield. Subsequent carbonylation of 9 catalyzed by PdCl2(dpff) gave ester 3a in a moderate yield. However, all attempts to hydrolyze 3a to the corresponding carboxylic acid were unsuccessful, since partial decarboxylation proceeded leading to a mixture of compounds 6a and 7a.

Summing up, the reaction of cyclic imidates with methyl 2-hydrazinyl-2-oxoacetate serves as a convenient method for the synthesis of multi-gram amounts of alicyclic annulated triazole carboxylic acids. In the case of five- and six-membered cyclic imidates the reaction can be used for synthesis of 1,2,4-triazine-5,6-diones derivatives. Under acidic conditions the latter can be transformed into triazoles.
EXPERIMENTAL
Solvents were purified and dried by standard methods. Melting points were determined with an electrothermal capillary melting point apparatus. 1H NMR spectra were recorded with Agilent ProPulse 600 spectrometer (at 600 MHz for 1H NMR, 151 MHz for 13C NMR), Bruker 170 Avance 500 spectrometer (at 500 MHz for 1H NMR, 126 MHz for 13C NMR) and Varian Unity Plus 400 spectrometer (at 400 MHz for 1H NMR, 101 MHz for 13C NMR). Chemical shifts are reported in ppm relative to internal tetramethylsilane (TMS; for 1H and 13C). Elemental analyses were performed at the analytical laboratory of Institute of Organic Chemistry, National Academy of Sciences of Ukraine.

Method A:
To a stirred solution of cyclic imidate 1 (279 mmol, 1.1 eq.) in anhydrous MeOH (100 mL) was added methyl 2-hydrazinyl-2-oxoacetate 4 (30 g, 254 mmol.) and the suspension was heated at 60 oC for 12 h.

Method B:
To a stirred solution of cyclic imidate 1 (327 mmol, 1.1 eq.) in acetic acid (100 mL) was added methyl 2-hydrazinyl-2-oxoacetate 4 (35 g, 297 mmol) and the reaction mixture was heated at 70 oC for 12 h. The resulting solution was cooled to room temperature and filtered. Volatiles were evaporated under reduced pressure. The residue was dissolved in CH$_2$Cl$_2$ (350 mL), washed with saturated aqueous solution of K$_2$CO$_3$ (3×70 mL), dried over anhydrous Na$_2$SO$_4$, and concentrated. The crude product was purified by recrystallization from toluene to afford the corresponding triazolo-3-carboxylate 3.

Methyl 6,7-dihydro-5H-pyrrolo[2,1-c][1,2,4]triazole-3-carboxylate (3a). To a solution of 9 (0.5 g, 2.66 mmol) in MeOH (15 mL) was added Pd(dppf)Cl$_2$×CH$_2$Cl$_2$ (0.22 g, 0.27 mmol, 10 mol%) followed by triethylamine (0.8 g, 7.98 mmol, 3 eq.). The resulting mixture was carbonylated under CO atmosphere at 100 oC and 50 Psi and left for 12 h. The reaction mixture was cooled, volatiles were evaporated under reduced pressure. The residue was dissolved in CH$_2$Cl$_2$ (50 mL) and washed with water (10×3 mL). The organic layer was dried over anhydrous Na$_2$SO$_4$ and evaporated under reduced pressure. The obtained purple powder was dissolved in Et$_2$O (10 mL). Impurities were removed by filtration, Et$_2$O was evaporated under reduced pressure to give pale yellow solid, yield 48.1% mp 115 oC. 1H NMR (400 MHz, CDCl$_3$) δ 4.24 (t, $J = 7.2$ Hz, 3H), 3.97 (s, 4H), 3.01 (t, $J = 7.7$ Hz, 3H), 2.80 (p, $J = 7.4$ Hz, 3H).13C NMR (126 MHz, CDCl$_3$) δ 164.99, 158.16, 142.93, 52.88, 45.48, 28.44, 21.40. LCMS (ES-API) $m/z = 168.0$ (M+H)$^+$, 169.0 (M+H)$^+$ Anal. Calcd for C$_7$H$_9$N$_3$O$_2$ (167.17): C 50.30, H 5.43, N 25.14. Found: C 50.42, H 5.45, N 25.08.

Methyl 5,6,7,8-tetrahydro-[1,2,4]triazolo[4,3-a]pyridine-3-carboxylate (3d). Method A. The resulting solution was evaporated under reduced pressure to afford a crude product as a beige solid. It was dissolved in CH$_2$Cl$_2$, washed with saturated aqueous solution of K$_2$CO$_3$, dried over anhydrous Na$_2$SO$_4$. Volatiles were
evaporated, the residue was recrystallized from PhMe to give the target triazolo-3-carboxylate 3d as a white powder. Yield 70.6%, mp 148-150 °C. The compound was prepared by method B as well. Yield 86.7%.

\[^1H \text{NMR (400 MHz, CDCl}_3\text{) } \delta 4.28 (t, J = 6.1 Hz, 2H), 3.94 (s, 3H), 3.00 (t, J = 6.4 Hz, 2H), 2.04 - 1.94 (m, 2H), 1.95 - 1.85 (m, 2H). \]

\[^13C \text{NMR (126 MHz, DMSO-d}_6\text{) } \delta 158.6, 154.4, 144.5, 52.8, 45.3, 22.2, 19.2. \]

Methyl 6-(trifluoromethyl)-5,6,7,8-tetrahydro-[1,2,4]triazolo[4,3-a]pyridine-3-carboxylate (3e). Method A. The resulting solution was evaporated under reduced pressure to afford a crude product as a beige solid. It was dissolved in CH\(_2\)Cl\(_2\), washed with saturated aqueous solution of K\(_2\)CO\(_3\), dried over anhydrous Na\(_2\)SO\(_4\). Volatiles were evaporated; the residue was recrystallized from PhMe to give the target triazolo-

\[^1H \text{NMR (400 MHz, DMSO-d}_6\text{) } \delta 150.8, 144.2, 81.6, 52.8, 44.7, 28.2, 28.1 \]

\[^13C \text{NMR (101 MHz, CDCl}_3\text{) } \delta 158.2, 151.3, 144.2, 125.9 (q, J = 279.0 Hz), 52.9, 43.4, 38.3 (q, J = 28.4 Hz), 20.5, 19.0. \]

\[^19F \text{NMR (376 MHz, DMSO-d}_6\text{) } \delta -72.1. \]

LCMS (ES-API) \(m/z = 250.0 \) (M+H)^+. Anal. Calcd for C\(_9\)H\(_{10}\)F\(_3\)N\(_2\)O\(_2\) (249.19): C 43.38, H 4.04, N 16.86. Found: C 43.48, H 4.09, N 16.79.

Methyl 6,8-dihydro-5H-[1,2,4]triazolo[3,4-c][1,4]oxazine-3-carboxylate (3f). Method B. White crystalline powder. Yield 91.6%, mp 153-155 °C.

\[^1H \text{NMR (400 MHz, DMSO-d}_6\text{) } \delta 4.96 (s, 2H), 4.28 (t, J = 5.3 Hz, 2H), 4.00 (t, J = 5.3 Hz, 2H), 3.90 (s, 3H). \]

\[^13C \text{NMR (151 MHz, DMSO-d}_6\text{) } \delta 158.2, 151.3, 144.7, 63.1, 62.7, 52.9, 45.0. \]

LCMS (ES-API) \(m/z = 184.2 \) (M+H)^+. Anal. Calcd for C\(_7\)H\(_5\)N\(_3\)O\(_3\) (183.17): C 45.90, H 4.95, N 22.94. Found: C 45.83, H 4.91, N 23.02.

7-tert-Butyl 3-methyl 5,6-dihydro-[1,2,4]triazolo[4,3-a]pyrazine-3(7H)-dicarboxylate (3g). Method B. Beige powder, mp 107-110 °C, Yield 52.4%.

\[^1H \text{NMR (400 MHz, DMSO-d}_6\text{) } \delta 4.75 (s, 2H), 4.27 (t, J = 5.5 Hz, 2H), 3.90 (s, 3H), 3.76 (t, J = 5.5 Hz, 2H), 1.43 (s, 9H). \]

\[^13C \text{NMR (151 MHz, CDCl}_3\text{) } \delta 158.0, 153.7, 150.8, 144.2, 81.6, 52.8, 44.7, 28.2, 28.1. \]

LCMS (ES-API) \(m/z = 282.2 \) (M+H)^+. 284.2 (M+H)^+. Anal. Calcd for C\(_{12}\)H\(_{16}\)N\(_4\)O\(_4\) (282.30): C 51.06, H 6.43, N 19.85. Found: C 50.95, H 6.37, N 19.92.

Methyl 6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepine-3-carboxylate (3h). Method A. The resulting solution was evaporated under reduced pressure to afford a crude product as a beige solid. It was dissolved in CH\(_2\)Cl\(_2\), washed with saturated aqueous solution of K\(_2\)CO\(_3\), dried over anhydrous Na\(_2\)SO\(_4\), and concentrated. The residue was recrystallized from PhMe to give the target triazolo-3-carboxylate as a white powder. Yield 84.2%, mp 112-114 °C. Compound 3h was prepared by method B in 92.7% yield.

\[^1H \text{NMR (400 MHz, DMSO-d}_6\text{) } \delta 4.48 (br. s, 2H), 3.88 (s, 3H), 2.98 (br. s, 2H), 1.81 (br. s, 2H), 1.70 (br. s, 2H), 1.60 (br. s, 2H). \]

\[^13C \text{NMR (126 MHz, DMSO-d}_6\text{) } \delta 160.5, 159.0, 145.0, 52.9, 45.7, 30.1, 27.9, 26.1, 25.1. \]
HETEROCYCLES, Vol. 104, No. 4, 2022

Methyl 5,6,8,9-tetrahydro-[1,2,4]triazolo[4,3-d][1,4]oxazepine-3-carboxylate (3i). Method A. The resulting solution was evaporated under reduced pressure to afford a crude product as a beige solid. It was dissolved in CH₂Cl₂, washed with saturated aqueous solution of K₂CO₃, dried over anhydrous Na₂SO₄, and concentrated. The residue was recrystallized from PhMe to give the target triazolo-3-carboxylate 3i as a white powder. Yield 78.5%, mp 153 -155 ºC. Compound 3i was prepared by method B in 83.1% yield.

¹H NMR (400 MHz, CDCl₃) δ 4.78 – 4.74 (m, 2H), 3.98 (s, 3H), 3.92 – 3.84 (m, 4H), 3.34 – 3.26 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 158.9, 158.6, 144.8, 69.8, 67.8, 52.9, 48.6, 30.2. LCMS (ES-API) m/z = 198.2 (M+H)⁺, 199.2 (M+H)⁺. Anal. Calcd for C₉H₁₃N₃O₂ (197.20): C 48.73, H 5.62, N 21.31. Found: C 48.64, H 5.65, N 21.38.

Methyl 5,6,7,8,9,10-hexahydro-[1,2,4]triazolo[4,3-a]azocine-3-carboxylate (3j). Method A. The resulting solution was evaporated under reduced pressure to afford a crude product as a beige solid. It was dissolved in CH₂Cl₂, washed with saturated aqueous solution of K₂CO₃, dried over anhydrous Na₂SO₄, and concentrated. The residue was recrystallized from PhMe to give the target triazolo-3-carboxylate 3j as a white powder. Yield 78.5%, mp 150 -153 ºC. Compound 3j was prepared by method B in 94.4%. ¹H NMR (400 MHz, CDCl₃) δ 4.35 (t, J = 6.1 Hz, 2H), 3.91 (s, 3H), 2.91-2.88(m, 2H), 1.82 – 1.73 (m, 4H), 1.49-1.45 (m, 2H), 1.19-1.14 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 159.3, 158.4, 144.3, 52.6, 43.0, 30.4, 30.0, 25.3, 24.4, 23.2. LCMS (ES-API) m/z = 210 (M+H)⁺. Anal. Calcd For C₁₀H₁₅N₃O₂ (209.25): C 57.40, H 7.23, N 20.08. Found: C 57.51, H 7.18, N 20.15.

7,8-Dihydropyrido[2,1-c][1,2,4]triazine-3,4(2H,6H)-dione (5a). Method A. The resulting solution was reduced in volume to 2/3, filtered off and washed 3 times with Et₂O to give pure triazinedione 5a as a white powder. Yield 84.2%, mp 177-180 ºC. ¹H NMR (400 MHz, DMSO-d₆) δ 12.11 (s, 1H), 3.85 (t, J = 7.2 Hz, 2H), 2.81 (t, J = 7.8 Hz, 2H), 2.14-2.07 (m, 2H). ¹³C NMR (126 MHz, DMSO-d₆) δ 154.9, 154.9, 148.5, 46.6, 28.9, 20.8. LCMS (ES-API) m/z = 154.2 (M+H)⁺, 155.0 (M+H)⁺. Anal. Calcd for C₆H₇N₂O₂ (153.14): C 47.06, H 4.61, N 27.44. Found: C 46.97, H 4.56, N 27.51.

8-((tert-Butyldimethylsilyloxy)-7,8-dihydropyrido[2,1-c][1,2,4]triazine-3,4(2H,6H)-dione (5b). Method A. The resulting solution was evaporated under reduced pressure, triturated with Et₂O, filtered off and washed 3 times with Et₂O to give pure triazinedione 5b as a white powder. Yield 76.8%, mp 165-170 ºC. ¹H NMR (400 MHz, DMSO-d₆) δ 12.29 (s, 1H), 5.03 (t, J = 6.5 Hz, 1H), 3.93-3.90 (m, 1H), 3.76-3.70 (m, 1H), 2.46-2.38 (m, 1H), 2.01-1.93 (m, 1H), 0.88 (s, 9H), 0.12 (d, J = 7.5 Hz, 6H). ¹³C NMR (126 MHz, DMSO-d₆) δ 155.0, 154.6, 148.3, 71.2, 43.2, 31.9, 26.0, 18.3, -4.3, -4.5. LCMS (ES-API) m/z = 284.2 (M+H)⁺. Anal. Calcd for C₁₂H₂₁N₃O₃Si (283.41): C 50.86, H 7.47, N 14.83. Found: C 50.97, H 7.41, N 14.89.
Methyl 3,4-dioxo-2,3,4,6,7,8-hexahydropyrrolo[2,1-c][1,2,4]triazine-7-carboxylate (5c). Method A. The precipitate was collected by filtration, washed 3 times with MeOH and Et₂O to give pure triazinedione 5c as a white solid. Yield 89.6%, mp 175 °C. ¹H NMR (500 MHz, DMSO-d₆) δ 12.17 (s, 1H), 4.12-4.00 (m, 2H), 3.67 (s, 3H), 3.63 – 3.54 (m, 1H), 3.17 – 3.04 (m, 2H). ¹³C NMR (126 MHz, DMSO-d₆) δ 172.5, 154.8, 154.5, 146.7, 52.8, 48.2, 38.4, 31.8. LCMS (ES-API) m/z = 212.0 (M+H)+, 213.0 (M+H)+. Anal. Calcd for C₈H₉N₃O₄ (211.18): C 45.50, H 4.30, N 19.90. Found: C 45.42, H 4.26, N 19.96.

6,7-Dihydro-[1,4]oxazino[3,4-c][1,2,4]triazole-3,4(2H,9H)-dione (5f). Method A. The precipitate was collected by filtration, washed 3 times with MeOH and Et₂O to give pure triazinedione 5f as a white solid. Yield 91.6%, mp 225-227 °C. ¹H NMR (500 MHz, DMSO-d₆) δ 12.29 (s, 1H), 4.44 (s, 2H), 4.01 – 3.89 (m, 2H), 3.70 (t, J = 6.0 Hz, 2H). ¹³C NMR (126 MHz, DMSO-d₆) δ 156.2, 154.5, 139.0, 64.8, 63.6, 41.0. LCMS (ES-API) m/z = 169.9 (M+H)+. Anal. Calcd for C₆H₁₂N₂O₃ (169.14) C 42.61, H 4.17, N 24.84. Found: C 42.70, H 4.21, N 24.77.

tert-Butyl 3,4-dioxo-3,4,6,7-tetrahydro-2H-pyrazino[2,1-c][1,2,4]triazine-8(9H)-carboxylate (5g). Method A. The resulting solution was evaporated to give a little yellow oil. It was triturated with EtOH to give a beige powder. Yield 52.4%, mp 157-159 °C. ¹H NMR (400 MHz, DMSO-d₆) δ 12.26 (s, 1H), 4.30 (s, 2H), 3.94 (s, 2H), 3.56 (s, 2H), 1.42 (s, 9H). ¹³C NMR (151 MHz, DMSO-d₆) δ 161.1, 139.6, 45.9, 27.3, 20.9. LCMS (ES-API) m/z = 269.0 (M+H)+. Anal. Calcd for C₁₁H₁₆N₄O₂ (268.27): C 49.25, H 6.01, N 20.88. Found: C 49.33, H 6.06, N 20.81.

6,7-Dihydro-5H-pyrrrolo[2,1-c][1,2,4]triazole hydrochloride (6a). Compound 3a (2 g, 13.1 mmol) was dissolved in concentrated HCl (50 mL). The reaction mixture was refluxed for 24 h. It was cooled to room temperature and volatiles were evaporated under reduced pressure. The residue was the target salt 6 as a white powder 1.89 g. Yield 99%, mp 187-190°C. ¹H NMR (400 MHz, DMSO-d₆) δ 13.30 (br. s, 1H), 9.65 (s, 1H), 4.27 (t, J = 7.3 Hz, 2H), 3.10 (t, J = 7.6 Hz, 2H), 2.72 (p, J = 7.5 Hz, 2H). ¹³C NMR (126 MHz, DMSO-d₆) δ 161.6, 139.6, 45.9, 27.3, 20.9. LCMS (ES-API) m/z = 110.2 (M+H)+. Anal. Calcd for C₅H₈ClN₃ (145.59): C 41.25, H 5.54, N 28.86. Found: C 41.18, H 5.58, N 28.78.

6,7-Dihydro-5H-pyrrrolo[2,1-c][1,2,4]triazole-6-carboxylic acid hydrochloride (6e). White solid, yield 95.2%, mp = 193-195 °C. ¹H NMR (400 MHz, DMSO-d₆) δ 10.76 (s, 2H), 9.63 (s, 1H), 4.54 (dd, J = 11.8, 9.1 Hz, 1H), 4.43 (dd, J = 11.7, 6.4 Hz, 1H), 4.19-4.12 (m, 1H), 3.42 (dd, J = 17.2, 9.6 Hz, 1H), 3.30 (dd, J = 17.1, 6.6 Hz, 1H). ¹³C NMR (126 MHz, DMSO-d₆) δ 172.2, 160.1, 139.7, 47.8, 45.5, 24.5. LCMS (ES-API) m/z = 154.2 (M+H)+, 155.1 (M+H)+. Anal. Calcd for C₅H₈ClN₃O₂ (189.60): C 38.01, H 4.25, N 22.16. Found: C 37.93, H 4.21, N 22.24.

5,6,7,8-Tetrahydro-[1,2,4]pyrazino[4,3-a]pyrimidine dihydrochloride (6g). Beige powder, yield 93.1%, mp 132-133 °C. ¹H NMR (400 MHz, D₂O) δ 4.04 (s, 2H), 3.51-3.48 (m, 2H), 3.43-3.40 (m, 2H). ¹³C NMR (151
MHZ, D$_2$O δ 168.51, 162.58, 47.72, 43.96, 35.36. LCMS (ES-API) $m/z = 125.2$ (M+H)$^+$, 126.0 (M+H)$^+$. Anal. Calcd for C$_3$H$_{10}$Cl$_2$N$_4$ (197.07): C 30.47, H 5.11, N 28.43. Found: C 30.56, H 5.06, N 28.35.

General procedure for the preparation of lithium salts 7d,f,g,h.

To a stirred solution of methyl ester 3 (0.95 eq.) in MeOH (150 mL) was added lithium hydroxide (1 eq.). The reaction mixture was heated at 60 °C for 12 h. It was allowed to cool to room temperature. The reaction mixture was filtered off. The solvent was evaporated till dryness under reduced pressure. The residue was dissolved in boiling acetone (50 mL). The hot solution was filtered to remove admixtures. The solution was cooled to room temperature to give a white solid that was collected by filtration.

Lithium 5,6,7,8-tetrahydro-[1,2,4]triazolo[4,3-a]pyridine-3-carboxylate (7d). White solid, yield 91.1%, mp 156 °C. 1H NMR (500 MHz, D$_2$O) δ 4.12 (t, $J = 5.1$ Hz, 2H), 2.79 (t, $J = 5.2$ Hz, 2H), 1.89 – 1.80 (m, 2H), 1.80 – 1.72 (m, 4H). 13C NMR (126 MHz, D$_2$O) δ 163.0, 154.1, 149.8, 44.9, 21.6, 21.3, 18.4. LCMS (ES-API) $m/z = 168.2$ (M+H)$^+$. Anal. Calcd for C$_7$H$_8$LiN$_3$O$_2$ (173.10): C 48.57, H 4.66, N 24.28. Found: C 48.48, H 4.70, N 24.22.

Lithium 6,8-dihydro-5H-[1,2,4]triazolo[3,4-c][1,4]oxazine-3-carboxylate (7f). White solid, yield 84.1%, mp 238-240 °C. 1H NMR (500 MHz, D$_2$O) δ 4.92 (t, $J = 4.9$ Hz, 2H), 4.29 (t, $J = 4.7$ Hz, 2H), 4.04 (t, $J = 4.5$ Hz, 2H). 13C NMR (126 MHz, D$_2$O) δ 162.2, 150.0, 149.6, 63.2, 62.2, 44.4. LCMS (ES-API) $m/z = 170$ (M+H)$^+$. Anal. Calcd for C$_8$H$_{10}$LiN$_3$O$_3$ (175.07): C 41.16, H 3.45, N 24.00. Found: C 41.24, H 3.48, N 23.92.

Lithium 7-(tert-butoxycarbonyl)-5,6,7,8-tetrahydro-[1,2,4]triazolo[4,3-a]pyrazine-3-carboxylate (7g). White solid, yield 69.7%, mp 172 °C. 1H NMR (500 MHz, D$_2$O) δ 4.80 (s, 2H), 4.34 (t, $J = 5.3$ Hz, 2H), 3.84 (s, 2H), 1.43 (s, 9H). 13C NMR (126 MHz, D$_2$O) δ 162.3, 155.7, 149.9, 149.8, 82.7, 44.4, 27.5. LCMS (ES-API) $m/z = 225.2$ (M+H)$^+$, 227.2 (M+H)$^+$. Anal. Calcd for C$_{11}$H$_{13}$LiN$_4$O$_4$ (274.21): C 48.18, H 5.51, N 20.43. Found: C 48.27, H 5.57, N 20.36.

Lithium 6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepine-3-carboxylate (7h). White solid, yield 89.5%, mp 160-162 °C. 1H NMR (500 MHz, D$_2$O) δ 4.43-4.41 (m, 2H), 2.97-2.95 (m, 2H), 1.88-1.84 (m, 2H), 1.77-1.73 (m, 2H), 1.69-1.65 (m, 2H). 13C NMR (126 MHz, D$_2$O) δ 163.1, 159.4, 150.9, 45.5, 29.3, 27.1, 25.2, 24.1. LCMS (ES-API) $m/z = 138.2$ (M+H)$^+$, 139.2 (M+H)$^+$. Anal. Calcd for C$_8$H$_{10}$LiN$_3$O$_2$ (187.13): C 51.35, H 5.39, N 22.46. Found: C 51.43, H 5.43, N 22.39.

3-Chloro-7,8-dihydropyrrolo[2,1-c][1,2,4]triazin-3,4-dione (8). To 2,6,7,8-tetrahydropyrrolo[2,1-c][1,2,4]triazine-3,4-dione (10 g, 65.4 mmol) was added phosphorus oxychloride (100 mL), the mixture was heated at 100 °C for 2 h. Then phosphorus oxychloride was evaporated under reduced pressure, residue was frozen by liquid nitrogen and added to potassium carbonate with ice. The mixture was extracted with CH$_2$Cl$_2$ (3×100 mL). The combined organic layers were dried over Na$_2$SO$_4$. The solvent was evaporated under reduced pressure to provide the title compound (6 g). Brown powder, yield = 53.5%, mp 125-136 °C. 1H NMR (400 MHz, CDCl$_3$) δ 4.16 (t, $J = 8$ Hz, 2H), 3.22 (t, $J = 8.0$ Hz, 2H), 2.32 (p, $J = 7.8$ Hz,
13C NMR (126 MHz, CDCl$_3$) δ 161.01, 152.08, 149.11, 48.13, 30.69, 19.77. LCMS (ES-API) $m/z = 172.0$ (M+H$^+$), 174.0 (M+H$^+$), 175.0 (M+H$^+$). Anal. Calcd for C$_6$H$_6$ClN$_3$O (171.59): C 42.00, H 3.52, Cl 20.66, N 24.49. Found: C 42.11, H 3.48, Cl 20.74, N 24.57.

3-Bromo-6,7-dihydro-5H-pyrrolo[2,1-c][1,2,4]triazole (9). 6,7-Dihydro-5H-pyrrolo[2,1-c][1,2,4]triazole hydrochloride (5 g, 34.3 mmol) was suspended in CH$_2$Cl$_2$ (40 mL), few drops of water and K$_2$CO$_3$ (until basic pH) was added. Solid residue was removed by filtration, the filtrate was dried over Na$_2$SO$_4$ and the solvent was evaporated under reduced pressure to give free base of the title compound as a white solid. 6,7-Dihydro-5H-pyrrolo[2,1-c][1,2,4]triazole (3.65 g, 33.4 mmol) was dissolved in CH$_2$Cl$_2$ (100 mL) and Na$_2$CO$_3$ (5.32 g, 1.5 eq.) was added. The mixture was cooled to 0℃ and bromine (5.61 g, 1.05 eq.) was added. The reaction mixture was stirred overnight at room temperature; water (50 mL) was added. The organic layer was separated and washed with water (3×50 mL), dried over Na$_2$SO$_4$ and evaporated under reduced pressure to give compound 9. Orange solid, 84.3% yield, mp 107℃. 1H NMR (400 MHz, DMSO-d$_6$) δ 3.94 (t, $J = 7.2$ Hz, 1H), 2.91 (t, $J = 7.6$ Hz, 1H), 2.66 (p, $J = 7.3$ Hz, 1H). 13C NMR (151 MHz, DMSO-d$_6$) δ 164.45, 122.72, 43.40, 29.51, 27.42, 21.31. MS-EL: m/z 187 (100%), 133 (10%), 80 (35%), 53 (50%), 39 (12%). Anal. Calcd for C$_5$H$_6$BrN$_3$ (188.03): C 31.94, H 3.22, N 22.35. Found: C 31.86, H 3.17, N 22.27.

REFERENCES AND NOTES

