REGIOSELECTIVE SYNTHESIS OF PYRAZOLEs AND PYRAZOLO[1,5-a]PYRIMIDINES: STRUCTURAL CHARACTERIZATION BY HMBC NMR

Abdullah S. Al-Bogamia and Tamer S. Saleha,b,*

a Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, P.O. Box 80203, Jeddah 21589, Saudi Arabia
b Green Chemistry Department, National Research Centre, Dokki, Cairo 12622, Egypt

Supporting Information

<table>
<thead>
<tr>
<th>Supporting Information</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1 Differentiation between the two possible pyrazole regioisomers 5a-c and 6a-c.</td>
<td>2-3</td>
</tr>
<tr>
<td>S2 1H-13C HMBC Spectrum of the isolated regioisomer 9e</td>
<td>4-5</td>
</tr>
<tr>
<td>S3 Differentiation between the two possible pyrazolo[1,5-a]pyrimidine regioisomers 9a-i and 12a-i</td>
<td>6-7</td>
</tr>
<tr>
<td>S4 Some 1H NMR and 13C NMR of the synthesized products</td>
<td>8</td>
</tr>
</tbody>
</table>
S1: Differentiation between the two possible pyrazole regioisomers 5a-c and 6a-c.

From the full 1H-13C HMBC spectrum of the isolated regioisomer, a signal was observed at δ 158.04 ppm corresponding to the carbonyl carbon of coumarin; it exhibited correlation peak with the singlet signal at δ 8.39 ppm assigned to coumarin H-4. Thus, the singlet signal at δ 8.52 ppm is assigned to the pyrazole proton (Figure S1a). Based on the number of correlations between the pyrazole proton and carbons that are two and three bonds away we can easily determine which isomer formed (Figure S1b). The presence of two correlations in the 1H-13C HMBC spectrum of the isolated product is conclusive evidence for the proposed structure of 5c (Figure S1c).
Figure S1. (a) Full $^1\text{H}^{13}\text{C}$ HMBC spectrum of the isolated compound 5c and assignment of the pyrazole proton and coumarin H-4; (b) Number of correlations between the pyrazole proton toward carbons in the possible regioselective isomers 5c and 6c; (c) number of correlation between the pyrazole proton and carbon atoms.
S2: 1H-13C HMBC of pyrazolo[1,5-a]pyrimidine derivatives.

The positions of coumarin H-4 and the pyrimidine proton were supported by 1H-13C HMBC. Figure S2a shows the full 1H-13C HMBC spectrum of regioisomer 9e or 12e. A signal was observed at δ 157.19 ppm, which corresponds to the carbonyl carbon of coumarin; it exhibited correlation peak with a singlet signal at δ 8.30 ppm, assigned to coumarin H-4. Thus, the singlet signal at δ 9.16 ppm is assigned to the pyrimidine proton. Correlations were also observed between the pyrimidine proton and carbons that were two and three bonds away (three correlations were observed, as shown in Figure S2a and S2b). However, even with these results, we could not differentiate between the two possible structure of isomers 9e and 12e. More information is necessary to solve this discrepancy reported in literature as to whether the pyrazolo[1,5-a]pyrimidine derivatives form via (i) addition of the exocyclic amino group to the activated double bond of the enaminone) or via (ii) addition of the endocyclic nitrogen to the activated double bond of the enaminone).

(a)

(b)
Figure S2 (a) Full 1H-13C HMBC spectrum of the isolated regioisomer 9e and assignment for pyrimidine proton and coumarin H-4; (b) Number of correlations between the pyrimidine proton and carbons in the possible regioisomers 9e and 12e.
S3: Differentiation between the possible two regioisomers 9a-e and 12a-e

The structures of the obtained regioisomers were unambiguously elucidate by advanced 1H-15N HMBC techniques, where all connectivities were observed for the assignment the nitrogen chemical shifts. Using the product obtained from the reaction of 2 with the aminopyrazole derivative 7e as representative examples (Figure S3a), the chemical shifts of the nitrogen atoms are N-4 (280.40 ppm), N-1 (275.45 ppm) and N-7a (216.12 ppm), consistent with those reported in literature. 4,5

Figure S3b shows the 1H–15N HMBC spectrum of the obtained product (may be 9e or 12e). It was found that pyrimidine nitrogen atom 4 (indicated by purple) was key in differentiating between the two possible isomers. Connectivity was observed between the pyrimidine proton and N-4 (2J$_{H3-N4}$) (Figure 6b). Therefore, the results confirmed the existence of isomer 9e over the alternative structure 12e.

(a)

(b)
Figure S3. (a) Diagnostic correlations in the 1H-15N HMBC spectrum for two isomers 9e and 12e (b) 1H-15N HMBC spectrum of the isolated product 9e.

In addition to the other observed connectivities in the 1H–15N HMBC spectrum, connectivity was observed between the methyl proton (position 2) and N-1 (Figure S3b). Furthermore, N-7a can be used to differentiate between the two isomers, however, no connectivity was observed between pyrimidine-H and N-7a. Therefore, this lack of connectivity served as additional evidence for the selective formation of 9e.
S4: Some NMR Data