RUTHENIUM(II)-CATALYZED ortho HYDROXYMETHYLATION OF 6-ARYLPURINES WITH PARAFORMALDEHYDE VIA PURINE-DIRECTED C-H ACTIVATION

Jiaqi Jiang,1,2† Junli Yang,1,2† Siqi Li,2† Yaxi Yang,2,4* and Bing Zhou1,2,3,4,5*

1 School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China.
2 State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
3 University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China.
4 School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China.
5 Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China.
† These authors contributed equally.
E-mail addresses: yangyaxi@simm.ac.cn (Y. Yang); zhoubing@simm.ac.cn (B. Zhou)

Abstract – A Ru-catalyzed ortho C-H hydroxymethylation of 6-arylpurines has been developed. A wide range of functional groups were tolerated, providing the hydroxymethylated products in good or excellent yields using the readily available paraformaldehyde as a C1 synthon. Moreover, this protocol could be carried out in the presence of water and air, without stoichiometric undesirable waste under mild reaction conditions.

INTRODUCTION

Purine motif is a unique N-heterocycle structure in biochemistry and medicinal chemistry, due to the wide existence in pharmaceuticals, bioactive compounds and natural products. Particularly, 6-arylpurines and analogues displayed potential antitumor,1-7 antibacterial,8 antivirus (anti-HCV,9-15 anti-HIV16,17) and anti-
inflammatory18-20 activities (Figure 1). Therefore, the development of efficient method to access various 6-arylpurines is highly desirable.

![Related biologically active 6-arylpurine derivatives](image)

Figure 1. Related biologically active 6-arylpurine derivatives

Although purine derivatives and purine nucleoside analogues could be obtained via multiple steps,3-6,8,21 the development of methods for direct late-stage modifications of 6-arylpurines provide an alternative protocol to access a series of 6-arylpurines efficiently. In the past decades, transition-metal catalyzed C-H functionalization of 6-arylpurines have been widely developed (Scheme 1a). Initially, Guo22 and Lakshman23 groups reported Pd- and Ru-catalyzed direct \textit{ortho} arylation of 6-arylpurines and 6-arylpurine nucleosides, respectively. Subsequently, Pd-catalyzed \textit{ortho} C-H monoacetoxylation or bisacetoxylation of 6-arylpurines and 6-arylpurine nucleosides using PhI(OAc)\textsubscript{2} as oxidant was developed by Guo24 and Lakshman25 groups. Moreover, Chang26,27 and Jiao28 reported Rh- or Co-catalyzed \textit{ortho} direct C-H amidation of arenes using sulfonyl azides, acetoxycarbamates or 1,4,2-dioxazol-5-ones as the amino source. The Rh-catalyzed direct \textit{ortho} C-H amination was also developed29,30 by employing organic azides or anthranil as the amination reagent. Co-Catalyzed \textit{ortho} C-H allylation and alkenylation were reported by Matsunaga31 and Yu32 Chang,33 Jiao34 and Matsunaga35 developed \textit{ortho} C-H cyanation, acylation and trifluoromethylthiolation, respectively. Recently, Guo36 developed a monoselective \textit{ortho} arylation of 6-arylpurines, and then Qin37 accessed \textit{ortho} nitration products by a Pd(II)-catalyzed functionalization. In
addition, Osipov38 developed a method for C-H alkylation of 6-arylpurines installing the CF\textsubscript{3} and carboxylate functional groups, and Lin39 developed a Rh-catalyzed alkenylation of 6-arylpurines. Very recently, Xu40 used sulfoxonium ylides as carbene precursors to developed a C-H acylmethylation of 6-arylpurines.

On the other hand, hydroxymethylated compounds are highly attracktable products in materials, pharmaceuticals and organic synthesis. Paraformaldehyde is a common source of C1 synthon, which is cheap, maneuverable, and tractable.41 In 2015, Krische42 group reported the transition-metal catalyzed hydromethylation of allenes, 1,3-dienes and alkynes. Lately, our group43 and the group of Ding44 found that hydroxymethyl group could be readily installed via a C-H functionalization with paraformaldehyde using pyridine as a directing group. Subsequently, Zhou45, Kim46 and Shankaraiah47 reported Ru-catalyzed ortho C-H hydroxymethylation employing indolines, β-carbolines and isoquinolines as directing groups, respectively. Recently, Loh48 and Chen49 successful developed the C-H hydroxymethylation of indoles and isoprenes via Co-catalyzed reactions (Scheme 1b).

![Scheme 1](image)

Scheme 1. Transition-metal-catalyzed ortho C-H functionalizations of 6-arylpurines

With our continuing interest in the sustainable organic synthesis, especially, C-H hydroxymethylation procedure,43,45,50 we herein report the first ruthenium(II)-catalyzed ortho hydroxymethylation of 6-arylpurines with paraformaldehyde as the coupling partner (Scheme 1c). Notably, this catalytic reaction could be carried out under mild reaction conditions, providing excellent chemical yields with good functional group tolerance.
RESULTS AND DISCUSSION

Our investigation started with 9-isopropyl-6-phenyl-9H-purine (1a) and paraformaldehyde (2a) as model substrate. When using [RuCl₂(p-cymene)]₂ as catalyst and Zn(OTf)₂ as additive, the desired hydroxymethylated product 3a was obtained in 55% yield (Table 1, entry 1). The structure of 3a was confirmed by an X-ray crystallographic analysis (CCDC 1995350). The use of Zn(OAc)₂ significantly increased the yield of 3a to 80% (entry 3). Through screening the solvent (entries 3-9), we found that TFE was the optimal choice (entry 6), giving 3a in 89% yield. Next, we investigated several acetate as additive (entries 10-11), and the yield of 3a was further improved up to 95% when using NaOAc as the additive (entry 10). To our delight, the loading of catalyst could be further reduced to 2.5 mol% (entry 12). 3a was obtained in less than 5% yield in the absence of NaOAc (entry 13), suggesting that NaOAc was crucial in this reaction. Notably, the reaction proceeded smoothly in water, providing 3a in 80% yield (entry 14).

Table 1. Optimization of reaction conditions

<table>
<thead>
<tr>
<th>entry</th>
<th>catalyst</th>
<th>additive</th>
<th>solvent</th>
<th>yield 3a (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>[Ru(p-cymene)Cl₂]₂</td>
<td>Zn(OTf)₂</td>
<td>DCE</td>
<td>55</td>
</tr>
<tr>
<td>2</td>
<td>[Ru(p-cymene)Cl₂]₂</td>
<td>Zn(TFA)₂</td>
<td>DCE</td>
<td>77</td>
</tr>
<tr>
<td>3</td>
<td>[Ru(p-cymene)Cl₂]₂</td>
<td>Zn(OAc)₂</td>
<td>DCE</td>
<td>80</td>
</tr>
<tr>
<td>4</td>
<td>[Ru(p-cymene)Cl₂]₂</td>
<td>Zn(OAc)₂</td>
<td>MeOH</td>
<td>56</td>
</tr>
<tr>
<td>5</td>
<td>[Ru(p-cymene)Cl₂]₂</td>
<td>Zn(OAc)₂</td>
<td>toluene</td>
<td>15</td>
</tr>
<tr>
<td>6</td>
<td>[Ru(p-cymene)Cl₂]₂</td>
<td>Zn(OAc)₂</td>
<td>TFE</td>
<td>89</td>
</tr>
<tr>
<td>7</td>
<td>[Ru(p-cymene)Cl₂]₂</td>
<td>Zn(OAc)₂</td>
<td>DMF</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>[Ru(p-cymene)Cl₂]₂</td>
<td>Zn(OAc)₂</td>
<td>MeCN</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>[Ru(p-cymene)Cl₂]₂</td>
<td>Zn(OAc)₂</td>
<td>HFIP</td>
<td>58</td>
</tr>
<tr>
<td>10</td>
<td>[Ru(p-cymene)Cl₂]₂</td>
<td>NaOAc</td>
<td>TFE</td>
<td>95</td>
</tr>
<tr>
<td>11</td>
<td>[Ru(p-cymene)Cl₂]₂</td>
<td>CsOAc</td>
<td>TFE</td>
<td>8</td>
</tr>
<tr>
<td>12*</td>
<td>[Ru(p-cymene)Cl₂]₂</td>
<td>NaOAc</td>
<td>TFE</td>
<td>95</td>
</tr>
<tr>
<td>13</td>
<td>[Ru(p-cymene)Cl₂]₂</td>
<td>NaOAc</td>
<td>TFE</td>
<td><5</td>
</tr>
<tr>
<td>14</td>
<td>[Ru(p-cymene)Cl₂]₂</td>
<td>NaOAc</td>
<td>H₂O</td>
<td>80*</td>
</tr>
</tbody>
</table>

*Conditions: 1a (0.2 mmol), 2a (3 equiv.), catalysts (5 mol%), and additive (30 mol%) in the solvent (2 mL) at 60 °C for 8 h in a round bottom flask. *Isolated yield. *The loading of catalyst [Ru(p-cymene)Cl₂]₂ was decreased to 2.5 mol%. *The reaction was performed for 24 h.
With the optimized conditions in hand, the substrate scope was next investigated (Scheme 2). Electron-rich arylpurines reacted with paraformaldehyde smoothly to give the corresponding ortho hydroxymethylated products 3b-c, 3f, 3i-k, and 3p-q in good to excellent yields.

Scheme 2. Scope of substituted arylpurines. Reaction conditions: 1a-r (0.2 mmol), 2a (3 equiv.), catalysts (2.5 mol%), additive (30 mol%) in TFE (2 mL) at 60 °C for 8 h in a round bottom flask.
Among them, the alkyl substituted arylpurines afforded the desired products 3b, 3f, 3i, 3j, 3q in more than 90% yields. Electron-deficient arylpurines also provided the products 3d, 3g-h, and 3m-o in good yield, except the nitro substituted arylpurine 3e. For meta-substituted substrates, the C-H hydroxymethylation reaction showed excellent regioselectivity in favor of the sterically more accessible C-H bond (3f and 3l) and electron-deficient fluorine substitution resulted in opposite regioselectivity (3o). Evidently, Shankaraiah et al. have also reported the similar directing effect. To our delight, the functional groups such as ester (3d), nitrile (3e), halogen (3l and 3m), amide (3p) and even aldehyde (3h) were all nicely tolerated, enabling further functionalization. Unfortunately, when furan-substituted purine (3r) was used, no desired product was observed.

Subsequently, various N-substituted arylpurines were explored under the standard conditions (Scheme 3). N-Benzyl, N-methyl, N-cyclopentyl, and N-butyl-6-arylpurines (3t-w) were also productive substrates. 2-Chloro-9-isopropyl-6-phenylpurine also provided the corresponding product 3s in 43% yield, enabling further functionalization. Notably, purine nucleoside analog effectively underwent this C-H hydroxymethylation reaction to give the corresponding product 3x in good yield (89%), suggesting that this reaction might possess potential values in the field of purine nucleoside drug research.

![Scheme 3. Scope of N-substituted purines.](image)

Scheme 3. Scope of N-substituted purines. Reaction conditions: 1s-x (0.2 mmol), 2a (3 equiv.), catalysts (2.5 mol%), additive (30 mol%) in TFE (2 mL) at 60 °C for 8 h in a round bottom flask.
For further demonstration of the synthetic utility of this methodology, several reactions were performed (Scheme 4). This reaction could be readily scaled up with comparable efficiency on a gram scale (Scheme 4a). Acid 4a could be obtained in moderate yield and the amine 4b could be obtained through oxidation/reductive amination reaction in moderate yield (Scheme 4b).

Scheme 4. Gram scale reaction and applications

To gain more insights into the details of reaction mechanism, a series of control experiments were investigated. Substrates 5a and 5b were investigated in the standard conditions (Scheme 5a). Only substrates 5b afforded the corresponding product 6b in 90% yield, indicating that N1 is important for this reaction. H/D exchange experiments were performed in the presence of co-solvent D$_2$O (Scheme 5b). The ortho H/D exchange was observed in the isolated starting materials, indicating that the ortho C-H functionalization is reversible. The competitive experiment was performed between 1c and 1d, and the 1H NMR analysis revealed that the ratio of 3c and 3d was 2.3:1 (Scheme 5c), suggesting that the electron-donating substrates inherently react preferentially. This observation can be rationalized in terms of an electrophilic C-H ruthenation.
On the basis of previous reports and these preliminary studies, a plausible catalytic cycle was shown in Scheme 6. An active Ru(II) species was generated by the presence of NaOAc, which was coordinated with the purine skeleton and the ortho C-H of 1a activated to form the five-membered complex A. Complex A was transformed into seven-membered ruthenacycle intermediate B through nucleophilic addition to formaldehyde. Subsequently, desired product 3a was released by the protonation of AcOH and the active Ru(II) species was regenerated for next catalytic cycle.
CONCLUSION

In conclusion, we developed a method for highly site-selective \textit{ortho} hydroxymethylation of 6-arylpurines via Ru(II)-catalyzed. Notably, purine derivatives with broad functional groups as well as purine nucleosides were subjected to the C-H activated reaction in good yields. This protocol could be carried out in the presence of water and air, without stoichiometric undesirable waste, thus offering an environmentally benign method for synthesis of hydroxymethylated arylpurine derivatives. Further investigation of the detailed mechanism and applications are proceeding in our laboratory.

EXPERIMENTAL

\textbf{General.} Unless otherwise noted, reactions involving oxygen or moisture sensitive reagents were performed in pre-dried glassware under argon. Catalysis reaction were carried out in round bottom flask. Chemicals were purchased from commercial suppliers and used without further purification. Column chromatograph purification was used 200-300 mesh silica gel. All reactions were monitored by thin layer chromatography on Huanghai silica gel plates (HSGF254) and visualized under UV light at 254 nm. NMR spectra were performed at 400 or 500 MHz (1H NMR), 125, 126 or 151 MHz (13C NMR) and recorded on Bruker AVANCE III 400 and Bruker AVANCE III 500 instruments, chemical shifts (\(\delta\)) are given in ppm. Coupling constant (\(J\)) are provided in Hz. High resolution mass spectrometry were recorded by the Center for Mass Spectrometry, Shanghai Institute of Material Medica.
Starting Materials. All reagents were purchased from commercial sources and used without further purification, unless otherwise indicated. The substances 1a-x, 5 were synthesized according to the reported literatures.26,51-54

General Synthetic Procedure for Synthesizing Compounds 3 (taking 3a as an example). To a 10 mL round bottom flask was added 1a (0.2 mmol, 47.6 mg, 1 equiv.), 2a (0.6 mmol, 18 mg, 3 equiv.), [Ru(p-cymene)Cl]₂ (0.005 mmol, 3 mg, 2.5 mol%), NaOAc (0.06 mmol, 8.2 mg, 30 mol%) and TFE (2.0 mL, 0.1 M) under air. The mixture was heated at 60 °C for 8 h in an oil bath. After completion, the resulting mixture was filtered, and then washed by acetone. The filtrate was concentrated in vacuo to give the crude product. The residue was purified by silica gel column chromatograph (PE/EA = 1/1) to afford the product 3a in 93% yield.

(2-(9-Isopropyl-9H-purin-6-yl)phenyl)methanol (3a). Yield: 93%, ¹H NMR (400 MHz, CDCl₃) δ 8.99 (s, 1H), 8.22 – 8.14 (m, 2H), 7.57 – 7.52 (m, 1H), 7.51 – 7.45 (m, 2H), 6.28 (s, 1H), 4.97 (hept, J = 6.8 Hz, 1H), 4.50 (s, 2H), 1.66 (d, J = 6.8 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 156.97, 151.78, 151.35, 142.79, 140.96, 134.72, 132.58, 132.24, 131.52, 130.83, 128.05, 64.23, 47.71, 22.55; HRMS (ESI) Calcd for C₁₅H₁₇N₄O [M+H]⁺ 269.1397, found 269.1398.

(2-(9-Isopropyl-9H-purin-6-yl)-5-methylphenyl)methanol (3b). Yield: 96%, ¹H NMR (400 MHz, CDCl₃) δ 8.98 (s, 1H), 8.18 (s, 1H), 8.14 (d, J = 8.0 Hz, 1H), 7.36 (s, 1H), 7.30 (d, J = 8.0 Hz, 1H), 6.39 (s, 1H), 4.98 (hept, J = 6.8 Hz, 1H), 4.48 (d, J = 3.6 Hz, 2H), 2.41 (s, 3H), 1.66 (d, J = 6.8 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 157.11, 151.72, 151.33, 142.52, 141.26, 140.94, 132.76, 132.36, 132.19, 131.91, 128.81, 64.35, 47.66, 22.60, 21.43; HRMS (ESI) Calcd for C₁₆H₁₉N₄NaO [M+Na]⁺ 305.1373, found 305.1380.

(2-(9-Isopropyl-9H-purin-6-yl)-5-methoxyphenyl)methanol (3c). Yield 93%, ¹H NMR (400 MHz, CDCl₃) δ 8.97 (s, 1H), 8.32 (d, J = 8.6 Hz, 1H), 8.19 (s, 1H), 7.08 (d, J = 2.7 Hz, 1H), 7.03 (dd, J = 8.6, 2.7 Hz, 1H), 4.99 (hept, J = 6.8 Hz, 1H), 4.52 (s, 2H), 3.89 (s, 3H), 1.69 (d, J = 6.8 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 161.60, 156.81, 151.72, 151.36, 143.22, 142.37, 134.77, 131.98, 127.23, 116.98, 113.61, 64.68, 55.56, 47.69, 22.69; HRMS (ESI) Calcd for C₁₆H₁₉N₄O₂ [M+H]⁺ 299.1503, found 299.1509.

Methyl 3-(hydroxymethyl)-4-(9-isopropyl-9H-purin-6-yl)benzoate (3d). Yield 94%, ¹H NMR (400 MHz, CDCl₃) δ 9.02 (s, 1H), 8.23 (s, 1H), 8.27 – 8.21 (m, 2H), 8.12 (dd, J = 8.1, 1.7 Hz, 1H), 6.14 (br, 1H), 4.99 (hept, J = 6.8 Hz, 1H), 4.54 (d, J = 2.6 Hz, 2H), 3.92 (s, 3H), 1.67 (d, J = 6.8 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 166.49, 155.82, 152.01, 151.47, 143.24, 141.27, 138.91, 132.71, 132.59, 132.42, 131.89, 128.99, 63.93, 52.38, 47.88, 22.58; HRMS (ESI) Calcd for C₁₇H₁₉N₄O₂ [M+H]⁺ 327.1452, found 327.1458.

(2-(9-Isopropyl-9H-purin-6-yl)-5-nitrophenyl)methanol (3e). Yield 51%, ¹H NMR (400 MHz, CDCl₃) δ 9.09 (s, 1H), 8.45 (d, J = 2.3 Hz, 1H), 8.40 (d, J = 8.6 Hz, 1H), 8.33 (dd, J = 8.6, 2.3 Hz, 1H), 8.28 (s, 1H), 5.04 (hept, J = 6.8 Hz, 1H), 4.61 (s, 2H), 1.72 (d, J = 6.8 Hz, 6H); ¹³C NMR (151 MHz, CDCl₃) δ
154.48, 152.28, 151.65, 148.78, 143.72, 142.89, 140.69, 133.83, 132.52, 126.36, 122.82, 63.68, 48.13, 22.67; HRMS (ESI) Calcd for C_{16}H_{16}NaO [M+Na]^+ 314.1253, found 314.1253.

(2-(9-Isopropyl-9H-purin-6-yl)-4-methylphenyl)methanol (3f). Yield 96%, 1H NMR (400 MHz, CDCl$_3$) δ 8.97 (s, 1H), 8.18 (s, 1H), 7.93 (d, $J = 1.3$ Hz, 1H), 7.42 (d, $J = 7.7$ Hz, 1H), 7.28 (dd, $J = 7.7$, 1.3 Hz, 1H), 5.51 (br, 1H), 4.95 (hept, $J = 6.8$ Hz, 1H), 4.44 (s, 2H), 2.40 (s, 3H), 1.64 (d, $J = 6.8$ Hz, 6H); 13C NMR (126 MHz, CDCl$_3$) δ 157.18, 151.62, 151.35, 142.63, 138.08, 137.71, 134.59, 132.88, 132.18, 131.50, 131.48, 63.76, 47.63, 22.50, 21.25; HRMS (ESI) Calcd for C_{16}H_{16}NaO [M+Na]^+ 305.1373, found 305.138.

(2-(9-Isopropyl-9H-purin-6-yl)-5-(trifluoromethyl)phenyl)methanol (3g). Yield 85%, 1H NMR (400 MHz, CDCl$_3$) δ 9.05 (s, 1H), 8.32 (d, $J = 8.2$ Hz, 1H), 8.24 (s, 1H), 7.84 (s, 1H), 7.75 (d, $J = 8.7$ Hz, 1H), 6.15 (br, 1H), 5.02 (hept, $J = 6.8$ Hz, 1H), 4.56 (s, 2H), 1.70 (d, $J = 6.8$ Hz, 6H); 13C NMR (126 MHz, CDCl$_3$) δ 155.49, 152.13, 151.58, 143.35, 141.85, 138.12, 133.11, 132.49, 132.44 (q, $J = 32.7$ Hz), 128.37 (q, $J = 3.3$ Hz), 124.87 (q, $J = 3.2$ Hz), 123.90 (q, $J = 272.5$ Hz), 63.89, 48.00, 22.64; HRMS (ESI) Calcd for C_{16}H_{16}F_{3}NaO [M+H]^+ 337.1271, found 337.1275.

3-(Hydroxymethyl)-4-(9-isopropyl-9H-purin-6-yl)benzaldehyde (3h). Yield 77%, 1H NMR (400 MHz, CDCl$_3$) δ 10.12 (s, 1H), 9.07 (s, 1H), 8.36 (d, $J = 8.0$ Hz, 1H), 8.27 (s, 1H), 8.08 (d, $J = 1.5$ Hz, 1H), 8.01 (dd, $J = 8.0$, 1.5 Hz, 1H), 6.23 (br, 1H), 5.03 (hept, $J = 6.8$ Hz, 1H), 4.60 (s, 2H), 1.71 (d, $J = 6.8$ Hz, 6H); 13C NMR (126 MHz, CDCl$_3$) δ 191.82, 155.57, 152.16, 151.66, 143.52, 141.95, 140.33, 137.63, 133.42, 132.95, 132.48, 128.74, 63.90, 48.08, 22.67; HRMS (ESI) Calcd for C_{16}H_{19}N_{3}O [M+H]^+ 297.1346, found 297.1346.

(5-(tert-Butyl)-2-(9-isopropyl-9H-purin-6-yl)phenyl)methanol (3i). Yield 97%, 1H NMR (400 MHz, CDCl$_3$) δ 8.97 (s, 1H), 8.19 (d, $J = 8.1$ Hz, 1H), 8.18 (s, 1H), 7.55 (d, $J = 2.1$ Hz, 1H), 7.52 (dd, $J = 8.1$, 2.1 Hz, 1H), 6.41 (t, $J = 7.2$ Hz, 1H), 4.96 (hept, $J = 6.8$ Hz, 1H), 4.52 (d, $J = 7.2$ Hz, 2H), 1.65 (d, $J = 6.8$ Hz, 6H), 1.34 (s, 9H); 13C NMR (126 MHz, CDCl$_3$) δ 157.15, 154.30, 151.79, 151.32, 142.58, 140.78, 132.63, 132.26, 131.93, 128.67, 125.33, 64.88, 47.70, 35.00, 31.28, 22.67; HRMS (ESI) Calcd for C_{19}H_{23}N_{3}O [M+H]^+ 325.2023, found 325.2031.

(5-Isopropyl-2-(9-isopropyl-9H-purin-6-yl)phenyl)methanol (3j). Yield 94%, 1H NMR (400 MHz, CDCl$_3$) δ 8.97 (s, 1H), 8.18 (d, $J = 8.0$ Hz, 2H), 7.39 (d, $J = 1.7$ Hz, 1H), 7.35 (dd, $J = 8.0$, 1.7 Hz, 1H), 6.38 (t, $J = 7.2$ Hz, 1H), 4.96 (hept, $J = 6.8$ Hz, 1H), 4.50 (d, $J = 7.2$ Hz, 2H), 2.96 (hept, $J = 6.8$ Hz, 1H), 1.65 (d, $J = 6.8$ Hz, 6H), 1.27 (d, $J = 6.8$ Hz, 6H); 13C NMR (126 MHz, CDCl$_3$) δ 157.19, 152.07, 151.78, 151.33, 142.56, 141.09, 132.91, 132.29, 132.24, 129.91, 126.28, 64.63, 47.69, 34.20, 23.87, 22.66; HRMS (ESI) Calcd for C_{18}H_{24}N_{3}O [M+H]^+ 311.1866, found 311.1876.

(2-(9-Isopropyl-9H-purin-6-yl)-5-phenoxyphenyl)methanol (3k). Yield 92%, 1H NMR (400 MHz, CDCl$_3$) δ 8.99 (s, 1H), 8.31 (d, $J = 8.6$ Hz, 1H), 8.20 (s, 1H), 7.42 – 7.36 (m, 2H), 7.20 – 7.15 (m, 2H), 7.13
−7.08 (m, 3H), 6.49 (t, J = 7.0 Hz, 1H), 5.01 (hept, J = 6.8 Hz, 1H), 4.49 (d, J = 7.0 Hz, 2H), 1.70 (d, J = 6.8 Hz, 6H); 13C NMR (126 MHz, CDCl$_3$) δ 159.85, 156.51, 156.06, 151.83, 151.38, 143.47, 142.60, 134.81, 132.10, 130.06, 129.23, 124.33, 120.78, 120.15, 117.34, 64.38, 47.77, 22.68; HRMS (ESI) Calcd for C$_{21}$H$_{21}$N$_4$O$_2$ [M+H]$^+$ 361.1659, found 361.1666.

4-Chloro-2-(9-isopropyl-9H-purin-6-yl)-5-methylphenylmethanol (3i). Yield 81%, 1H NMR (400 MHz, CDCl$_3$) δ 9.00 (s, 1H), 8.24 (d, J = 4.3 Hz, 2H), 7.43 (s, 1H), 5.55 (br, 1H), 5.00 (hept, J = 6.8 Hz, 1H), 4.47 (s, 2H), 2.44 (s, 3H). 1.69 (d, J = 6.8 Hz, 6H); 13C NMR (126 MHz, CDCl$_3$) δ 155.58, 151.89, 151.50, 142.95, 139.41, 139.08, 134.19, 134.05, 133.67, 132.95, 132.10, 63.61, 47.85, 22.65, 20.08; HRMS (ESI) Calcd for C$_{16}$H$_{15}$ClN$_4$O [M+H]$^+$ 317.1164, found 317.117.

5-Fluoro-2-(9-isopropyl-9H-purin-6-yl)phenylmethanol (3m). Yield 83%, 1H NMR (400 MHz, CDCl$_3$) δ 8.99 (s, 1H), 8.26 (dd, J = 8.6, 5.8 Hz, 1H), 8.21 (s, 1H), 7.26 (dd, J = 9.1, 2.7 Hz, 1H), 7.17 (td, J = 8.6, 2.7 Hz, 1H), 6.33 (br, 1H), 4.99 (hept, J = 6.8 Hz, 1H), 4.49 (s, 2H), 1.68 (d, J = 6.8 Hz, 6H); 13C NMR (126 MHz, CDCl$_3$) δ 163.99 (d, 1J$_{C,F}$ = 252.5 Hz), 156.01, 151.88, 151.51, 143.92 (d, 3J$_{C,F}$ = 7.1 Hz), 142.98, 134.99 (d, 3J$_{C,F}$ = 8.6 Hz), 132.11, 130.85 (d, 4J$_{C,F}$ = 2.9 Hz), 118.44 (d, 2J$_{C,F}$ = 21.3 Hz), 115.15 (d, 2J$_{C,F}$ = 21.3 Hz), 63.97, 47.90, 22.66; HRMS (ESI) Calcd for C$_{18}$H$_{16}$F$_2$N$_4$O$_2$ [M+H]$^+$ 287.1302; found 287.1302.

3-Fluoro-2-(9-isopropyl-9H-purin-6-yl)phenylmethanol (3n). Yield 86%, 1H NMR (500 MHz, CDCl$_3$) δ 9.05 (s, 1H), 8.21 (s, 1H), 7.50 (q, J = 7.7 Hz, 1H), 7.37 (d, J = 7.7 Hz, 1H), 7.21 (t, J = 9.0 Hz, 1H), 5.00 (hept, J = 6.8 Hz, 1H), 4.35 (s, 2H), 4.16 (br, 1H), 1.69 (d, J = 6.8 Hz, 6H); 13C NMR (126 MHz, CDCl$_3$) δ 160.56 (d, 1J$_{C,F}$ = 251.3 Hz), 152.52, 151.59, 151.50, 143.25, 142.83, 133.41, 132.13 (d, 3J$_{C,F}$ = 9.0 Hz), 126.47 (d, 4J$_{C,F}$ = 2.7 Hz), 122.81 (d, 2J$_{C,F}$ = 14.3 Hz), 115.88 (d, 2J$_{C,F}$ = 22.4 Hz), 63.68, 47.92, 22.63; HRMS (ESI) Calcd for C$_{18}$H$_{16}$F$_2$N$_4$O$_2$ [M+H]$^+$ 287.1303; found 287.1308.

2-Fluoro-6-(9-isopropyl-9H-purin-6-yl)phenylmethanol (3o). Yield 84%, 1H NMR (400 MHz, CDCl$_3$) δ 9.05 (s, 1H), 8.21 (s, 1H), 7.51 (td, J = 7.9, 5.5 Hz, 1H), 7.37 (d, J = 7.5 Hz, 1H), 7.22 (t, J = 9.1 Hz, 1H), 5.00 (hept, J = 6.8 Hz, 1H), 4.35 (s, 2H), 1.70 (d, J = 6.8 Hz, 6H); 13C NMR (151 MHz, CDCl$_3$) δ 160.59 (d, 1J$_{C,F}$ = 251.4 Hz), 152.58, 151.64, 151.52, 143.19, 142.84, 133.49, 132.13 (d, 3J$_{C,F}$ = 9.0 Hz), 126.53 (d, 4J$_{C,F}$ = 3.2 Hz), 122.94 (d, 2J$_{C,F}$ = 14.4 Hz), 115.92 (d, 2J$_{C,F}$ = 22.4 Hz), 63.75, 47.90, 22.65; HRMS (ESI) Calcd for C$_{18}$H$_{16}$F$_2$N$_4$O$_2$ [M+H]$^+$ 287.1303; found 287.1297.

N-(3-(Hydroxymethyl)-4-(9-isopropyl-9H-purin-6-yl)phenyl)acetamide (3p). Yield 76%, 1H NMR (400 MHz, DMSO-d_6) δ 10.22 (s, 1H), 8.95 (s, 1H), 8.73 (s, 1H), 7.98 (d, J = 8.4 Hz, 1H), 7.86 (d, J = 2.0 Hz, 1H), 7.77 (dd, J = 8.4, 2.0 Hz, 1H), 5.43 (t, J = 6.0 Hz, 1H), 4.91 (hept, J = 6.8 Hz, 1H), 4.67 (d, J = 6.0 Hz, 2H), 2.10 (s, 3H), 1.60 (d, J = 6.8 Hz, 6H); 13C NMR (151 MHz, DMSO-d_6) δ 168.63, 155.83, 151.22, 150.93, 144.40, 142.84, 140.79, 132.41, 131.50, 127.99, 118.25, 116.66, 61.69, 47.10, 24.13, 21.94; HRMS (ESI) Calcd for C$_{17}$H$_{20}$N$_2$O$_2$ [M+H]$^+$ 326.1612, found 326.1614.
(5-Ethyl-2-(9-isopropyl-9H-purin-6-yl)phenyl)methanol (3q). Yield 95%, 1H NMR (400 MHz, CDCl$_3$) δ 8.98 (s, 1H), 8.18 (s, 1H), 8.18 (d, J = 7.8 Hz, 1H), 7.38 (s, 1H), 7.33 (d, J = 8.1 Hz, 1H), 6.38 (t, J = 7.0 Hz, 1H), 4.97 (hept, J = 6.8 Hz, 1H), 4.50 (d, J = 6.7 Hz, 2H), 2.71 (q, J = 7.6 Hz, 2H), 1.66 (d, J = 6.8 Hz, 6H), 1.26 (t, J = 7.6 Hz, 3H); 13C NMR (151 MHz, CDCl$_3$) δ 157.17, 151.75, 151.34, 147.52, 142.56, 141.04, 132.88, 132.22, 132.14, 131.26, 127.69, 64.49, 47.68, 28.85, 22.65, 15.38; HRMS (ESI) Calcd for C$_{17}$H$_{21}$N$_4$O [M+H]$^+$ 297.171, found 297.1713.

(2-(2-Chloro-9-isopropyl-9H-purin-6-yl)phenyl)methanol (3s). Yield 43%, 1H NMR (400 MHz, CDCl$_3$) δ 8.18 (s, 1H), 8.16 (d, J = 7.3 Hz, 1H), 7.58 (d, J = 7.3 Hz, 1H), 7.51 (dt, J = 14.8, 7.3 Hz, 2H), 5.50 (t, J = 7.3 Hz, 1H), 4.97 (hept, J = 6.8 Hz, 1H), 4.53 (d, J = 7.4 Hz, 2H), 1.66 (d, J = 6.8 Hz, 6H); 13C NMR (151 MHz, CDCl$_3$) δ 158.82, 153.33, 153.30, 143.30, 141.01, 133.71, 132.53, 131.87, 131.48, 131.26, 128.24, 64.04, 47.92, 22.64; HRMS (ESI) Calcd for C$_{15}$H$_{15}$ClN$_4$NaO [M+Na]$^+$ 325.0827, found 325.0825.

(2-(9-Benzyl-9H-purin-6-yl)phenyl)methanol (3t). Yield 85%, 1H NMR (400 MHz, CDCl$_3$) δ 9.06 (s, 1H), 8.27 – 8.22 (m, 1H), 8.13 (s, 1H), 7.60 – 7.54 (m, 1H), 7.54 – 7.48 (m, 2H), 7.42 – 7.32 (m, 5H), 6.22 (br, 1H), 5.49 (s, 2H), 4.53 (s, 2H); 13C NMR (151 MHz, CDCl$_3$) δ 157.17, 152.26, 151.93, 144.86, 141.10, 134.94, 134.61, 132.73, 131.81, 131.65, 131.02, 129.33, 128.86, 128.13, 128.08, 64.33, 47.61; HRMS (ESI) Calcd for C$_{19}$H$_{17}$N$_4$O [M+H]$^+$ 317.1397, found 317.1399.

(2-(9-Methyl-9H-purin-6-yl)phenyl)methanol (3u). Yield 88%, 1H NMR (400 MHz, CDCl$_3$) δ 9.06 (s, 1H), 8.27 – 8.23 (m, 1H), 8.15 (s, 1H), 7.61 – 7.56 (m, 1H), 7.56 – 7.50 (m, 2H), 6.24 (br, 1H), 4.53 (s, 2H), 3.98 (s, 3H); 13C NMR (151 MHz, CDCl$_3$) δ 157.06, 152.58, 151.80, 145.61, 141.10, 134.65, 132.71, 131.81, 131.67, 131.03, 128.16, 64.36, 30.10; HRMS (ESI) Calcd for C$_{13}$H$_{12}$N$_4$NaO [M+Na]$^+$ 263.0903, found 263.0898.

(2-(9-Cyclopentyl-9H-purin-6-yl)phenyl)methanol (3v). Yield 85%, 1H NMR (400 MHz, CDCl$_3$) δ 9.00 (s, 1H), 8.23 – 8.18 (m, 1H), 8.17 (s, 1H), 7.59 – 7.52 (m, 1H), 7.52 – 7.45 (m, 2H), 5.04 (p, J = 7.4 Hz, 1H), 4.50 (s, 2H), 2.41 – 2.27 (m, 2H), 2.12 – 1.90 (m, 4H), 1.90 – 1.76 (m, 2H); 13C NMR (126 MHz, CDCl$_3$) δ 156.95, 152.19, 151.36, 143.36, 140.99, 134.74, 132.59, 132.28, 131.55, 130.85, 128.07, 64.26, 56.47, 32.68, 23.96; HRMS (ESI) Calcd for C$_{17}$H$_{18}$Na$_2$O [M+Na]$^+$ 317.1373, found 317.1376.

(2-(9-Butyl-9H-purin-6-yl)phenyl)methanol (3w). Yield 85%, 1H NMR (400 MHz, CDCl$_3$) δ 9.02 (s, 1H), 8.26 – 8.21 (m, 1H), 8.14 (s, 1H), 7.60 – 7.53 (m, 1H), 7.53 – 7.47 (m, 2H), 4.52 (s, 2H), 4.33 (t, J = 7.4 Hz, 2H), 1.94 (p, J = 7.4 Hz, 2H), 1.40 (h, J = 7.4 Hz, 2H), 0.98 (t, J = 7.4 Hz, 3H); 13C NMR (126 MHz, CDCl$_3$) δ 157.03, 152.27, 151.65, 145.04, 141.08, 134.71, 132.70, 131.93, 131.64, 130.98, 128.13, 64.35, 44.02, 32.02, 20.04, 13.60; HRMS (ESI) Calcd for C$_{16}$H$_{18}$N$_4$NaO [M+Na]$^+$ 305.1373, found 305.138.

(2-Acetoxyethyl)-5-(6-(2-hydroxymethyl)phenyl)-9H-purin-9-yl)tetrahydrofuran-3,4-diyl diacetate (3x). Yield 89%, 1H NMR (400 MHz, CDCl$_3$) δ 9.00 (s, 1H), 8.30 (s, 1H), 8.20 – 8.13 (m, 1H), 7.56 – 7.51 (m, 1H), 7.50 – 7.43 (m, 2H), 6.28 (d, J = 5.0 Hz, 1H), 5.98 (t, J = 5.3 Hz, 1H), 5.93 (t, J = 7.2
Hz, 1H), 5.66 (t, J = 5.0 Hz, 2H), 4.48 (d, J = 7.1 Hz, 2H), 4.47 – 4.33 (m, 3H), 2.12 (s, 3H), 2.08 (s, 3H), 2.06 (s, 3H); 13C NMR (126 MHz, CDCl3) δ 170.23, 169.54, 169.37, 157.55, 151.82, 151.66, 143.40, 140.99, 134.19, 132.65, 132.43, 131.49, 131.03, 127.98, 86.62, 80.41, 73.07, 70.53, 64.10, 62.97, 20.72, 20.49, 20.37; HRMS (ESI) Calcd for C23H25N4O8 [M+H]+ 485.1667, found 485.1675.

Gram Scale Reaction (Synthesis of Compound 3a). To a 250 mL round bottom flask were added 1a (1 g, 4.2 mmol, 1 equiv.), 2a (378 mg, 12.6 mmol, 3 equiv.), [Ru(ρ-cymene)Cl2]2 (64 mg, 0.105 mmol, 2.5 mol%), NaOAc (177 mg, 1.3 mmol, 30 mol%) and TFE (42.0 mL, 0.1 M) under air. The mixture was heated at 60 °C for 8 h in an oil bath. After completion, the reaction mixture was cooled to room temperature, filtered and then washed by acetone. The filtrate was concentrated and purified by silica gel column chromatography using petroleum ether and EtOAc as eluent to afford product 3a (926 mg, 82%).

1H NMR (400 MHz, CDCl3) δ 8.99 (s, 1H), 8.22 – 8.14 (m, 2H), 7.57 – 7.52 (m, 1H), 7.51 – 7.45 (m, 2H), 6.28 (s, 1H), 4.97 (hept, J = 6.8 Hz, 1H), 4.50 (s, 2H), 1.66 (d, J = 6.8 Hz, 6H); 13C NMR (125 MHz, CDCl3) δ 156.97, 151.78, 151.35, 142.79, 140.96, 134.72, 132.58, 132.24, 131.52, 130.83, 128.05, 64.23, 47.71, 22.55; HRMS (ESI) Calcd for C15H17N4O [M+H]+ 269.1397, found 269.1398.

Synthesis of Compound 4a. To a solution of 3a (167 mg, 0.62 mmol) in DCM (5 mL) at 0 °C was added Dess-Martin periodnane (1.315 g, 3.1 mmol, 5 equiv.). The mixture was stirred at ambient temperature over 48 h. The reaction mixture was filtered through Celite, extracted with DCM (×3) and concentrated in vacuo. The crude product was purified by column chromatograph on silica gel (DCM/acetone) to give product 4a (93 mg, 53%). 1H NMR (500 MHz, CDCl3) δ 10.66 (br, 1H), 9.09 (s, 1H), 8.45 (s, 1H), 7.67 (d, J = 4.1 Hz, 2H), 7.65 – 7.58 (m, 1H), 4.99 (hept, J = 6.8 Hz, 1H), 1.65 (d, J = 6.8 Hz, 6H); 13C NMR (126 MHz, CDCl3) δ 155.89, 151.75, 149.64, 145.28, 132.41, 132.12, 131.70, 131.61, 131.29, 131.14, 130.69, 48.95, 22.34; HRMS (ESI) Calcd for C15H17N4O2 [M+H]+ 283.119, found 283.1197.

Synthesis of Compound 4b. To a stirred solution of 3a (200 mg, 0.75 mmol) in acetone (8 mL) at 0 °C was added 1M Jones reagent (2.3 mL, 2.3 mmol, 3 equiv.). The mixture was stirred at 0 °C for 15 min. After that, the reaction was quenched with isopropanol, extracted with DCM (5 mL × 3), washed with brine and dried over anhydrous Na2SO4 to give the solution of crude product without further purification. Subsequently, to a solution of the crude product in DCM at 0 °C was added morpholine (91 mg, 1.05 mmol, 1.4 equiv.) and NaBH3CN (94 mg, 1.5 mmol, 2 equiv.). The reaction was stirred at room temperature over 2 h. The mixture was concentrated in vacuo and purified by column chromatograph on silica gel (DCM/acetone) to afford product 4b (124 mg, 48%). 1H NMR (400 MHz, CDCl3) δ 8.98 (s, 1H), 8.10 (s, 1H), 7.66 – 7.61 (m, 1H), 7.54 – 7.49 (m, 1H), 7.44 – 7.37 (m, 2H), 4.97 (hept, J = 6.8 Hz, 1H), 3.74 (s, 2H), 3.20 (s, 4H), 2.10 (s, 4H), 1.67 (d, J = 6.8 Hz, 6H); 13C NMR (126 MHz, CDCl3) δ 159.75, 151.75, 149.64, 145.28, 132.41, 132.12, 131.70, 131.61, 131.29, 131.14, 130.69, 48.95, 22.34; HRMS (ESI) Calcd for C19H24N5O [M+H]+ 338.1975, found 338.1984.
ACKNOWLEDGEMENTS

This work is financially supported by National Natural Science Foundation of China (No. 81973166) and Shanghai Natural Science Foundation Program (22ZR1474100).

REFERENCES

40. Z. Chen, X. Kong, and B. Xu, ChemistrySelect, 2020, 5, 2465.
50. S. Li, Y. Yang, Y. Yang, and B. Zhou, *Heterocycles*, 2020, **100**, 934.