Supporting Information

FIRST TOTAL SYNTHESIS OF PALMARUMYCIN C₈ BASED ON DOUBLE OXA-MICHAEL ADDITION OF 1,8-DIHYDROXYNAPHTHALENE TO 3-BROMO-1-INDENONE

Hirokazu Tsukamoto, Yumi Nomura, and Takayuki Doi*

Graduate School of Pharmaceutical Sciences, Tohoku University, Aramaki-aza aoba 6-3, Aoba-ku, Sendai 980-8578, Japan

doi_taka@mail.pharm.tohoku.ac.jp

¹H and ¹³C NMR spectra
1H NMR spectrum of 10
13C NMR spectrum of 10
1H NMR spectrum of 3a
13C NMR spectrum of 3a
^{1}H NMR spectrum of 12
13C NMR spectrum of 12
1H-COSY spectrum of 12

`Filename` = TFA_Buszovor_upper_1H-COSY-
`Author` = hamou
`Experiment` = cosy_cfg.ex2
`Sample_Id` = sample
`Solvent` = CLELON/FORM-D
`Creation_Time` = 22-FEB-2018 21:46.47
`Revision_Time` = 22-FEB-2018 21:50.43
`Current_Time` = 22-FEB-2018 21:51.52

`Comment` = 1H cosy
`Data_Format` = 2D REAL REAL
`Dim_Size` = 1024, 1024
`Dim_Title` = 1H 1H
`Dim_Options` = [ppm] [ppm]
`Dimensions` = X Y
`Site` = JNA500
`Spectrometer` = JNM-ECA600

`Field_Strength` = 14.09636928 [T] (600 [MHz])
`X_Avg_Duration` = 0.297984 [s]
`X_Domain` = 1H
`X_Freq` = 600.172504 [MHz]
`X_Offset` = 6.37831 [ppm]
`X_Points` = 1024
`X_Offset` = 6.37831 [ppm]
`X_Respoints` = 0
`X_Resolution` = 3.3588488 [Hz]
`X_Sweep` = 4.29553265 [kHz]
`Y_Domain` = 1H
`Y_Freq` = 600.172504 [MHz]
`Y_Offset` = 6.37831 [ppm]
`Y_Points` = 1024
`Y_Offset` = 6.37831 [ppm]
`Y_Respoints` = 0
`Y_Resolution` = 3.42169461 [Hz]
`Y_Sweep` = 3.65575032 [kHz]
`Z_Domain` = 1H
`Z_Freq` = 600.172504 [MHz]
`Z_Offset` = 5 [ppm]
`Z_Points` = 1024

`Clipped` = false
`Scans` = 4
`Total Scans` = 1024

`Relaxation_Delay` = 1.5 [s]
`Heavy_Gain` = 50
`Temp_Det` = 24.8 [°C]
`X_Ramp_Width` = 14.3 [ms]
`X_Avg_Time` = 0.297984 [s]
`X_Avg_Time` = 4 [kHz]
`X_Pulse` = 14.3 [ms]
`Y_Avg_Time` = 74.50624 [ms]
`Z_Avg_Time` = 0.5 [kHz]
`Grad_Mode` = off
`Grad_Mode` = off
`Gauge_Freqset` = false
`Delta` = 0 [ms]
`Grad_1` = 1 [ms]
`Grad_1_Amp` = 5 [%]
`Grad_2` = 1 [ms]
`Grad_2_Amp` = 5 [%]
`Grad_Recovery` = 0.1 [ms]
`Grad_Selection` = 1.1
HMHC spectrum of 12
HMOC spectrum of 12
HMBC spectrum of 12
HMBC spectrum of 12
NOESY spectrum of 12
NOESY spectrum of 12
^1H NMR spectrum of 6
13C NMR spectrum of 6
1H NMR spectrum of 13
$^{13}\text{C NMR spectrum of 13}$
1H NMR spectrum of 14

![NMR spectrum with peaks labeled]
13C NMR spectrum of 14
\(^1\text{H NMR spectrum of } 8a\)
13C NMR spectrum of 8a
1H NMR spectrum of 8b
13C NMR spectrum of 8b
1H NMR spectrum of 17
13C NMR spectrum of 17
1H NMR spectrum of 18
13C NMR spectrum of 18
1H NMR spectrum of 4,7-dihydroxy-2,3-dihydro-1H-inden-1-one
13C NMR spectrum of 4,7-dihydroxy-2,3-dihydro-1H-inden-1-one
1H NMR spectrum of 19
13C NMR spectrum of 19
\(^1\)H NMR spectrum of 8c
13C NMR spectrum of 8e
\(^1H \) NMR spectrum of 11a
13C NMR spectrum of 11a
1H NMR spectrum of 20

[Spectrogram image]

S36
13C NMR spectrum of 20
1H NMR spectrum of 11b
13C NMR spectrum of 11b
1H NMR spectrum of 1
13C NMR spectrum of 1