SYNTHESIS OF 2-HYDROXYMETHYL-2,3-DIHYDROBENZOFURANS

Meng-Yang Chang,* Shin-Ying Lin, and Chieh-Kai Chan

Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan. Email: mychang@kmu.edu.tw

Abstract – A one-pot protocol toward 2-hydroxymethyl-2,3-dihydrobenzofurans (1) starting with oxygenated o-allylbenzaldehydes (3) was described. The facile one-pot process was carried out by the oxidation of o-allylbenzaldehydes (3) with Oxone in the co-solvent of acetone and DMF in the presence of aqueous EDTA solution and then intramolecular ring-closure of the resulting o-allylphenols (2) in acceptable yields.

Functionalized 2,3-dihydrobenzofurans (coumaran) have been studied extensively since this ring system possesses various potential biological and pharmaceutical activities.1-3 Substituted 2-hydroxymethyl-2,3-dihydrobenzofuran (1) is an important core structure of naturally occurring oxygen heterocycles.4 Thus, some synthetic routes to access this scaffold have been developed.5 Among these methods, m-CPBA/K2CO3 system-mediated intramolecular cyclization of o-allylphenol (2) is the most frequently employed method for generating the skeleton of 2,3-dihydrobenzofuran with a C2-hydroxymethyl group (Scheme 1). In the course of our efforts with the application of o-allylbenzaldehyde (3),6 the Oxone-mediated synthesis of skeleton (1) with oxygenated groups on the benzene ring position was chosen as the key focus.

![Scheme 1](image)

Scheme 1. Route toward skeleton (1)

Oxone (2KHSO5·KH2SO4·K2SO4) is a mild, stable, non-toxic, inexpensive, easy-operation, and environmentally benign oxidation regent.7 It has largely been employed as the co-oxidant in the presence of a metal catalyst for a variety of oxidation transformations.8,9 Webb and Ruszkay reported that treatment of electron-withdrawing and electron-neutral aromatic aldehydes with Oxone afforded...
carboxylic acids. However, when electron-donating substrates, such as \(p \)-anisaldehyde, salicylaldehyde or piperonal, were reacted with Oxone, \(p \)-methoxyphenol, catechol or sesamol were isolated.\(^9\) This observation was noted by Borhan\(^9\) and Chang,\(^9\) as shown in Scheme 2. The majority of electron-rich benzaldehydes was converted to Dakin products.\(^10\) For Oxone-mediated oxidation of non-aromatic ketones, Baeyer-Villiger esterification was a major route.\(^11\) With this idea in mind, treatment of \(o \)-allylbenzaldehyde \(3a \) with the 3,4-dimethoxy group was examined.

Scheme 2. Oxone-mediated reaction of aromatic aldehydes

Under the EDTA aqueous solution (0.4 mM, 8 mL), treatment of compound (3a) with Oxone and \(\text{K}_2\text{CO}_3 \) in the co-solvent of acetone and DMF (8 mL, v/v = 1:1) produced compound (1a) (78\%) via a Dakin reaction of compound (3a) followed by intramolecular ring-closure of the resulting intermediate of potassium \(o \)-allylphenoxyide.\(^12\) The present Oxone-mediated oxidation reaction of model substrate (3a) with the dimethoxy group is consistent with previous reports. Although this work was not originally intended, a facile route for the present synthesis of skeleton (1) was achieved. The three-step known approach was employed to create this skeleton (3), starting with isovanillin (4) via (1) \(O \)-allylation of compound (4) with allyl, \(trans \)-crotol or \(trans \)-cinnamyl bromides (\(R^1 = H, \text{Me}, \text{Ph} \)) in acetone, (2) Claisen rearrangement of allyl phenyl ether in decalin and (3) \(O \)-substitution of the resulting compounds with halides (5) in acetone (Scheme 3).\(^6\)

Scheme 3. Three-step synthesis of skeleton (3)\(^6\)
As shown in Table 1, compounds (3a-h) were efficiently constructed in moderate yields (48-78%) by the facile protocol. Different substituents (R₁, R₂), with aliphatic or aromatic groups, were performed. By exchanging different substituents (R₂ = Me, n-Bu, c-C₅H₉, Bn), the modest yields of compounds (1a-d) were isolated (entries 1-4). Entry 5 shows that o-allylphenol (2a) with a 4-nitrophenyl R₂ group was separated in a 25% yield. Compared with epoxidation (terminal olefin \(\rightarrow \) epoxide), a reasonable
explanation could be that the Dakin reaction (formyl \(\rightarrow\) hydroxyl group) is preferred to proceed. For the isolated yield of compound (2b) with the triazoyl group (\(~10\%)\), similar results were observed, as shown in entry 6 and Scheme 4. The structure of \(\text{o-allylphenol} (2b)\) was determined by single-crystal X-ray crystallography.\(^\text{12}\) When the amounts of Oxone were increased to 5.0 equiv., the yield of compound (1f) was improved. By the above reaction conditions, reaction of compound (3g) or (3h) provided a pair of enantiomer (1g) or (1h) (entries 7-8) via the stereospecific cyclization.

\[\text{Oxone, acetone-DMF} \quad \frac{\text{K}_2\text{CO}_3, \text{EDTA}_\text{(aq)}}{\text{CHO O}} \quad \frac{\text{HO}}{\text{OMe}} \]

Scheme 5. Reaction of compound (1i)

To examine the limitation of this route, the 4-methoxy group of compound (3a) was removed. Under a similar process, treatment of compound (3i) with a C3-methoxy substituent afforded a 34% yield of compound (1i) along with some unknown products (Scheme 5). Based on the observation, we believe that two methoxy groups could increase the yield of the desired skeleton (1) and inhibit the formation of the unknown products by one-pot methodology. For the one-pot reactions of compounds (3e-f) and (3i), the reactivity should be affected by the electronic character of the phenol moieties in the intermediates. A facile synthetic methodology for producing several oxygenated 2-hydroxymethyl-2,3-dihydrobenzofurans (1) has been successfully presented using Oxone-mediated Dakin reaction of \(\text{o-allylbenzaldehydes} (3)\) with acceptable yields. Further investigation regarding one-pot cascade synthesis of functionalized heterocycles will be conducted and published in due course.

EXPERIMENTAL

General. All other reagents and solvents were obtained from commercial sources and used without further purification. Reactions were routinely carried out under an atmosphere of dry nitrogen with magnetic stirring. Products in organic solvents were dried with anhydrous magnesium sulfate before concentration in vacuo. Melting points were determined with a SMP3 melting apparatus. \(^1\)H and \(^{13}\)C NMR spectra were recorded on a Varian INOVA-400 spectrometer operating at 400 and at 100 MHz, respectively. Chemical shifts (δ) are reported in parts per million (ppm) and the coupling constants (J) are given in Hertz. High resolution mass spectra (HRMS) were measured with a mass spectrometer Finnigan/Thermo Quest MAT 95XL. X-Ray crystal structures were obtained with an Enraf-Nonius FR-590 diffractometer (CAD4, Kappa CCD).

A representative procedure of skeleton (1) is as follows: \(\text{K}_2\text{CO}_3 (550 \text{ mg}, 4.0 \text{ mmol}) \) was added to a
solution of skeleton (3) (1.0 mmol) in the co-solvent of acetone and DMF (8 mL, v / v = 1 : 1) at rt. Oxone (1.8 g, 3.0 mmol) in an aqueous EDTA (4 mM, 8 mL) solution was added to the stirred reaction mixture solution at rt. The reaction mixture was stirred at rt for 6 h. NaHSO$_3$ (aq) (50%, 10 mL) was added to the reaction mixture and the mixture was extracted with CH$_2$Cl$_2$ (3 x 20 mL). The combined organic layers were washed with brine, dried, filtered and evaporated to afford crude product. Purification on silica gel (hexanes/EtOAc = 10/1~2/1) afforded skeleton (1).

Compound (1a). Yield = 78% (164 mg); Colorless solid; mp 52-53 °C (recrystallized from hexanes and EtOAc); HRMS (ESI, M$^+$+1) calcd for C$_{11}$H$_{15}$O$_4$ 211.0970, found 211.0977; 1H NMR (400 MHz, CDCl$_3$): δ 6.65 (d, J = 8.4 Hz, 1H), 6.40 (d, J = 8.4 Hz, 1H), 4.89-4.83 (m, 1H), 3.87 (s, 3H), 3.81 (dd, J$=$ 2.8, 12.4 Hz, 1H), 3.78 (s, 3H), 3.71 (dd, J$=$ 6.4, 12.4 Hz, 1H), 3.28 (dd, J = 9.2, 16.0 Hz, 1H), 3.05 (dd, J$=$ 7.6, 16.0 Hz, 1H), 2.37 (br s, 1H); 13C NMR (100 MHz, CDCl$_3$): δ 154.3, 146.3, 146.2, 118.7, 112.6, 103.0, 83.5, 64.7, 59.8, 56.9, 29.7.

Compound (1b). Yield = 65% (164 mg); Colorless oil; HRMS (ESI, M$^+$+1) calcd for C$_{14}$H$_{21}$O$_4$ 253.1440, found 253.1435; 1H NMR (400 MHz, CDCl$_3$): δ 6.63 (d, J = 8.4 Hz, 1H), 6.38 (d, J = 8.4 Hz, 1H), 4.87-4.81 (m, 1H), 4.01 (t, J$=$ 6.8 Hz, 2H), 3.75 (s, 3H), 3.79 -3.66 (m, 2H), 3.22 (dd, J$=$ 9.2, 16.0 Hz, 1H), 2.98 (dd, J$=$ 7.6, 16.0 Hz, 1H), 1.71-1.64 (m, 2H), 1.50 -1.41 (m, 2H), 0.94 (t, J$=$ 7.2 Hz, 3H); 13C NMR (100 MHz, CDCl$_3$): δ 154.1, 146.7, 145.4, 119.5, 112.8, 103.0, 83.5, 72.2, 64.6, 56.9, 32.2, 29.7, 19.0, 13.7.

Compound (1c). Yield = 62% (164 mg); Colorless oil; HRMS (ESI, M$^+$+1) calcd for C$_{15}$H$_{21}$O$_4$ 265.1440, found 265.1442; 1H NMR (400 MHz, CDCl$_3$): δ 6.61 (d, J = 8.4 Hz, 1H), 6.38 (d, J = 8.4 Hz, 1H), 4.87-4.81 (m, 1H), 4.01 (t, J$=$ 6.8 Hz, 2H), 3.75 (s, 3H), 3.79-3.66 (m, 2H), 3.22 (dd, J$=$ 9.2, 16.0 Hz, 1H), 2.94 (dd, J$=$ 7.6, 16.0 Hz, 1H), 2.85 (br s, 1H), 2.01 -1.52 (m, 8H); 13C NMR (100 MHz, CDCl$_3$): δ 154.0, 146.9, 144.1, 120.2, 112.8, 102.8, 83.5, 83.4, 64.5, 56.8, 32.8, 32.7, 29.7, 23.3 (2x).

Compound (1d). Yield = 68% (195 mg); Colorless oil; HRMS (ESI, M$^+$+1) calcd for C$_{17}$H$_{19}$O$_4$ 287.1283, found 287.1285; 1H NMR (400 MHz, CDCl$_3$): δ 7.41-7.29 (m, 5H), 6.70 (d, J = 8.8 Hz, 1H), 6.44 (d, J = 8.8 Hz, 1H), 5.09 (s, 2H), 4.80-4.74 (m, 1H), 3.82 (s, 3H), 3.68-3.57 (m, 2H), 3.02 (dd, J$=$ 9.2, 16.0 Hz, 1H), 2.73 (dd, J$=$ 7.6, 16.0 Hz, 1H), 2.52 (br s, 1H); 13C NMR (100 MHz, CDCl$_3$): δ 153.8, 146.8, 144.6, 137.5, 128.2 (4x), 127.9, 120.4, 112.7, 103.5, 83.5, 74.2, 64.6, 56.8, 29.5.

Compound (1e). Yield = 48% (152 mg); Colorless solid; mp 85-86 °C (recrystallized from hexanes and EtOAc); HRMS (ESI, M$^+$+1) calcd for C$_{16}$H$_{16}$NO$_6$ 318.09778, found 318.0979; 1H NMR (400 MHz, CDCl$_3$): δ 8.16 (d, J = 9.2 Hz, 2H), 6.93 (d, J = 9.2 Hz, 2H), 6.78 (d, J = 8.4 Hz, 1H), 6.64 (d, J = 8.4 Hz, 1H), 4.94-4.87 (m, 1H), 3.81 (dd, J$=$ 3.2, 9.2 Hz, 1H), 3.70 (s, 3H), 3.69 (dd, J$=$ 6.0, 9.2 Hz, 1H), 3.07 (dd, J$=$ 9.2, 16.0 Hz, 1H), 2.88 (dd, J$=$ 7.2, 16.0 Hz, 1H), 2.30 (br s, 1H); 13C NMR (100 MHz, CDCl$_3$):
δ 162.5, 154.5, 146.1, 142.4, 139.0, 125.9 (2x), 121.0, 115.3 (2x), 112.9, 106.2, 83.9, 64.5, 56.8, 29.2.

Compound (I). Yield = 50% (184 mg); Colorless solid; mp 61-62 °C (recrystallized from hexanes and EtOAc); HRMS (ESI, M+1) calcd for C_{20}H_{22}N_{3}O_{4} 368.1610, found 368.1615; 1H NMR (400 MHz, CDCl_{3}): δ 7.45 (s, 1H), 7.38-7.33 (m, 3H), 7.23-7.18 (m, 2H), 6.62 (d, J = 8.4 Hz, 1H), 6.41 (d, J = 8.4 Hz, 1H), 5.51 (d, J = 15.2 Hz, 1H), 5.47 (d, J = 14.8 Hz, 1H), 5.20 (s, 2H), 4.79-4.72 (m, 1H), 3.74 (s, 3H), 3.70 (dd, J = 3.2, 12.0 Hz, 1H), 3.60 (dd, J = 6.0, 12.0 Hz, 1H), 3.04 (dd, J = 9.2, 16.0 Hz, 1H), 2.81 (dd, J = 6.8, 16.0 Hz, 1H), 2.28 (br s, 1H); 13C NMR (100 MHz, CDCl_{3}): δ 154.0, 146.7, 144.9, 144.0, 134.5, 129.1 (2x), 128.7, 127.9 (2x), 123.0, 120.5, 112.4, 103.8, 83.6, 65.2, 64.6, 56.7, 54.0, 29.6.

Compound (I). Yield = 70% (157 mg); Colorless gum; HRMS (ESI, M+1) calcd for C_{19}H_{17}O_{4} 225.1127, found 225.1128; 1H NMR (400 MHz, CDCl_{3}): δ 6.72 (s, 1H), 6.40 (s, 1H), 4.66 (dt, J = 3.6, 8.4 Hz, 1H), 4.10-4.08 (m, 1H), 3.79 (s, 6H), 3.15 (dd, J = 8.4, 15.2 Hz, 1H), 3.03 (dd, J = 9.6, 15.2 Hz, 1H), 2.18 (br s, 1H), 1.19 (d, J = 6.8 Hz, 3H); 13C NMR (100 MHz, CDCl_{3}): δ 153.5, 149.1, 143.3, 116.5, 109.2, 94.6, 87.0, 68.2, 56.8, 56.0, 29.5, 17.6.

Compound (I). Yield = 73% (248 mg); Colorless gum; HRMS (ESI, M+1) calcd for C_{21}H_{25}O_{4} 341.1753, found 341.1758; 1H NMR (400 MHz, CDCl_{3}): δ 7.46-7.34 (m, 5H), 6.58 (s, 1H), 6.51 (s, 1H), 4.75 (d, J = 8.0 Hz, 1H), 4.71-4.67 (m, 1H), 4.15-4.10 (m, 1H), 3.80 (s, 3H), 3.00 (dd, J = 5.2, 15.6 Hz, 1H), 2.84 (dd, J = 8.8, 15.6 Hz, 1H), 1.96-1.53 (m, 8H), 1.60 (br s, 1H); 13C NMR (100 MHz, CDCl_{3}): δ 147.8, 147.4, 144.5, 138.1, 128.8 (2x), 128.7, 127.2 (2x), 113.3, 110.3, 103.4, 81.8, 80.3, 68.4, 56.8, 32.8, 32.7, 32.4, 24.0 (2x).

Compound (I). Yield = 34% (61 mg); Colorless oil; HRMS (ESI, M+1) calcd for C_{19}H_{13}O_{3} 181.0865, found 181.0851; 1H NMR (400 MHz, CDCl_{3}): δ 7.08 (t, J = 8.0 Hz, 1H), 6.44 (d, J = 8.0 Hz, 1H), 6.41 (d, J = 8.0 Hz, 1H), 4.95-4.89 (m, 1H), 3.82 (s, 3H), 3.82-3.69 (m, 2H), 3.18 (dd, J = 9.2, 16.0 Hz, 1H), 2.90 (dd, J = 7.6, 16.0 Hz, 1H), 2.55 (br s, 1H); 13C NMR (100 MHz, CDCl_{3}): δ 160.4, 156.5, 129.0, 113.4, 103.0, 102.7, 83.6, 64.9, 55.2, 28.7.

Compound (I). Yield = 25% (19 mg); Colorless gum; HRMS (ESI, M+1) calcd for C_{16}H_{16}NO_{5} 302.1029, found 302.1032; 1H NMR (400 MHz, CDCl_{3}): δ 8.16 (d, J = 9.2 Hz, 2H), 6.89 (d, J = 9.2 Hz, 2H), 6.81 (d, J = 8.8 Hz, 1H), 6.76 (d, J = 8.8 Hz, 1H), 5.88-5.79 (m, 1H), 5.11 (br s, 1H), 5.04-4.99 (m, 2H), 3.68 (s, 3H), 3.35 (dt, J = 1.2, 6.0 Hz, 2H); 13C NMR (100 MHz, CDCl_{3}): δ 163.3, 148.9, 146.0, 142.2, 140.7, 134.9, 126.8 (2x), 120.9, 116.5, 115.2 (2x), 113.1, 111.5, 56.3, 28.5.

Compound (I). Yield = 10% (35 mg); Colorless solid; mp 61-62 °C (recrystallized from hexanes and EtOAc); HRMS (ESI, M+1) calcd for C_{20}H_{22}N_{3}O_{4} 352.1661, found 352.1667; 1H NMR (400 MHz, CDCl_{3}): δ 7.50 (s, 1H), 7.40-7.34 (m, 3H), 7.26-7.23 (m, 2H), 6.67 (d, J = 8.4 Hz, 1H), 6.59 (d, J = 8.4 Hz, 1H), 5.91-5.81 (m, 1H), 5.52 (s, 2H), 5.41 (br s, 1H), 5.13 (s, 2H), 5.02-4.97 (m, 2H), 3.76 (s, 3H), 3.37 (dt, J = 1.6, 6.0 Hz, 2H); 13C NMR (100 MHz, CDCl_{3}): δ 148.9, 146.7, 145.8, 145.1, 136.2, 134.5,
129.1 (2x), 128.7, 128.0 (2x), 122.9, 120.6, 115.6, 111.1, 110.9, 66.2, 56.2, 54.1, 28.5. Single-crystal X-ray diagram: crystal of compound 2b was grown by slow diffusion of EtOAc into a solution of compound 2b in CH$_2$Cl$_2$ to yield colorless prisms. The compound crystallizes in the monoclinic crystal system, space group P 2/c, $a = 30.00(4)$ Å, $b = 6.608(8)$ Å, $c = 18.39(2)$ Å, $V = 3643(8)$ Å3, $Z = 8$, $d_{calc} = 1.281$ g/cm3, $F(000) = 1488$, 2θ range $1.358\sim27.376^\circ$, R indices (all data) R1 = 0.2467, wR2 = 0.3585.

ACKNOWLEDGEMENTS
The authors would like to thank the National Science Council of the Republic of China for its financial support (NSC 102-2113-M-037-005-MY2).

REFERENCES

12. CCDC 996277 (2b) contains the supplementary crystallographic data for this paper. This data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; fax: 44-1223-336033; e-mail: deposit@ccdc.cam.ac.uk).

SUPPLEMENTARY MATERIAL

Scanned photocopies of ¹H and ¹³C NMR spectral data were supported.