NaHSO$_3$-PROMOTED RING OPENINGS OF N-TOSYL AZIRIDINES AND EPOXIDES WITH H$_2$O

Xing Li, Bin Ni, Hong-Hong Chang, and Wen-Long Wei*

Department of Chemistry and Chemical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, P. R. of China. Fax: (+86) 0351-6111165. E-mail: weiwenlong@tyut.edu.cn

Abstract – NaHSO$_3$-oriented ring openings of a wide variety of N-tosylaziridines and epoxides with H$_2$O under mild conditions in acetone was found to be a convenient and effective method, which provided the desired β-aminoalcohols and β-diols in good to excellent yields and with uniformly high regioselectivity.

β-Aminoalcohols are very useful building blocks for the preparation of drugs, natural products and relevant compounds.1,2 Due to their synthetic value and pharmacological properties, considerable interest and effort have been focused on the construction of β-aminoalcohols and their derivatives.3 In recent years, some attractive methods for the synthesis of them have been developed.$^{4-9}$ Among these methods, the ring openings of N-tosylaziridines with H$_2$O provides direct access to them, and several catalysts and activators have been employed and identified for this transformation, respectively.10 Despite these creative efforts and significant progress, the discovery of new catalysts or activators which are cheaper and more efficient and the development of new methods which are more effective remain urgent. NaHSO$_3$ has been applied to the ring-opening reactions of nonactivated aziridines as a nucleophilic reagent.11 Herein, we will describe another new and successful application of NaHSO$_3$ as a promoting reagent in the ring opening.

We began with our studies by selecting the ring opening of N-tosylcyclohexylaziridine12 1a with H$_2$O as the model reaction and NaHSO$_3$ as a promoting reagent. Initially, the survey of solvents clearly highlighted the beneficial effect of mixture solvents (Table 1, entries 2-4 vs. 1). It was observed that the mixture solvent of acetone and H$_2$O (1:1) was the most suitable for this transformation (Table 1, entry 4).13 No ring-opening product was detected when H$_2$O was used as a kind of solvent at 25 °C (Table 1, entry 1).
Table 1. Screening of reaction conditions for ring opening of N-tosyleclohexylaziridine 1a with H₂O

<table>
<thead>
<tr>
<th>Entry</th>
<th>Solvent</th>
<th>T (°C)</th>
<th>Yield b (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H₂O</td>
<td>25</td>
<td>trace</td>
</tr>
<tr>
<td>2</td>
<td>DMSO/H₂O=1:1</td>
<td>25</td>
<td>trace</td>
</tr>
<tr>
<td>3</td>
<td>MeCN/H₂O=1:1</td>
<td>25</td>
<td>22</td>
</tr>
<tr>
<td>4</td>
<td>acetone/H₂O=1:1</td>
<td>25</td>
<td>33</td>
</tr>
<tr>
<td>5c</td>
<td>acetone/H₂O=1:1</td>
<td>55</td>
<td>99</td>
</tr>
</tbody>
</table>

a Unless otherwise noted, all reactions were carried out with N-tosyleclohexylaziridine 1a (50 mg, 0.2 mmol) and 1.1 equiv. of NaHSO₃ in 1.0 mL solvent under identified conditions for 24 h. b Isolated yield. c 2.0 equiv. of NaHSO₃ and 3.0 mL solvent were used.

Under these optimized reaction conditions, a wide variety of N-tosylaziridines such as aromatic, aliphatic (cyclic and acyclic), and condensed-ring ones could be smoothly transformed into the desired ring-opening products in good to excellent yields with high regioselectivity and the results are listed in Table 2. Except for the N-tosylaziridine 1q which afforded the two corresponding isomers (3q:4q = 9:2) (Table 2, entry 16), all other N-tosylaziridines showed the remarkable regioselectivity and provided only single regioisomers 3 (Table 2, entries 2-13). In addition, it was observed that steric hindrance of the substituent groups at the aromatic ring of N-tosylaziridines played an important role on the reactivity of this reaction. The para-substituted N-tosylaziridines indicated higher reactivity than those substituted in ortho- and meta-position (Table 2, entry 5 vs. 3, 4 and entry 8 vs. 6, 7). Excitedly, the N-tosylaziridines 1n could give the desired ring-opening product with the moderate yield (Table 2, entry 14).

Table 2. Ring-opening reactions of various N-tosylaziridines 1 with H₂O

<table>
<thead>
<tr>
<th>Entry</th>
<th>N-Tosylaziridine 1</th>
<th>Product</th>
<th>t (h)</th>
<th>Yield b (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>1a</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>24</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3a</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2 \(\text{N-Ts} \) \(1b \) \(3b \) 12 99
3 \(\text{Me} \) \(\text{N-Ts} \) \(1c \) \(3c \) 10 99
4 \(\text{Me} \) \(\text{N-Ts} \) \(1d \) \(3d \) 4 96
5 \(\text{Me} \) \(\text{N-Ts} \) \(1e \) \(3e \) 2 92
6 \(\text{Cl} \) \(\text{N-Ts} \) \(1f \) \(3f \) 36 97
7 \(\text{Cl} \) \(\text{N-Ts} \) \(1g \) \(3g \) 24 92
8 \(\text{Cl} \) \(\text{N-Ts} \) \(1h \) \(3h \) 9 81
9 \(\text{OMe} \) \(\text{N-Ts} \) \(1i \) \(3i \) 4 93
10 \(\text{MeO} \) \(\text{N-Ts} \) \(1j \) \(3j \) 8 97
11 \(\text{N-Ts} \) \(\text{N-Ts} \) \(1k \) \(3k \) 21 83
12 \(\text{N-Ts} \) \(\text{N-Ts} \) \(1l \) \(3l \) 3 96
13 \(\text{Br} \) \(\text{N-Ts} \) \(1m \) \(3m \) 12 97
Moreover, from a practical point of view, epoxides as substrates were also tested to obtain β-diols for examining the scope of application of the reaction system under the optimal conditions. It can be seen from Table 3 that various epoxides could be hydrolyzed to give the desired 1,2-diols in good to excellent yields using NaHSO$_3$ as a catalyst. The ring-opening reaction of chiral epoxide 1u also proceeded smoothly and provided product 3u in 87% yield (Table 3, entry 4).

Table 3. The hydrolysis of epoxides in the presence of NaHSO$_3$

<table>
<thead>
<tr>
<th>Entry</th>
<th>Epoxide 1</th>
<th>Product</th>
<th>t (h)</th>
<th>Yieldb (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1r</td>
<td>3r</td>
<td>36</td>
<td>82</td>
</tr>
<tr>
<td>2</td>
<td>1s</td>
<td>3s</td>
<td>36</td>
<td>86</td>
</tr>
<tr>
<td>3</td>
<td>1t</td>
<td>3t</td>
<td>40</td>
<td>83</td>
</tr>
</tbody>
</table>
Unless otherwise noted, all reactions were performed at 0.2 mmol scale of epoxides 1 and 2.0 equiv. of NaHSO$_3$ (41.9 mg) in 3 mL of mixture solvent of acetone/water (1:1) under air atmosphere at 55 °C within specified time. * Isolated yield.

In summary, we have developed a single, practical and efficient method for the synthesis of β-aminoalcohols through the ring-opening reactions of N-tosylaziridines with H$_2$O using NaHSO$_3$ as a promoting reagent. All substrates gave high regioselectivity and good to excellent yields. In addition, the same experimental conditions can be successfully applied in the ring openings of epoxides with H$_2$O to afford the desired β-diols with good yields.

ACKNOWLEDGEMENTS

We appreciate gratefully the Natural Science Foundation of Shanxi Province (No. 2012021007-2 and No. 2011011010-2) for financial support. The project is also supported by Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (No. 20120006).

REFERENCES AND NOTES

13. The results that some other ratio of acetone to H\textsubscript{2}O provided were relatively wore.

14. These are the optimal reaction conditions. The screening about experimental parameters can be seen in the Supporting Information.