SYNTHESIS OF AZAHETEROCYCLES AND RELATED MOLECULES
BY Tf₂NH-CATALYZED CYCLOADDITIONS

Naoya Shindo¹ and Kiyosei Takasu²*

¹Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan. shindo708@phar.kyushu-u.ac.jp;
²Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. kay-t@pharm.kyoto-u.ac.jp

Abstract – Acid-catalyzed cycloadditions utilizing nitrogen-containing building blocks are powerful tools for the synthesis of azaheterocyclic molecules. This review summarizes Tf₂NH-catalyzed cycloadditions of imines and other related building blocks with electron-rich alkenes, alkynes, and 1,3-dienes, giving a various type of azaheterocycles and related nitrogen-containing compounds.

CONTENTS
1. Introduction
2. Reactions of 2-Siloxy-1,3-dienes with Aldimines
3. Reactions of Electron-Rich Alkenes with N-Arylaldimines
 3-1. Cascade Povarov–Hydrogen-Transfer Reaction
 3-2. [3 + 2] Cycloaddition with α,α-Dimethylallylsilane
4. Reactions of Ynamides with Aldimines
 4-1. Cascade [2 + 2] Cycloaddition–4π Cycloreversion
 4-2. Catalyst-Controlled Torquoselectivity Switch in the 4π Cycloreversion
 4-3. Catalytic Ring Expansion of Cyclic Hemiaminals with Silyl Ynol Ethers
5. Reactions of Ynamides with Ketimines
 5-1. Reaction with N-Aryl Acetophenone Imines
 5-2. Reaction with N-Aryl Benzophenone Imines
6. Reactions of Ynamides with Other Nitrogen Compounds
 6-1. Cyclotrimerization with Nitriles
 6-2. [3 + 2] Cycloadditions with Three-Atom Building Blocks
Azaheterocycles are found in a myriad of biologically active natural products and pharmaceuticals, thus the development of methodologies for their efficient construction continues to be of particular importance in synthetic organic chemistry. Cycloaddition reactions employing nitrogen-containing building blocks are ideal approaches toward azaheterocycles: the reactions provide fast access to structurally diverse products from two (or sometimes three) simple substrates while realizing high atom economy\(^1\) in case that the reaction is facilitated catalytically. Imines are one of the most versatile building blocks for the synthesis of azaheterocycles by cycloaddition reactions because they can act as both nitrogen-containing dienophiles and azadienes (Figure 1).\(^2\) In most cases, imines can easily be prepared from the corresponding carbonyl compounds and amines by dehydrative condensation. Application to multicomponent reactions in which imines are formed \textit{in situ} is possible, as the condensation of typical aldehydes with aliphatic amines or anilines proceeds readily without a catalyst.

Bronsted or Lewis acids enhance the electrophilic reactivity of imines. However, due to the Lewis basicity of the imine nitrogen atom, catalytic activation of imines was usually considered difficult in comparison with the corresponding carbonyl compounds. While Lewis acids such as triflate salts of groups III (Sc, lanthanides, etc.) or IV metals (Zr, Hf, etc.) were shown to be able to catalytically activate imines in a variety of C–C bond forming reactions,\(^3\) activation of imines by Bronsted acid usually
required a stoichiometric amount of the acid owing to low catalyst turnover. Meanwhile, in 1999, Akiyama reported that a catalytic amount of strong Brønsted acid, HBF$_4$, facilitated Mannich reaction of imines with silyl enol ethers4 and aza Diels–Alder reaction of imines with Danishefsky’s diene.5 Since then, a range of C–C bond forming reactions utilizing Brønsted acids for catalytic activation of imines has been reported.6 Brønsted acid catalysts employ a proton, existing universally on the earth, as the active center. In contrast to typical Lewis acids, organic Brønsted acids are in general chemically stable, easy to handle, and environment-friendly. In particular, super Brønsted acids, which exhibit stronger acidity than concentrated sulfuric acid, have been proven highly effective for catalytic activation of imines. Trifluoromethanesulfonic acid (TfOH; triflic acid) is received as a representative organic super Brønsted acid: It has been employed in various C–C bond forming reactions utilizing imines such as Mannich reactions,2 aza Diels–Alder reactions,8 Darzens-type imine aziridinations with α-diazo esters,9 and Friedel–Crafts-type reactions with indoles.10

Aza Diels–Alder reaction (ref. 8)

```
R\(=\)N\(\equiv\)Ar + TMSO\(\equiv\)Ar\(^2\) → R\(=\)N\(\equiv\)Ar\(^2\) 71–100% yield
```

Imine aziridination/[2 + 1] Cycloaddition (ref. 9)

```
R\(^1\)N\(=\)O\(\equiv\)N\(^2\) + R\(^2\)N\(\equiv\)R\(^3\) → R\(^1\)N\(=\)O\(\equiv\)N\(^2\) 50–74% yield
```

Scheme 1. TfOH-Catalyzed Cycloadditions Giving Azaheterocycles

Trifluoromethanesulfonimide (Tf$_2$NH; triflic imide, triflimide)11 is also categorized to be an organic super Brønsted acid, of which proton on the nitrogen atom shows higher acidity than that of TfOH (relative pK_a in 1,2-dichloroethane to picric acid: H$_2$SO$_4$ = −2.5; TfOH = −11.4; Tf$_2$NH = −11.9).12 Both Tf$_2$NH and TfOH possess desirable properties as an acid catalyst: They show not only good stability against moisture and oxygen in the atmosphere, but also high solubility in nonpolar solvents. Along with C–C bond forming reactions like Mukaiyama aldol and Michael reactions,13,14 Tf$_2$NH has been utilized as a Brønsted acid catalyst in a variety of cycloadditions giving carbocycles. The author's group reported Tf$_2$NH-catalyzed [2 + 2] cycloadditions of silyl enol ethers or allylsilanes with acrylates,15,16 a [3 + 2]
cycloaddition of silyl enol ethers with activated cyclopropanes, a formal [3 + 3] cycloaddition of silyl enol ethers with acrylates, and a three-component cascade [4 + 2]–[2 + 2] cycloaddition of 2-siloxy-1,3-dienes with acrylates. It should be noted that R₃SiNTf₂, formed in situ from Tf₂NH and silyl enol ethers or allylsilanes, works as the actual catalyst in these reactions. In contrast, almost no application of Tf₂NH to catalytic cycloadditions giving azaheterocycles was reported before 2006. Over the last decade, we and other groups revealed that Tf₂NH works as a highly active catalyst in various types of cycloadditions for azaheterocycle synthesis. In this paper, we will review Tf₂NH-catalyzed cycloadditions affording azaheterocycles, reported from 2006 to 2017.

2. REACTIONS OF 2-SILOXY-1,3-DIENES WITH ALDIMINES
The imino Diels–Alder reaction, where imines act as the nitrogen-containing dienophile, is one of the most powerful and useful tools to construct a piperidine skeleton. Danishefsky’s diene (1-alkoxy-3-siloxy-1,3-butadiene) has frequently been utilized as the electron-rich, highly reactive diene in imino Diels–Alder reactions to give 2,3-dehydropiperidin-4-ones. A large number of Lewis or Brønsted acid-catalyzed imino Diels–Alder reactions employing Danishefsky’s diene, including enantioselective ones, have appeared in the literature. In contrast, less reactive 2-siloxy-1,3-butadienes have rarely been utilized in imino Diels–Alder reactions. In addition to several precedent examples of Lewis acid-catalyzed reactions, we reported the first Brønsted acid-catalyzed imino Diels–Alder reaction between 2-siloxy-1,3-dienes (1) and aldimines (2) to afford multi-substituted 4-siloxy-3,4-dehydropiperidines (3) (Table 1). The reaction of 1a and 2a proceeded smoothly at ambient temperature in the presence of 2 mol% of Tf₂NH, giving a diastereomeric mixture of 3aa in high yield. The stereochemistry of the major diastereomer was confirmed to be trans configuration of 2,6-substituents by X-ray crystallography of the desilylated piperidin-4-one (4aa). Reducing the catalyst loading to 0.1 mol% afforded 3aa without significant loss of the yield, proving high catalytic activity of Tf₂NH in this reaction. Imines with a broad range of substituents including heterocycles afforded the desired piperidine derivatives. However, activated imine 2h with the electron-withdrawing Ts group on the nitrogen atom gave substantial amounts of by-products, resulting in low yield. As for the 1,3-dienes, various substituent patterns gave the desired products. Interestingly, 5,6-trans-substituted piperidine (3ca) was obtained as the sole diastereomer from a geometrical mixture of 1-methyl-1,3-diene (1c). The highly reactive Danishefsky-type diene (1e) only resulted in decomposition of the diene in this reaction system. Remarkably, 2-methoxy-1,3-diene (1f) also gave the product (3fa) in moderate yield. This result indicated that Tf₂NH works as a Brønsted acid catalyst as it is, in contrast to aforementioned Tf₂NH-catalyzed cycloadditions giving carbocycles where R₃SiNTf₂ formed in situ acts as the actual catalyst. The
application of the reaction to a three-component reaction where imine (2a) was formed *in situ* from benzaldehyde and aniline was also successful.

Table 1. Tf$_2$NH-Catalyzed Imino Diels–Alder reaction of 2-Silox-1,3-dienes (1) and Aldimines (2)

<table>
<thead>
<tr>
<th>Diene 1 (R1, R2, R3, R4)</th>
<th>Aldimine 2 (R5, R6)</th>
<th>Product</th>
<th>% Yielda (trans:cis)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a (H, TBS, H, Ph)</td>
<td>2a (Ph, Ph)</td>
<td>3aa</td>
<td>85 (80:20)</td>
</tr>
<tr>
<td>1a</td>
<td>2b (Ph, p-NO$_2$C$_6$H$_4$)</td>
<td>3ab</td>
<td>85 (75:25)</td>
</tr>
<tr>
<td>1a</td>
<td>2c (Ph, p-MeOC$_6$H$_4$)</td>
<td>3ac</td>
<td>67 (77:23)</td>
</tr>
<tr>
<td>1a</td>
<td>2d (Ph, 1-naphthyl)</td>
<td>3ad</td>
<td>73 (84:16)</td>
</tr>
<tr>
<td>1a</td>
<td>2e (Ph, 3-pyridyl)</td>
<td>3ae</td>
<td>61 (73:27)</td>
</tr>
<tr>
<td>1a</td>
<td>2f (Ph, 3-indolyl)</td>
<td>3af</td>
<td>35 (81:19)</td>
</tr>
<tr>
<td>1a</td>
<td>2g (Bn, Ph)</td>
<td>3ag</td>
<td>89 (85:15)</td>
</tr>
<tr>
<td>1a</td>
<td>2h (Ts, Ph)</td>
<td>3ah</td>
<td>32 (89:11)</td>
</tr>
<tr>
<td>1a</td>
<td>2i</td>
<td>3ai</td>
<td>60 (60:40)</td>
</tr>
<tr>
<td>1b (H, TBS, Me, H)</td>
<td>2a</td>
<td>3ba</td>
<td>86</td>
</tr>
<tr>
<td>1c (Me, TBS, H, H)</td>
<td>2a</td>
<td>3ca</td>
<td>69</td>
</tr>
<tr>
<td>1d (H, TBS, H, H)</td>
<td>2a</td>
<td>3da</td>
<td>69</td>
</tr>
<tr>
<td>1e (H, TBS, H, OMe)</td>
<td>2a</td>
<td>3ea</td>
<td>0</td>
</tr>
<tr>
<td>1f (H, Me, H, H)</td>
<td>2a</td>
<td>3fa</td>
<td>48 (79:21)</td>
</tr>
</tbody>
</table>

aIsolated yields. bDetermined by 1H NMR
3. REACTIONS OF ELECTRON-RICH ALKENES WITH N-ARYLALDIMINES

3-1. Cascade Povarov–Hydrogen-Transfer Reaction

N-Arylimines act not only as nitrogen-containing dienophiles but also as azadienes. The inverse electron-demand Diels–Alder reaction between N-arylimines with electron-rich alkenes, named Povarov reaction, affords 1,2,3,4-tetrahydroquinoline derivatives. Electron-rich alkenes such as vinyl ethers, N-vinylamides, and styrenes have widely been used in the Povarov reaction. On the other hand, allylsilanes have scarcely employed in the Povarov reaction: only one example utilizing a stoichiometric amount of SnCl$_4$ as the Lewis acid was reported before 2006. Allylsilanes are stable, easy-to-handle allyl metal equivalents whose silyl group can be used for further chemical transformations. Accordingly, we have developed the Tf$_2$NH-catalyzed Povarov reaction utilizing N-arylamidoines and allylsilanes (Scheme 2). In the presence of 10 mol% Tf$_2$NH at 60 °C, equimolar amounts of N-arylamidoine (2k) and allylsilane (5a) in CH$_2$Cl$_2$ gave tetrahydroquinoline (6ak) as a diastereomeric mixture in moderate yield. In addition to 6ak, minor amounts of quinoline (7ak) and benzylamine (2’k) were also isolated. This observation indicated that 6ak was oxidized to 7ak by hydrogen transfer to imine (2k). Although hydrogen transfer between 3,4-dihydroquinolines and imines are reported, oxidation of 1,2,3,4-tetrahydroquinolines by hydrogen transfer usually requires a strong hydride acceptor such as 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ). Further experiments revealed that Tf$_2$NH promotes not only the Povarov reaction but also the hydrogen transfer reaction. Namely, in this reaction system, Tf$_2$NH worked as the catalyst for both cycloaddition and oxidation. A reaction system in which a single catalyst promotes two or more mechanistically distinct reactions is called auto-tandem catalysis. It attracts much attention in current organic chemistry since it enables complex molecular transformation with a simple experimental operation. By using an excess amount of imine (2k) and 1,2-dichloroethane (1,2-DCE) as the solvent, a mixture of tetrahydroquinoline (6ak) and quinoline (7ak) were obtained in good yields. The trans-isomer of 6ak was obtained in a diastereomeric ratio of 76:24, implying a faster reaction rate for cis-6ak in the hydrogen transfer reaction with the imine. In polar solvents (MeCN, THF, AcOEt), homoallylamine (8) was produced as a by-product. The formation of 8 indicates a non-concerted, stepwise mechanism of the cycloaddition process. In polar solvents, the β-silyl cation intermediate formed by Hosomi–Sakurai-type addition of the allylsilanes to the imines would be stabilized and would result in the formation of 8 by elimination of the silyl group. Formation of 8 was also observed when allyl-TMS (5b) was used instead of bulky allyl-TIPS (5a) in non-polar solvents. In this case, the cation intermediate would be unstable because of sterically less hindered silyl group and lead to fast desilylation from the intermediate. Electron-rich alkenes other than allylsilanes such as styrenes and N-vinyl-2-pyrrolidone also furnished tetrahydroquinolines and/or quinolines by the Tf$_2$NH-catalyzed cascade Povarov–hydrogen transfer reaction. In the case of N-vinylpyrrolidone (5d), however,
4-unsubstituted quinoline (9) was obtained instead of the expected nitrogen-substituted quinoline by the elimination of pyrrolidone before the hydrogen transfer.

The synthetic utility of the obtained quinolines was also demonstrated (Scheme 3). Desilylation of the TIPS group with CsF in the presence of C2Cl6 as the electrophile afforded 10, of which chloromethyl group would be a handle for further chemical transformations. Moreover, desilylation with TBAF in the presence of an aldehyde furnished alcohol (11) with a new C–C bond formation in good yield. 11 could further be transformed into tetracyclic azaheterocycle (12) by radical cyclization–dehydration. In analogy to Cadogan’s carbazole synthesis, quinoline (13) having an ortho-nitrophenyl group was heated in the presence of PPh3. In this case, indazolo[2,3-α]quinoline (14) with a new N–N bond was exclusively obtained via the formation of a nitrene. No formation of δ-carboline (15) with a new C–N bond was observed. The bulkiness of the TIPSC6H2 group would cause the chemoselectivity.
Scheme 3. Transformations of Quinolines (7)

3-2. [3 + 2] Cycloaddition with α,α-Dimethylallylsilane

We unexpectedly found that when α,α-dimethylallylsilane (16) and aldimine (21) were subjected to the same reaction conditions as above, substituted pyrrolidines (17) were obtained by a Tf$_2$NH-catalyzed [3 + 2] cycloaddition instead of the Povarov reaction (Scheme 4). The structure and the stereochemistry of 17 was established by X-ray crystallography. A plausible mechanism for the Tf$_2$NH-catalyzed reactions of allylsilanes (5a) or (16) with imines (2) is as follows: Initially, the addition of the allylsilane to the imine carbon would give the β-silyl cation intermediate (18). In Povarov reaction, the aromatic carbon would attack the cation to form a six-membered ring. In contrast, in the reaction with α,α-dimethylallylsilane (16), the intermediate (18) would transform into more stable non-classical siliranium cation (19) or β-silyl cation (20) by silacyclopropanation or 1,2-silyl shift, respectively. Finally, the intramolecular attack of the nitrogen atom in the intermediate (19) or (20) would afford the [3 + 2] cycloadduct. Thus, the mode of cyclization could be altered by the α-substituents of the allylsilanes.
Scheme 4. Tf₂NH-Catalyzed [3 + 2] Cycloaddition of α,α-Dimethylallylsilane (16) with Imines

4. REACTIONS OF YNAMIDES WITH ALDIMINES

4-1. Cascade [2 + 2] Cycloaddition–4π Cycloreversion

Two modes are known for the cycloadditions of imines with electron-rich alkynes. Several alkynes with a carbon substituent are reported to give quinolines by the Povarov reaction with N-arylaldimines in the presence of Brønsted or Lewis acid. On the other hand, alkynes directly attached to a hetero atom tend to undergo [2 + 2] cycloaddition with imines (Scheme 5). In most cases, the four-membered cycloadduct (2-azetine) immediately undergoes electrocyclic ring opening reaction (cycloreversion) to afford α,β-unsaturated amide derivatives. Alkynyl sulfides, alkynyl selenides, and silyl ynoi ethers are reported to participate in a Lewis acid-catalyzed [2 + 2] cycloadditon–4π ring opening reaction with imines to afford α,β-unsaturated thioimidates, selenoimidates, and amides, respectively. The cascade process corresponds to a formal aza-enyne metathesis.
We reported a Tf$_2$NH-catalyzed cascade [2 + 2] cycloaddition–4π cycloreversion of ynamides with aldimines to afford highly substituted α,β-unsaturated amidines (Table 2). Although a related BF$_3$-catalyzed synthesis of α,β-unsaturated amidines from nitrogen-substituted alkynes and imines was reported in 1985, the reaction employed highly reactive and unstable ynamines. In contrast, ynamides are stabilized by an electron-withdrawing group on the nitrogen atom. They show an excellent balance between stability and reactivity, and are recognized as useful synthetic building blocks in modern organic chemistry. In the presence of 10 mol% Tf$_2$NH, the reaction of ynamide (21a) bearing cyclic sulfonyl moiety and aldimine (21) proceeded rapidly at room temperature to give highly substituted α,β-unsaturated amine (23α) as a single diastereomer in 93% yield. X-Ray crystallography revealed E geometry for both the alkene and the amidine moieties of 23α. Various N,C-diarylaldimines and N-alkyl-C-arylaldimines afforded the desired α,β-unsaturated amidines in high yields. Aryl-, alkyl-substituted, and terminal ynamides exclusively gave anti-23 where the Ar group and the amidine moiety are placed on the opposite sides of the alkene. The configuration of the alkene moiety of the α,β-unsaturated amidines is determined by the direction in which the σ-orbital of the central bond rotates in the thermal, conrotatory cycloreversion of the four-membered ring intermediate. This stereoselectivity, termed torquoselectivity, has been well studied both experimentally and theoretically for the related thermal cycloreversion of cyclobutenes to give 1,3-butadienes. In the cycloreversion of the 2-amino-2-azetines (22) generated from ynamides and aldimines, the C(3) substituent derived from the alkene terminus could be a determining factor for the torquoselectivity (Scheme 6). That is, when the R$_2$ group at the C(3) position is comparatively small, an outward rotation of C(4) Ar group would prefer anti geometry to avoid a steric repulsion between the C(4) Ar substituent and the forming amidine moiety. This explains the exclusive formation of the anti isomers from ynamides described above (R$_2$ = aryl, alkyl, and H). By contrast, when the R$_2$ group is sufficiently large, the steric repulsion between the R$_2$ and the C(4) Ar substituents would result in an inward rotation to afford syn geometry. In fact, ynamide (21g) with highly bulky TIPS group at the alkene terminus selectively produced syn-23. Interestingly, the 1H NMR spectra of the syn-23 indicated the existence of atropisomers at room temperature, whereas anti-23 showed no evidence of atropisomerism even at −90 °C. The atropisomers of α,β-unsaturated amide
derivatives are generally unstable and prone to racemization since the alkene is relatively flexible compared to the well-known atropisomeric biaryl compounds. Nevertheless, we successfully separated each enantiomer of 24 using preparative chiral HPLC at 10 °C.

Table 2. Tf$_2$NH-Catalyzed Cascade [2 + 2] Cycloaddition–4π Cycloreversion to Afford anti-23

<table>
<thead>
<tr>
<th>Ynamide 21</th>
<th>Aldimine 2 (R³, Ar)</th>
<th>time (h)</th>
<th>Product</th>
<th>% Yielda</th>
</tr>
</thead>
<tbody>
<tr>
<td>21a (R = Ph)</td>
<td>2l (p-CF$_3$C$_6$H$_4$, p-tol)</td>
<td>0.25</td>
<td>23al</td>
<td>93</td>
</tr>
<tr>
<td>21b (R = H)</td>
<td>2l</td>
<td>0.25</td>
<td>23bl</td>
<td>78</td>
</tr>
<tr>
<td>21c (R = CH$_2$OTBS)</td>
<td>2l</td>
<td>0.25</td>
<td>23cl</td>
<td>92</td>
</tr>
<tr>
<td>21d (R = Ph)</td>
<td>2l</td>
<td>0.5</td>
<td>23dl</td>
<td>76</td>
</tr>
<tr>
<td>21e (R = H)</td>
<td>2l</td>
<td>0.25</td>
<td>23el</td>
<td>81</td>
</tr>
<tr>
<td>21f</td>
<td>2l</td>
<td>0.25</td>
<td>23fl</td>
<td>80</td>
</tr>
<tr>
<td>21a</td>
<td>2m (p-NO$_2$C$_6$H$_4$, Ph)</td>
<td>0.25</td>
<td>23am</td>
<td>68</td>
</tr>
<tr>
<td>21a</td>
<td>2n (p-BrC$_6$H$_4$, Ph)</td>
<td>0.25</td>
<td>23an</td>
<td>72</td>
</tr>
<tr>
<td>21a</td>
<td>2o (o-BrC$_6$H$_4$, Ph)</td>
<td>0.25</td>
<td>23ao</td>
<td>73</td>
</tr>
<tr>
<td>21a</td>
<td>2p (o-IC$_6$H$_4$, p-tol)</td>
<td>0.25</td>
<td>23ap</td>
<td>88</td>
</tr>
<tr>
<td>21a</td>
<td>2a (Ph, Ph)</td>
<td>1.5</td>
<td>23aa</td>
<td>67b</td>
</tr>
<tr>
<td>21a</td>
<td>2q (p-MeOC$_6$H$_4$, Ph)</td>
<td>17</td>
<td>23aq</td>
<td>64c</td>
</tr>
<tr>
<td>21a</td>
<td>2g (Bn, Ph)</td>
<td>24</td>
<td>23ag</td>
<td>94d</td>
</tr>
<tr>
<td>21a</td>
<td>2r (allyl, Ph)</td>
<td>24</td>
<td>23ar</td>
<td>90d</td>
</tr>
</tbody>
</table>

aIsolated yields. b15 mol% Tf$_2$NH. c20 mol% Tf$_2$NH. d20 mol% Tf$_2$NH at 60 °C
4-2. Catalyst-Controlled Torquoselectivity Switch in the 4π Cycloreversion

As stated above, the torquoselectivity in the 4π electrocyclic cycloreversion of the four-membered intermediate determines the stereochemistry of the alkene moiety of the α,β-unsaturated amidines. Both steric and stereoelectronic factors affect torquoselectivity (Figure 2). Using ab initio calculations, Houk and co-workers showed that stereoelectronic effects dominantly control the torquoselectivity in the 4π cycloreversion of cyclobutenes and their analogs. The interaction between the orbital of the C(4) substituent and the σ-orbital of the breaking C(4)\cdotsX bond is maximized in the inward transition state. Since the breaking central σ-bond is electron-rich, an electron-donating substituent at the C(4) position would favor outward rotation in order to avoid the electronic repulsion. Conversely, an electron-accepting substituent (e.g., BH$_2$, CHO) would prefer inward rotation, as the interaction between the substituent and the breaking σ-bond would stabilize the transition state (mode A). As explained earlier, steric effects can also determine the torquoselectivity in case that the electronic properties of the C(4) substituents are not significantly different. When the C(4) substituent is sterically smaller than the forming C(=X)R group, the bulky C(4) substituent would undergo an outward rotation (mode B). When the C(3) substituent is sterically bulky, an inward rotation of the larger C(4) substituent would be favorable (mode C). In any case, the torquoselectivity critically depends on the nature of the substrate, and hardly be altered by the reaction conditions such as solvents and additives. A stereoselective synthesis of both geometrical isomers of the 1,3-diienyl compound from the same substrate is generally difficult.
In contrast, we reported a catalyst-controlled torquoselectivity switch in the 4π cycloversion of the 2-amino-2-azetine \(22\) generated from the TMS-substituted yne-oxazolidinone \(21h\) and \(N,C\)-diaryl-aldimines \(2s\) (Table 3).\(^{42}\) The acidity of the Brønsted acid catalyst displayed a striking effect on the \textit{anti/syn} diastereomeric ratio of the product. In the presence of a catalytic amount of super strong Brønsted acids such as Tf\(_2\)NH and TfOH, the reaction of \(21h\) and \(2s\) in toluene afforded \textit{anti-23hs} in high stereoselectivity. When less acidic sulfonic acids were employed as the catalyst, the ratio of the \textit{syn-23hs} increased as the acidity of the catalyst decreased (\(pK_a\) in acetonitrile: TfOH = 2.6, MsOH = 10).\(^{43,44}\) In particular, CSA (10-camphorsulfonic acid) produced \textit{syn-23hs} in good yield and selectivity. On the other hand, the cation center of the acid catalyst showed little influence on the torquoselectivity. All Lewis acids tested (BF\(_3\)•Et\(_2\), Sc(OTf)\(_3\), TiCl\(_4\), PtCl\(_4\), In(OTf)\(_3\), Yb(OTf)\(_3\), etc.) preferentially gave \textit{anti-amidine} in a similar diastereomeric ratio. The reaction solvent affected the torquoselectivity: Acetonitrile, a polar solvent, increased \textit{anti}-selectivity under both Tf\(_2\)NH and CSA catalysis, while non-polar solvents such as aromatic solvents and 1,2-DCE preferred the formation of the \textit{syn-isomer}. The optimal reaction conditions found to be Tf\(_2\)NH in acetonitrile for \textit{anti-23hs}, and CSA in \(\alpha,\alpha,\alpha\)-trifluorotoluene (TFT) for \textit{syn-23hs}. Since no isomerization of \textit{anti-} and \textit{syn-23hs} was observed after 24 h in the presence of Tf\(_2\)NH or CSA, it has been confirmed that the stereochemistry of \textit{23hs} is kinetically determined during the conrotatory ring opening of the 2-azetine. Thus, the choice of an appropriate combination of the Brønsted acid and the reaction solvent enabled stereoselective synthesis of both geometrical isomers of \textit{23hs} from the same set of the substrates by the catalyst-controlled torquoselectivity switch.
DFT calculations were performed at B3LYP/6-31(d) level to explain the mechanism of the torquoselectivity switch. There are four possible transition states for the ring opening of protonated 2-azetinium cation \([25\cdot\text{H}]^+\) depending on the direction of the C(4) phenyl group rotation (inward vs outward) and the relative configuration of the two aryl groups at the C(4) and the N(1) positions (\textit{cis} vs \textit{trans}) (Figure 3).

The energy difference between \textit{cis}- and \textit{trans}-[25\cdot\text{H}]^+ is small, and the diastereomers rapidly equilibrate under the reaction condition through deprotonation of the nitrogen atom, nitrogen inversion, and re-protonation. As the \textit{E}/\textit{Z} stereochemistry of the C\(=\)N bond of \(23\text{hk}\) readily epimerizes, only the geometry of the C\(=\)C bond reports the torquoselectivity. The activation energies of \textbf{TS}s \textit{A} (inward-\textit{cis}) and \textit{D} (outward-\textit{trans}) in which the N(1) aryl group undergoes an outward rotation were found to be lower than that of the other two \textbf{TS}s. Thus, the \textit{anti}/\textit{syn} ratio of the final product (\(23\text{hk}\)) would reflect the

Table 3. Effect of the Catalyst and the Solvent on the Torquoselectivity in the Reaction of \(21\text{h}\) and \(2s\)

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Solvent</th>
<th>% Yield(^a)</th>
<th>\textit{anti}/\textit{syn}(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tf(_2)NH(^c)</td>
<td>toluene</td>
<td>95</td>
<td>92:8</td>
</tr>
<tr>
<td>TfOH</td>
<td>toluene</td>
<td>93</td>
<td>95:5</td>
</tr>
<tr>
<td>(p)-TsOH</td>
<td>toluene</td>
<td>5</td>
<td>55:45</td>
</tr>
<tr>
<td>MsOH</td>
<td>toluene</td>
<td>40</td>
<td>17:83</td>
</tr>
<tr>
<td>CSA</td>
<td>toluene</td>
<td>79</td>
<td>15:85</td>
</tr>
<tr>
<td>Tf(_2)NH(^c)</td>
<td>MeCN</td>
<td>86</td>
<td>95:5</td>
</tr>
<tr>
<td>Tf(_2)NH(^c)</td>
<td>1,2-DCE</td>
<td>74</td>
<td>76:24</td>
</tr>
<tr>
<td>CSA</td>
<td>CH(_2)Cl(_2)</td>
<td>87</td>
<td>18:82</td>
</tr>
<tr>
<td>CSA</td>
<td>1,2-DCE</td>
<td>45</td>
<td>25:75</td>
</tr>
<tr>
<td>CSA</td>
<td>MeCN</td>
<td>50</td>
<td>33:67</td>
</tr>
<tr>
<td>CSA</td>
<td>benzene</td>
<td>70</td>
<td>14:86</td>
</tr>
<tr>
<td>CSA</td>
<td>chlorobenzene</td>
<td>76</td>
<td>14:86</td>
</tr>
<tr>
<td>CSA</td>
<td>TFT</td>
<td>77</td>
<td>10:90</td>
</tr>
</tbody>
</table>

\(^a\)Isolated yields. \(^b\)Determined by \(^1\)H NMR. \(^c\)15 mol\% Tf\(_2\)NH, 15 min
relative Gibbs free energy ($\Delta \Delta G^\ddagger$) of the TSs A and D, which produce syn-23hk and anti-23hk, respectively. In the naked cation model where the counter anion is solvated and not present in the vicinity of the azetinium $[25\cdot H]^+$, TS D leading to the formation of anti-23hk was calculated to be more stable compared to TS A by 1.4 kcal/mol (Figure 4). By contrast, when a sulfonate anion was included in the transition state structures (ionic pair model), TS A giving syn-23hk became more stable than TS D by 1.3 kcal/mol. The steric effect would explain the reversal of the stability of TSs A and D. In the naked cation model, the steric repulsion between the C(4) phenyl group and the forming amidine moiety and/or N(1) aryl group would destabilize TS A. On the other hand, in the ionic pair model, TS D would be destabilized by the steric and electronic repulsion between the C(4) phenyl group and the sulfonate anion. These computational results provide a reasonable explanation for the mechanism of the catalyst-controlled torquoselectivity switch: In a super strong acid (Tf$_2$NH, TfOH) catalysis, the counter anion is likely to be solvated and the 2-azetine cycloreversion would preferably proceed through the naked cation model which leads to a selective formation of the anti-isomer, whereas a weaker sulfonic acid (MsOH, CSA) would preferentially provide the syn-isomer via the ionic pair model. The experimentally observed solvent effect on the anti/syn selectivity also agrees with this mechanism.

Figure 3. Possible Transition States TS A–D for the 4π-Cycloreversion of $[25\cdot H]^+$ (Ar = p-CF$_3$C$_6$H$_4$)
4-3. Catalytic Ring Expansion of Cyclic Hemiaminals with Silyl Ynol Ethers

Sun and Li utilized the acid-catalyzed cascade [2 + 2] cycloaddition–4π cycloreversion strategy to a catalytic ring expansion of N-sulfonyliminiums generated in situ from cyclic hemiaminals (Scheme 7). They employed silyl ynol ethers instead of ynamides as the electron-rich alkyne. In the presence of 10 mol% Tf₂NH, the reaction of silyl ynol ethers (26) and cyclic hemiaminals (27) proceeded smoothly at room temperature to afford seven- and eight-membered ring lactams (28) in good yields. The use of Ts group as the nitrogen-protecting group seemed essential to selectively promote the desired reaction. Only Tf₂NH was able to catalytically facilitate the reaction in good yields.
5. REACTIONS OF YNAMIDES WITH KETIMINES

5-1. Reaction with N-Aryl Acetophenone Imines

During the course of the study to apply the above Tf₂NH-catalyzed formal aza-enyne metathesis to the stereoselective synthesis of tetra-substituted alkenes, we came across an unprecedented synthesis of N,N-divinylamines from ynamides and acetophenone imines (Scheme 8). The Tf₂NH-catalyzed reaction of ynamide (21) and N-aryl acetophenone imine (29) proceeded smoothly at room temperature in spite of the low electrophilicity of the imine carbon of 29 compared to aldimines. However, the product was not the expected α,β-unsaturated amidine (30) bearing a tetra-substituted alkene moiety, but 3-azapentadiene (31) whose structure was unambiguously confirmed by X-ray crystallography. Although the diaminoalkene and divinylamine moieties of 31 seemed highly reactive, 31 was stable to be isolated and handled under both the solution and solid states. A plausible reaction mechanism of the formation of 31 is as follows: Due to the low electrophilicity of 29, a nucleophilic attack of ynamide to the imine carbon did not occur under the reaction condition. Instead, ynamide (21) was protonated by Tf₂NH to form the keteneiminium cation (32), followed by addition of the imine nitrogen of 29 at the sp carbon to generate the iminium intermediate (33). The imine attack would preferentially take place from the opposite side of the R² substituent to avoid the steric hindrance. Finally, deprotonation of the methyl group of 33 afforded the final product (31) and regenerated Tf₂NH.

Scheme 8. Tf₂NH-Catalyzed Synthesis of N,N-Divinylamines (31) from Ynamide (21) and Imine (29)

5-2. Reaction with N-Aryl Benzophenone Imines

We also reported the Tf₂NH-catalyzed reaction of ynamides with benzophenone imines. In this case, the product was either 2-amino-3,4-dihydroquinoline or α,β-unsaturated amidine depending on the electron-withdrawing group of the ynamide (Scheme 9). When yne-benzosultam (21a) and N-aryl
benzophenone imine (34) were treated with a catalytic amount of Tf₂NH (20 mol%) at 60 °C in 1,2-DCE, dihydroquinoline (35a) was obtained as the sole product. X-Ray crystallography confirmed the structure of 35a. Microwave irradiation (120 W) greatly improved the yield of 35a.

Scheme 9. Tf₂NH-Catalyzed Reaction of Ynamides (21) and Benzophenone Imines (34)

Alkyl-substituted and terminal yne-benzosultam (21i) and (21b) also afforded the corresponding dihydroquinolines (35) in good yields. Interestingly, terminal ynamide 21b produced a minor amount of α,β-unsaturated amidine (36b) as a side product, whereas no formation of amidine was observed in the reaction of aryl- or alkyl-substituted yne-benzosultams. Surprisingly, yne-oxazolidinones (21f) and (21j) exclusively afforded amidines (36) in good to excellent yields. No formation of dihydroquinolines (35)
was detected even on reaction at higher temperatures for longer periods under microwave irradiation. Thus, the electron-withdrawing group of the ynamide displayed a remarkable influence on the reaction course with benzophenone imines. Like the reaction with aldmines, \(\alpha,\beta \)-unsaturated amidines (36) would be produced through the cascade \([2 + 2] \) cycloaddition–4\(\pi \) cycloreversion via the intermediacy of 2-azetine (37). Dihydroquinolines (35) could be generated by a cycloisomerization of amide (36) via an intramolecular Friedel–Crafts-type reaction or a thermal 6\(\pi \)-electrocyclic pathway. However, attempts on the transformation of isolated amidine (36b) into dihydroquinoline (35b) were unsuccessful even under harsher conditions (higher temperature, longer reaction time, a stoichiometric amount of Tf\(_2\)NH). The detailed mechanism is yet to be elucidated, dihydroquinoline (35) might be formed directly from 2-azetine (37) before the formation of amidine (36).

6. REACTIONS OF YNAMIDES WITH OTHER NITROGEN COMPOUNDS

6-1. Cyclotrimerization with Nitriles

Tf\(_2\)NH has also been utilized in several cycloadditions of ynamides with nitrogen-containing building blocks other than imines. Sun reported a Tf\(_2\)NH-catalyzed \([2 + 2 + 2] \) cycloaddition (cyclotrimerization) of ynamides (21) with nitriles (38) (Scheme 10).\(^{48}\) A gold-catalyzed version of the cyclotrimerization was previously reported to give pyrimidine derivatives from one ynamide molecule and two nitrile molecules.\(^{49}\) By contrast, Tf\(_2\)NH catalysis altered the reaction chemoselectivity: The reaction employs two ynamide molecules and one nitrile molecule to afford fully substituted pyridines (39) in highly chemo- and regioselective manner. The reaction is supposed to proceed via initial protonation of ynamides with Tf\(_2\)NH to form the keteneiminium cation. DFT calculations suggested that another ynamide molecule attacks the \(\alpha \)-carbon of the keteneiminium, followed by nitrile addition and intramolecular cyclization to afford the final product.

![Scheme 10. A Tf\(_2\)NH-Catalyzed Cyclotrimerization of Ynamides (21) with Nitriles (38)](image)

6-2. \([3 + 2]\) Cycloadditions with Three-Atom Building Blocks

Cycloadditions of ynamides with nitrogen-containing three-atom building blocks afford five-membered azaheterocycles (Scheme 11). Wan and Li employed dioxazoles (40) as the building block in a \([3 + 2]\)
cycloaddition with ynamides.\(^{50}\) The reaction readily proceeded at room temperature in the presence of 5 mol% \(\text{Tf}_2\text{NH}\), affording polysubstituted 4-aminoisoxazoles (41). The same authors also reported a [3 + 2] cycloaddition giving aminoimidazoles (43) utilizing oxadiazolones (1,2,4-oxadiazol-5(4\(H\))-one) (42) as the three-atom unit.\(^{51}\) In this case, heating to 90 °C and 15 mol% catalyst loading were required. Likewise the cyclotrimerization with nitriles, these reaction are considered to be initiated by protonation of ynamides with \(\text{Tf}_2\text{NH}\) to form the keteneiminium cation.

\[
\begin{align*}
\text{EWG} & \quad \text{R}^1 \quad \text{N} \quad \text{R}^2 \quad + \quad \text{O} \quad \text{N} \quad \text{R}^3 \\
\text{21} & \quad \text{40} \quad \text{Tf}_2\text{NH} \\
& \quad (5 \text{ mol\%}) \quad 1,2\text{-DCE} \quad \text{rt}, \quad 5 \text{ min} \\
& \quad \text{R}^1 \quad \text{N} \quad \text{R}^2 \quad \text{O} \quad \text{N} \quad \text{R}^3 \\
\text{41} & \quad 50\text{--}95\%
\end{align*}
\]

\[
\begin{align*}
\text{EWG} & \quad \text{R}^1 \quad \text{N} \quad \text{R}^2 \quad + \quad \text{O} \quad \text{N} \quad \text{N} \quad \text{R}^3 \quad \text{N} \quad \text{R}^4 \\
\text{21} & \quad \text{42} \quad \text{Tf}_2\text{NH} \\
& \quad (15 \text{ mol\%}) \quad \text{toluene}, \quad 90 \text{ °C}, \quad 12 \text{ h} \\
& \quad \text{R}^1 \quad \text{N} \quad \text{R}^2 \quad \text{R}^3 \quad \text{N} \quad \text{R}^4 \\
\text{43} & \quad 42\text{--}94\%
\end{align*}
\]

\textbf{Scheme 11. Tf}_2\text{NH-Catalyzed Cycloadditions of Ynamides with Nitrogen-Containing Three-Atom Units}

\section*{7. CONCLUSION}
This review showcases the global utility of \(\text{Tf}_2\text{NH}\)-catalyzed cycloadditions in azaheterocycle synthesis. High activity of \(\text{Tf}_2\text{NH}\) enables employment of relatively stable substrates rather than highly reactive but unstable substrates. Moreover, \(\text{Tf}_2\text{NH}\) facilitates cascade processes such as Povarov–hydrogen transfer reaction and [2 + 2] cycloaddition–4\(\pi\) cycloreversion, allowing complex molecular transformations in a single operational step. Thus, \(\text{Tf}_2\text{NH}\)-catalyzed cycloadditions can be a powerful approach for the synthesis of structurally diverse azaheterocycles and related compounds from readily available materials with a simple experimental operation.

\section*{ACKNOWLEDGEMENTS}
The authors thank Prof. Masataka Ihara (Tohoku Univ.), Prof. Hidetoshi Tokuyama (Tohoku Univ.), Prof. Kazuo Kitaura (Kyoto Univ.) and Prof. Yoshiji Takemoto (Kyoto Univ.) for their fruitful discussions and helpful support. We also appreciate Dr. Kazato Inanaga and Dr. Yusuke Kuroda for their invaluable efforts. This work was financially supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT), Platform Project for Supporting
Drug Discovery and Life Science Research (Basis for Supporting Innovative Drug Discovery and Life Science Research) from Japan Agency for Medical Research and Development (AMED), and the Research Foundation for Pharmaceutical Sciences.

REFERENCES AND NOTES

Dr. Naoya Shindo is an assistant professor at Kyushu University. He received his PhD degree from Kyoto University in 2011 under the guidance of Professor Yoshiji Takemoto and Professor Kiyosei Takasu. He then joined Professor Valery V. Fokin’s group at The Scripps Research Institute in La Jolla, California, as a postdoctoral fellow. He joined Professor Akio Ojida’s group at Kyushu University as a research associate in 2013 and was appointed as an assistant professor in 2016. His current research interest is the development of novel chemical reactions for covalent protein labeling and their application to medicinal chemistry.
Prof. Kiyosei Takasu was born in 1970 in Kyoto, Japan. He received his PhD degree from Kyoto University in 1998 under the supervision of Professor Kaoru Fuji. During the course of his PhD studies, he spent one year (from 1996 to 1997) as a visiting research student at Kansas State University (the group of Professor Duy H. Hua). He was an Assistant Professor and then a Lecturer at Tohoku University from 1998 to 2007 (the group of Professors Masataka Ihara and Hidetoshi Tokuyama). He returned to Kyoto University as an Associate Professor in 2007 (the group of Professor Yoshiji Takemoto) and was promoted to full Professor in 2011. He was awarded the Young Scientist’s Award in Natural Product Chemistry in 2003, the Incentive Award in Synthetic Organic Chemistry in 2005, the Pharmaceutical Society of Japan Award for Young Scientists in 2007, and the Thieme Chemistry Journal Award in 2008. His research focuses on finding new synthetic methodologies to build complex molecules from simple materials. He is also interested in the synthesis of biologically active substances and the application of synthetic compounds in bioorganic and material chemistry.