TOTAL SYNTHESIS OF CORIARIIN B

Hitoshi Abe,* Yoshiyasu Kato, Haruka Imai, and Yoshikazu Horino

Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan. E-mail: abeh@eng.u-toyama.ac.jp

Abstract – The total synthesis of coriariin B (1), which is a type of ellagitannin, and originally obtained from the leaves of Coriaria japonica, was achieved by esterification between the glucose derivative and partially protected dehydrodigallic acid (5). The HHDP (hexahydroxydiphenoyl) unit was constructed by the oxidative phenol coupling reaction in a stereoselective manner.

Coriariin B (1) was isolated from the leaves of Coriaria japonica by Okuda and co-workers and its structure was determined in 1986.1 The structural feature of 1 is the two characteristic aromatic ring moieties, i.e., a dehydrodigalloyl group at the anomeric position of the glucose core and an axially chiral hexahydroxydiphenoyl (HHDP) unit combined with the 4- and 6-hydroxy groups. Naturally occurring polyphenolic compounds like 1 are well known as ellagitannins,2 and are expected to be new drug candidates.3 Thus, the synthetic studies of ellagitannins are attracting the attention of many organic chemists4 whereas there is no report on the total synthesis of coriariin B (1).

Recently, we demonstrated the facile preparation of dehydrodigallic acid (2) via the Ullmann condensation reaction, which would be applicable to the total synthesis of ellagitannins possessing the dehydrodigalloyl unit as part of the structure.5 In this report, we present the improved preparation of the partially protected dehydrodigallic acid derivative and the total synthesis of 1.

In Scheme 1, a simple synthetic plan is summarized in which the target molecule (1) should be constructed through sequential esterification of the hydroxy groups of glucose (4) with gallic acid (3) and 2. The HHDP group should be formed by Yamada’s protocol4e.6 during the final stage (vide infra). The oxidative dimerization of 3 would be necessary for preparation of 2.

Our total synthesis commenced with the preparation of the partially protected dehydrodigallic acid derivative (5) (Scheme 2). Since the two carboxy groups of 2 must be differentiated for the total synthesis, the tert-butyl ester 65 was chosen as the starting material. Selective monobenzylation of 6 for forming 7 and the next acetylation of the remaining hydroxy groups generated 8 which was subjected to careful hydrolysis to afford the phenol 9. The following diaryl ether synthesis was performed using the Ullmann
condensation conditions between 9 and an excess amount of bromide 10. Although, during this step, generation of the homo-dimerized product from 10 could not be avoided, the next hydrolysis of the acetoxy group of 11 was carried out without purification to remove the by-products involving the dimerized material. The obtained phenol 12 was benzylated again followed by deprotection of the tert-butyl group for forming the desired carboxylic acid 5.

Scheme 1. Synthesis Plan of Coriariin B (1)

According to Feldman’s method, the glycosylation reaction was carried out between 5 and the glucose derivative (13) to afford the 1-dehydrodigalloyl compound (14) in a β-selective manner (Scheme 3). After desilylation of the 2- and 3-hydroxy positions with TBAF, the condensation reaction of 15 with the benzyl-protected gallic acid (16) was conducted for producing 17. Removal of the benzylidene group of 17 by the acid hydrolysis conditions led to forming 18 in a sufficient yield.

Finally, in order to complete the synthesis, we applied Yamada’s HHDP construction method in our challenge (Scheme 4). Namely, installation of the gallic acid derivatives (19) at the 4- and 6-hydroxy groups was conducted by the conventional condensation reaction. Removal of the MOM group of the obtained pentaester (20) was necessary to prepare the precursor for the oxidative biphenyl coupling.
reaction. For realizing the C-C coupling between the two aromatic rings of 21, Yamada’s system (CuCl$_2$-nBuNH$_2$) was employed for forming the axially chiral biphenyl (22) in a diastereoselective manner. Consequently, the synthesis of the objective molecule, coriariin B (1), was accomplished after debenzylation of 22 under the catalytic hydrogenolysis conditions.

Scheme 3. Preparation of Intermediate (18)

The 1H- and 13C-NMR data of the synthetic material were consistent with the data of the authentic sample. In conclusion, we could synthesize the ellagitannin, coriariin B (1), in 16 steps from gallic acid (3).

Scheme 4. Synthesis of Coriariin B (1)
EXPERIMENTAL

General Information

Melting points were measured using a Yanagimoto micro-melting point hot-plate and are uncorrected. The IR spectra were recorded using a Shimadzu FTIR-8400 spectrophotometer. The NMR spectra were obtained using a JEOL α-400 (400 MHz) or JNX-ECX500 (500 MHz) instrument. The chemical shifts are given in δ parts per million with TMS as an internal standard. The elemental analyses were performed using an Elementar vario MICRO cube or Thermo Fisher Scientific Flash EA 1112 analyzer. The FABMS was obtained using a JEOL JMS-AX505HAD instrument. Silica gel column chromatography was carried out using wakogel® C-200 or 60N. TLC analysis was performed on Kieselgel 60 F254 (Merck) plates. Solvents were dried with a standard procedure.

tert-Butyl 4-benzyloxy-3,5-dihydroxybenzoate (7)

To a mixture of 6 (1.00 g, 4.42 mmol), K₂CO₃ (611 mg, 4.42 mmol), and DMF (40 mL) was slowly added BnBr (0.53 mL, 4.42 mmol) at rt, then the mixture was stirred for 5 h. The mixture was acidified with 10% HCl aqueous solution, and diluted with water (150 mL). After extraction with AcOEt, the organic layer was washed with brine, dried over MgSO₄, and evaporated to give a residue which was subjected to silica gel column chromatography with AcOEt/hexane = 1/5. The title compound 7 (1.19 g, 85%) was obtained as light yellow oil.

\[\text{H-NMR (400 MHz, CDCl}_3\text{)} \delta: 1.58 (9H, s, }^t\text{Bu), 5.18 (2H, s, CH}_2\text{), 6.40 (2H, s, OH), 7.35-7.40 (5H, m, Ar-H).}\]

\[\text{13C-NMR (100 MHz, CDCl}_3\text{)} \delta: 28.3, 75.4, 81.8, 109.7, 127.6, 128.8, 129.0, 136.7, 137.2, 149.1, 166.2.}\]

\[\text{IR (CHCl}_3\text{): 3526, 1706, 1602, 1522, 1455, 1369, 1252, 1162, 1057,}\]

\[967 \text{ cm}^{-1}.\]

\[\text{HRMS (EI) Calcd for C}_{18}\text{H}_{20}\text{O}_5 [M]+: 316.1311; found: 316.1288 [M]+.}\]

tert-Butyl 3,5-diacetoxy-4-benzyloxybenzoate (8)

A mixture of 7 (1.00 g, 3.16 mmol), pyridine (10 mL), and Ac₂O (0.74 mL, 7.95 mmol) was stirred for 30 min at rt. The mixture was acidified with 10% HCl aqueous solution, and diluted with water (80 mL). After extraction with AcOEt, the organic layer was washed with brine, dried over MgSO₄, and evaporated to give a residue which was subjected to silica gel column chromatography with AcOEt/hexane = 1/3. The title compound 8 (1.27 g, 100%) was obtained. An analytical sample of 8 was obtained after recrystallization from Et₂O-hexane. Colorless solid, mp 72.0-72.1 °C.

\[\text{H-NMR (400 MHz, CDCl}_3\text{)} \delta: 1.56 (9H, s, }^t\text{Bu), 2.20 (6H, s, CH}_3\text{), 5.03 (2H, s, CH}_2\text{), 7.33-7.38 (5H, m, Ar-H), 7.61 (2H, s, Ar-H).}\]

\[\text{13C-NMR (100 MHz, CDCl}_3\text{)} \delta: 20.6, 28.1, 75.7, 81.6, 122.4, 127.66, 127.70, 128.3, 128.5, 136.7, 144.0, 147.0, 163.7, 168.6.}\]

\[\text{IR (KBr): 1781, 1765, 1710, 1370, 1325, 1223, 1197, 1188, 1165, 1045, 961, 761}\]

\[\text{cm}^{-1}.\]

\[\text{HRMS (EI) Calcd for C}_{22}\text{H}_{24}\text{O}_7 [M]+: 400.1522; found: 400.1527 [M]+.}\]
tert-Butyl 3-acetoxy-4-benzyloxy-5-hydroxybenzoate (9)

To a mixture of 8 (4.85 g, 12.1 mmol), acetone (50 mL), MeOH (25 mL), and water (25 mL) was added K$_2$CO$_3$ (1.67 g, 12.1 mmol) at rt, then the mixture was stirred for 1 h. After AcOEt (50 mL) was added, the mixture was acidified with 10% HCl aqueous solution, and poured into water (150 mL). The organic layer was separated, washed with brine, and dried over MgSO$_4$ to give a pale yellow residue of 9 (4.30 g, 99%). Analytical sample was obtained after recrystallization from AcOEt-hexane. Colorless solid, mp 130.5-130.8 °C.

1H-NMR (400 MHz, CDCl$_3$) δ: 1.56 (9H, s, tBu), 2.27 (3H, s, CH$_3$), 5.05 (2H, s, CH$_2$), 5.54 (1H, s, OH), 7.29-7.44 (7H, m, Ar-H).

13C-NMR (100 MHz, CDCl$_3$) δ: 20.8, 28.2, 76.0, 81.6, 109.6, 115.0, 116.5, 128.1, 128.3, 128.88, 128.90, 136.4, 141.7, 143.1, 149.0, 149.8, 164.7, 168.9. IR (KBr): 3436, 2360, 1765, 1704, 1587, 1355, 1230, 1158, 1058, 961 cm$^{-1}$. HRMS (EI) Calcd for C$_{20}$H$_{22}$O$_6$ [M]$^+$: 358.1416; found: 358.1465 [M]$^+$.

Benzyl 3,4,5-tris(benzyloxy)-2-(2-benzyloxy-5-tert-butoxycarbonyl-3-hydroxy)phenoxybenzoate (12) and 3,4-dibenzyloxy-5-(2,3,4-tribenzyloxy-6-benzyloxycarbonylphenoxy)benzoic acid (5)

A mixture of 9 (1.00 g, 2.79 mmol), 10 (5.10 g, 8.37 mmol), Cu powder (1.06 g, 16.7 mmol), and DMA (10 mL) was heated at 160 °C for 75 min. After cooling, the mixture was filtered through Celite$^\text{TM}$ pad, then the filtrate was concentrated in vacuo to give a residue (14.7 g). The crude oil was dissolved in acetone (75 mL), MeOH (25 mL), and water (25 mL), then K$_2$CO$_3$ (771 mg, 5.58 mmol) was added to the mixture which was stirred at rt for 12 h. The solvent was removed in vacuo, then the residual oil was acidified with 10% HCl aqueous solution and diluted with water (200 mL). After extraction with AcOEt, the organic layer was washed with brine, dried over MgSO$_4$, and evaporated to give a black residue which was subjected to silica gel column chromatography with AcOEt/hexane/CH$_2$Cl$_2$ = 0.25/3/1. Yellow amorphous of 12 (6.76 g) was obtained. IR (CHCl$_3$): 3524, 1706, 1595, 1438, 1345, 1072, 968 cm$^{-1}$. 1H-NMR (400 MHz, CDCl$_3$) δ: 1.51 (9H, s, tBu), 2.19 (3H, s, CH$_3$), 4.97 (2H, s, CH$_2$), 5.04 (2H, s, CH$_2$), 5.13 (2H, s, CH$_2$), 5.14 (2H, s, CH$_2$), 5.20 (2H, s, CH$_2$), 7.07 (1H, d, $J = 2.0$ Hz, Ar-H), 7.14-7.47 (17H, m, Ar-H). 13C-NMR (100 MHz, CDCl$_3$) δ: 20.7, 28.2, 67.2, 71.4, 75.1, 75.7, 75.9, 81.3, 111.2,113.2, 117.5, 120.1, 127.0, 127.8, 127.9, 128.1, 128.2, 128.3, 128.48, 128.53, 128.75, 128.79, 135.6, 136.4, 136.6, 136.9, 137.8, 142.1, 143.6, 144.2, 146.6, 147.2, 150.3, 152.7, 164.6, 168.9. HRMS (FAB) Calcd for C$_{53}$H$_{49}$O$_{10}$ [M]$^+$: 845.33253; found: 845.33376 [M]$^+$.

To a solution of 12 (6.00 g) in CH$_2$Cl$_2$ (15 mL), AcOH (1.60 mL, 28 mmol) and SnCl$_2$ (2.65 g, 14.0 mmol) were added, then the mixture was stirred for 105 h at rt. After filtration, the solvent was removed in vacuo to give a residue which was subjected to silica gel chromatography with AcOEt/hexane = 1/2. Pale yellow solid of 5 (1.17 g, 54%) was obtained by recrystallization from AcOEt-hexane, mp 126.4-128.1 °C. 1H NMR (400 MHz, CDCl$_3$) δ: 4.92 (2H, s, CH$_2$), 4.96 (2H, s, CH$_2$), 5.11 (2H, s, CH$_2$).
5.12 (4H, s, CH₂), 5.15 (2H, s, CH₂), 6.90 (1H, d, J = 1.6 Hz, ArH), 7.07-7.45 (32H, m, ArH).

13C NMR (100 MHz, CDCl₃) δ: 67.3, 71.2, 71.4, 75.0, 75.6, 75.7, 109.9, 110.0, 120.1, 123.9, 127.6, 127.8, 127.9, 128.0, 128.1, 128.17, 128.24, 128.28, 128.29, 128.4, 128.5, 128.68, 128.72, 128.8, 135.5, 136.4, 136.7, 136.8, 136.9, 138.0, 142.4, 142.6, 146.6, 147.0, 150.1, 152.7, 152.8, 164.9, 171.7.

4,6-O-Benzylidene-2,3-di-O-(tert-butyldimethylsilyl)-1-O-[3,4-dibenzoxyl-5-(2,3,4-tribenzyloxy-6-benzyloxycarbonylphenoxy)galloyl]-β-D-glucopyranoside (14)

To a solution of 5 (900 mg, 1.14 mmol) in benzene (15 mL) was added a solution of 13 (878 mg, 1.37 mmol) in benzene (20 mL). After the mixture was heated under reflux for 25 h, the solvent was removed in vacuo to give a residue which was subjected to column chromatography with AcOEt/hexane = 1/8, producing amorphous powder of 14 (1.21 g, 73%), mp 43.2-45.1 °C, [α]D₂⁻⁻⁰⁻⁻⁻⁻:\-27.6 (c 1.0, CHCl₃).

1H-NMR (400 MHz, CDCl₃) δ: -0.024 (6H, s), 0.004 (3H, s), 0.058 (3H, s), 0.758 (9H, s), 0.764 (9H, s), 3.58 (2H, t, J = 10.0 Hz, H-4, H-6), 3.71 (1H, dt, J = 4.4, 9.6 Hz, H-5), 3.79 (1H, t, J = 6.0 Hz, H-2), 3.87 (1H, dd, J = 6.0, 8.0 Hz, H-3), 4.29 (1H, dd, J = 4.4, 10.4 Hz, H-6), 4.87 (2H, s), 4.94 (2H, dd, J = 10.8, 33.2 Hz), 5.06-5.14 (6H, m), 5.17 (2H, s), 5.39 (1H, s), 5.86 (1H, d, J = 6.4 Hz, H-1), 7.00 (1H, d, J = 2.0 Hz), 7.08-7.47 (37H, m). 13C-NMR (100 MHz, CDCl₃) δ: -3.91, -3.60, -3.32, 18.1, 18.4, 25.9, 26.2, 65.9, 67.3, 69.2, 71.49, 71.54, 74.9, 75.1, 75.7, 75.8, 75.9, 81.7, 95.6, 102.3, 109.9, 110.0, 111.2, 120.0, 124.2, 126.5, 127.6, 127.7, 127.8, 128.0, 128.1, 128.16, 128.21, 128.27, 128.34, 128.46, 128.50, 128.7, 128.8, 129.2, 135.6, 136.4, 136.8, 136.86, 136.94, 137.2, 137.8, 142.58, 146.21, 146.7, 147.2, 150.1, 152.86, 152.91, 164.7, 164.9. IR (KBr): 3065, 3032, 2953, 2929, 2882, 2855, 1735, 1711, 1592, 1454, 1374, 1347, 1214, 1200, 1090, 1075, 837, 695 cm⁻¹. Anal. Calcd for C₈₁H₈₈O₁₅Si₂: C, 71.65; H, 6.53. Found: C, 71.31; H, 6.59.

4,6-O-Benzylidene-1-O-[3,4-di-O-benzyl-5-O-(2,3,4-tribenzyloxy-6-benzyloxycarbonylphenoxy)galloyl]-β-D-glucopyranoside (15)

AcOH (0.0850 mL, 1.49 mmol) and tetra-n-butylammonium fluoride (1M in THF) (2.36 mmol) were added dropwise to a solution of 14 (400 mg, 0.295 mmol) in THF (3 mL), then the mixture was stirred for 49 h at rt. To the reaction mixture, AcOEt (15 mL) and H₃PO₄ aqueous solution (1M, 9 mL) were added. After the mixture was poured into water (10 mL), extraction with AcOEt was carried out. The organic layer was washed with brine, dried over MgSO₄, and evaporated to give a residue which was subjected to column chromatography with AcOEt/hexane = 1/1. Colorless amorphous powder of 15 (305 mg, 92%) was obtained, mp 60.5-62.1 °C, [α]D⁻⁻⁻⁻:\-5.5 (c 1.0, CHCl₃). 1H-NMR (400 MHz, CDCl₃) δ: 2.62 (1H, brs), 2.81 (1H, brs), 3.58 (1H, t, J = 9.2 Hz, H-4), 3.64 (1H, dt, J = 4.8, 9.2 Hz, H-5), 3.71-3.76 (2H, m, H-2, H-6), 3.90 (1H, t, J = 9.2 Hz, H-3), 4.36 (1H, dd, J = 4.8, 10.4 Hz, H-6), 4.95 (2H, s), 4.96 (2H, ...
dd, \(J = 10.4, 15.2 \) Hz), 5.08-5.19 (8H, m), 5.52 (1H, s), 5.76 (1H, d, \(J = 8.0 \) Hz, H-1), 6.96 (1H, d, \(J = 1.6 \) Hz), 7.11-7.51 (37H, m). \(^{13}\)C-NMR (100 MHz, CDCl\(_3\)) \(\delta: 67.1, 67.3, 68.5, 71.5, 73.5, 73.7, 75.0, 75.77, 75.82, 80.2, 94.8, 102.1, 109.8, 111.0, 120.2, 123.5, 126.4, 127.7, 127.8, 127.9, 128.1, 128.2, 128.26, 128.30, 128.4, 128.5, 128.7, 128.77, 128.81, 129.5, 135.4, 136.3, 136.7, 136.8, 136.9, 137.9, 142.3, 142.6, 146.6, 147.1, 150.1, 152.7, 152.8, 164.3, 165.1. IR (KBr): 3478, 3063, 3032, 2932, 2873, 2359, 2322, 1730, 1591, 1427, 1340, 1199, 1087, 1016, 696 cm\(^{-1}\).

Anal. Calcd for C\(_{69}\)H\(_{60}\)O\(_{15}\): C, 73.39; H, 5.36. Found: C, 73.12; H, 5.07.

4,6-O-Benzylidene-2,3-di-O-(3,4,5-tri-O-benzylgalloyl)-1-O-[3,4-di-O-benzyl-5-O-(2,3,4-tribenzyloxy-6-benzyloxycarbonylphenoxy)galloyl]-\(\beta \)-D-glucopyranoside (17)

A solution of 15 (700 mg, 0.620 mmol), 16 (683 mg, 1.55 mmol), DMAP (30.3 mg, 0.248 mmol), and EDC·HCl (297 mg, 1.55 mmol) in CH\(_2\)Cl\(_2\) (25 mL) was heated under reflux for 12 h, then the mixture was poured into water (40 mL). After the mixture was extracted with AcOEt, the organic solvent was successively washed with sat. NH\(_4\)Cl aq., sat. K\(_2\)CO\(_3\) aq., and brine, dried over MgSO\(_4\), and evaporated to give a residue which was subjected to column chromatography with CH\(_2\)Cl\(_2\)/hexane/AcOEt = 1/3/0.25. Pale yellow amorphous powder of 17 (1.17 g, 96%) was obtained, mp 54.6-56.8 °C, [\(\alpha \)]\(_D\)\(^{21}\) +26.8 (c 1.0, CHCl\(_3\)). \(^1\)H-NMR (400 MHz, CDCl\(_3\)) \(\delta: 3.88 (1H, t, J = 10.0 Hz, H-6), 3.92 (1H, dt, J = 3.2, 9.2 Hz, H-5), 4.01 (1H, t, J = 10.0 Hz, H-4), 4.48 (1H, d, J = 6.4 Hz, H-6), 4.79-5.15 (24H, m), 5.57 (1H, s), 5.73 (1H, dd, J = 8.0, 10.0 Hz, H-2), 5.91 (1H, t, J = 10.0 Hz, H-3), 6.09 (1H, d, J = 8.0 Hz, H-1), 6.93 (1H, d, J = 1.6 Hz), 6.99-7.48 (71H, m). \(^{13}\)C-NMR (100 MHz, CDCl\(_3\)) \(\delta: 67.1, 67.5, 68.4, 71.1, 71.2, 71.3, 71.9, 72.2, 74.9, 75.09, 75.13, 75.6, 75.7, 78.5, 93.3, 101.6, 109.2, 109.3, 109.4, 109.8, 111.0, 120.0, 123.0, 123.7, 124.3, 126.2, 127.6, 127.66, 127.70, 127.86, 127.91, 127.98, 128.04, 128.1, 128.17, 128.23, 128.3, 128.37, 128.43, 128.5, 128.6, 128.7, 129.2, 135.4, 136.3, 136.4, 136.5, 136.55, 136.62, 136.8, 137.36, 137.38, 137.8, 142.3, 142.6, 142.9, 143.1, 146.5, 147.0, 150.1, 152.5, 152.6, 152.7, 152.9, 164.0, 164.7, 165.1, 165.3. IR (KBr): 3065, 3031, 2931, 2873, 1734, 1589, 1499, 1429, 1336, 1195, 1097, 910, 750, 695 cm\(^{-1}\). Anal. Calcd for C\(_{125}\)H\(_{104}\)O\(_{23}\): C, 73.39; H, 5.36. Found: C, 73.12; H, 5.07.

2,3-Di-O-(3,4,5-tri-O-benzylgalloyl)-1-O-[3,4-di-O-benzyl-5-O-(2,3,4-tribenzyloxy-6-benzyloxycarbonylphenoxy)galloyl]-\(\beta \)-D-glucopyranoside (18)

To a solution of 17 (1.10 g, 0.557 mmol) in THF (25 mL), a mixture of \(^1\)PrOH and conc. HCl aq. (v/v = 50/1, 5.0 mL) was added. The reaction mixture was heated at 55 °C for 6 h, then the solvent was removed in vacuo. After the residue was poured into sat. NaHCO\(_3\) aq. (80 mL), the mixture was extracted with Et\(_2\)O. The organic layer was washed with brine, dried over MgSO\(_4\), and evaporated to give a crude residue which was subjected to column chromatography with AcOEt/hexane = 1/1. Colorless amorphous
powder of 18 (1.04 g, 99%) was obtained, mp 55.4-57.0 °C; [α] ²¹ D +37.5 (c 1.0, CHCl₃); ¹H-NMR (400 MHz, CDCl₃ + D₂O) 3.78-3.82 (1H, m, H-5), 3.92 (1H, dd, J = 4.0, 12.0 Hz, H-6), 4.00-4.08 (2H, m, H-4, H-6), 4.79-5.13 (2H, m), 5.45 (1H, d, J = 9.2 Hz, H-3), 5.69 (1H, dd, J = 8.4, 9.2 Hz, H-2), 6.05 (1H, d, J = 8.4 Hz, H-1), 6.93 (1H, d, J = 1.6 Hz), 6.99-7.46 (66H, m); ¹³C-NMR (100 MHz, CDCl₃) 61.8, 67.1, 69.4, 71.0, 71.09, 71.14, 71.3, 74.9, 75.1, 75.2, 75.6, 75.7, 92.7, 109.16, 109.22, 109.4, 109.8, 111.0, 119.9, 123.2, 123.7, 123.8, 127.5, 127.6, 127.7, 127.8, 127.9, 128.0, 128.1, 128.2, 128.3, 128.4, 128.57, 128.64, 128.7, 135.4, 136.3, 136.35, 136.43, 136.5, 136.6, 136.8, 137.29, 137.34, 137.8, 142.3, 142.5, 143.0, 143.2, 146.5, 147.0, 150.1, 152.55, 152.64, 152.7, 152.9, 164.1, 164.8, 165.1, 167.0; IR (KBr): 3484, 3065, 3032, 2917, 1729, 1589, 1498, 1338, 1213, 1104, 909, 861 cm⁻¹. Anal. Calcd for C₁₁₈H₁₀₀O₂₃: C, 75.15; H, 5.34. Found: C, 75.14; H, 5.42.

2,3-Di-O-(3,4,5-tri-O-benzylgalloyl)-4,6-di-O-(4-O-benzyl-3,5-di-O-methoxymethylgalloyl)-1-O-[3,4-di-O-benzyl-5-O-(2,3,4-tribenzyloxy-6-benzyloxycarbonylphenoxy)galloyl]-β-D-glucopyranoside (20)

A solution of 18 (100 mg, 0.0530 mmol), 19 (55.8 mg, 0.160 mmol), DMAP (7.0 mg, 0.057 mmol), and EDC·HCl (61.7 mg, 0.322 mmol) in CH₂Cl₂ (1.5 mL) was allowed to stand for 17 h, then the mixture was acidified (pH = ca. 1) with 10% HCl aq. The mixture was poured into water (10 mL). After extraction with AcOEt, the organic solvent was washed with brine, dried over MgSO₄, and evaporated to give a residue which was subjected to column chromatography with CH₂Cl₂/hexane/AcOEt = 1/2 /0.5. Pale yellow amorphous powder of 20 (126 mg, 94%) was obtained, mp 41.8-43.0 °C; [α] ²¹ D +22.5° (c 1.0, CHCl₃).¹H-NMR (400 MHz, CDCl₃) δ: 3.40 (6H, s), 3.43 (6H, s), 4.35 (1H, t, J = 5.6 Hz, H-6), 4.41 (1H, dt, J = 2.0, 5.6 Hz, H-5), 4.76 (1H, dd, J = 2.8, 12.8 Hz, H-6), 4.81-5.16 (36H, m), 5.76 (1H, t, J = 9.6 Hz, H-4), 5.78 (1H, t, J = 9.6 Hz, H-2), 6.00 (1H, t, J = 9.6 Hz, H-3), 6.15 (1H, d, J = 8.4 Hz, H-1), 6.90 (1H, d, J = 1.6 Hz), 6.97-7.48 (78H, m), 7.54 (2H, s).¹³C-NMR (100 MHz, CDCl₃) δ: 56.4, 56.5, 63.0, 67.2, 69.3, 71.1, 71.2, 71.4, 73.3, 73.4, 74.9, 75.1, 75.2, 75.3, 75.6, 75.7, 92.8, 95.47, 95.51, 109.1, 109.3, 109.5, 109.8, 111.0, 112.4, 112.5, 120.0, 123.2, 123.8, 123.9, 124.1, 125.1, 127.6, 127.7, 127.8, 127.89, 127.93, 128.0, 128.1, 128.17, 128.23, 128.3, 128.35, 128.45, 128.48, 128.52, 128.66, 128.70, 135.3, 136.3, 136.5, 136.63, 136.65, 136.8, 137.3, 137.41, 137.45, 137.9, 142.3, 142.5, 142.9, 143.1, 143.5, 143.8, 146.5, 147.0, 150.1, 150.9, 151.0, 152.56, 152.65, 152.9, 163.9, 164.75, 164.78, 164.9, 165.47, 165.52. IR (KBr): 3065, 3032, 2950, 2913, 1734, 1590, 1499, 1429, 1333, 1194, 1109, 1003, 910, 751, 695 cm⁻¹. Anal. Calcd for C₁₅₄H₁₃₆O₃₅: C, 72.63; H, 5.38. Found: C, 72.46; H, 5.27.

2,3-Di-O-(3,4,5-tri-O-benzylgalloyl)-4,6-di-O-(4-O-benzylgalloyl)-1-O-[3,4-di-O-benzyl-5-O-(2,3,4-tribenzyloxy-6-benzyloxycarbonylphenoxy)galloyl]-β-D-glucopyranoside (21)
To a solution of 20 (100 mg, 0.0393 mmol) in THF (1 mL), a mixture of PrOH and conc. HCl aq. (v/v = 50/1, 3.0 mL) was added. The reaction mixture was heated at 55 °C for 6 h, then the solvent was removed in vacuo. After the residue was poured into sat. NaHCO₃ aq. (2 mL), the mixture was extracted with AcOEt. The organic layer was washed with brine, dried over MgSO₄, and evaporated to give a crude oil which was subjected to column chromatography with CH₂Cl₂/hexane/AcOEt = 1/1/0.5. Colorless amorphous powder of 21 (91.8 mg, 99%) was obtained, mp 57.0-59.3 °C; [α]D²¹ +20.9 (c 1.0, CHCl₃).

1H-NMR (400 MHz, CDCl₃ + D₂O) δ: 4.29-4.33 (1H, m, H-5), 4.52 (1H, dd, J = 4.8, 12.0 Hz, H-6), 4.63 (1H, d, J = 10.4 Hz, H-6), 4.85-5.18 (28H, m), 5.72 (1H, t, J = 9.6 Hz, H-4), 5.83 (1H, dd, J = 8.4, 9.6 Hz, H-2), 5.96 (1H, t, J = 9.6 Hz, H-3), 6.14 (1H, d, J = 8.4 Hz, H-1), 6.93 (1H, d, J = 1.6 Hz), 7.01-7.50 (80H, m).

13C-NMR (100 MHz, CDCl₃) δ: 61.8, 67.3, 68.2, 71.1, 71.2, 71.4, 71.5, 73.1, 73.6, 74.9, 75.0, 75.1, 75.2, 75.6, 75.8, 93.2, 109.0, 109.3, 109.6, 109.9, 110.0, 110.1, 111.1, 120.0, 123.1, 123.59, 123.63, 123.7, 124.1, 127.6, 127.76, 127.82, 127.9, 128.0, 128.1, 128.2, 128.28, 128.31, 128.37, 128.41, 128.47, 128.49, 128.6, 128.7, 128.78, 128.83, 135.4, 136.3, 136.35, 136.45, 136.66, 136.68, 136.8, 136.9, 137.37, 137.41, 137.9, 138.1, 138.5, 142.3, 142.6, 142.9, 143.2, 146.6, 147.1, 149.1, 149.2, 150.1, 152.6, 152.7, 152.8, 153.0, 164.2, 165.0, 165.7, 165.9, 166.6. IR (KBr): 3435, 3064, 3031, 2945, 2874, 2359, 1730, 1591, 1500, 1454, 1429, 1339, 1198, 1076, 1003, 912, 695 cm⁻¹. Anal. Calcd for C₁₄₆H₁₂₀O₃₁: C, 73.98; H, 5.10. Found: C, 73.88; H, 4.96.

2,3-Di-O-(3,4,5-tri-O-benzylgalloyl)-4,6-O-(S)-[4,4′,6,6′-tetrahydroxy-5,5′-dibenzyloxy-1,1′-biphenyl-2,2′-dicarboxylate]-1-O-[3,4-di-O-benzyl-5-O-(2,3,4-tribenzyloxy-6-benzyloxycarbonylphenoxy)galloyl]-β-D-glucopyranoside (22)

Under N₂, a mixture of CuCl₂ (22.8 mg, 0.170 mmol), tBuNH₂ (0.250 mL, 2.53 mmol), and MeOH (20 mL) was added dropwise to a solution of 21 (200 mg, 0.0844 mmol) in CHCl₃ (20 mL) at 0 °C. The mixture was stirred for 3 h at the same temperature, then poured into sat. NH₄Cl aqueous solution (40 mL). After extraction with CHCl₃, the organic layer was washed with brine, dried over MgSO₄, and evaporated to give a residue which was subjected to column chromatography with CH₂Cl₂/AcOEt = 20/1. Brown amorphous powder of 22 (158 mg, 79%) was obtained, mp 82.8-84.6 °C; [α]D²¹ +44.5 (c 1.0, CHCl₃).

1H-NMR (400 MHz, acetone-d₆ + D₂O) δ: 3.96 (1H, d, J = 12.8 Hz, H-6), 4.67 (1H, dd, J = 6.8, 10.0 Hz, H-5), 4.76 (2H, s), 4.87-5.17 (20H, m), 5.20 (2H, s), 5.23 (2H, s), 5.24 (2H, s), 5.36 (1H, t, J = 9.6 Hz, H-4), 5.39 (1H, t, J = 6.8 Hz, H-6), 5.75 (1H, t, J = 9.2 Hz, H-2), 5.98 (1H, t, J = 9.2 Hz, H-3), 6.35 (1H, d, J = 8.0 Hz, H-1), 6.55 (1H, s), 6.69 (1H, s), 6.95 (1H, d, J = 1.6 Hz), 6.97-7.41 (66H, m), 7.50-7.55 (10H, m). 13C-NMR (100 MHz, CDCl₃) δ: 62.5, 67.2, 70.3, 70.6, 70.8, 71.1, 71.2, 72.6, 73.3, 74.96, 75.02, 75.3, 75.5, 75.6, 75.7, 93.6, 107.3, 108.3, 109.0, 109.3, 109.5, 110.0, 111.1, 113.5, 114.3, 119.8, 122.6, 123.1, 123.4, 127.3, 127.4, 127.7, 127.8, 128.0, 128.2, 128.4, 128.7, 128.8, 128.9, 129.5,
Coriariin B (1)
To a suspension of 10% Pd/C (37.8 mg) in THF (20 mL), a solution of 22 (144 mg, 0.0608 mmol) in THF (10 mL) was added and the mixture was stirred under the H2 atmosphere for 14 h. After filtration using CeliteTM, the solvent of the filtrate was removed under reduced pressure. The concentrated residue was subjected to column chromatography using SephadexTM LH-20 with acetone-H2O (1:4 to 1:2) to produce the gray powder of 1 (56.3 mg, 84%); mp >250 °C, [α]D20 +63.9 (c = 0.1, acetone) [lit. [α]D +66 (c 0.1, acetone)]1a; 1H-NMR (500 MHz, acetone-d6) 3.85 (1H, d, J = 13.0 Hz, H-6), 4.51 (1H, dd, J = 6.0, 10.0 Hz, H-5), 5.19 (1H, t, J = 10.0 Hz, H-4), 5.34 (1H, dd, J = 6.0, 13.0 Hz, H-6), 5.54 (1H, t, J = 8.5 Hz, H-2), 5.82 (1H, t, J = 10.0 Hz, H-3), 6.13 (1H, d, J = 8.5 Hz, H-1), 6.45 (1H, s), 6.65 (1H, s), 6.82 (1H, d, J = 1.5 Hz), 6.97 (2H, s), 6.99 (2H, s), 7.18 (1H, s), 7.23 (1H, d, J = 1.5 Hz); 13C-NMR (125 MHz, acetone-d6) 63.0, 70.7, 71.6, 73.0, 93.7, 107.8, 108.2, 108.4, 110.2, 110.3, 112.3, 115.2, 115.5, 115.7, 119.5, 120.4, 120.5, 125.9, 126.5, 136.47, 136.52, 137.2, 139.1, 139.2, 139.8, 140.3, 141.0, 143.3, 144.4, 144.5, 145.2, 145.3, 145.8, 145.9, 146.4, 148.2, 164.8, 165.3, 166.2, 166.4, 167.6, 168.0; IR (KBr): 3355, 1727, 1701, 1616, 1521, 1448, 1345, 1198, 1095, 1069, 1034, 1011, 756 cm⁻¹. HRMS-FAB (m/z): Calcd for C₄₈H₃₅O₃₁ [M+H]+ 1107.1162; Found, 1107.1202.

ACKNOWLEDGEMENTS
We thank Professors T. Hatano and Y. Shimozu (Okayama University) for providing the spectral data of coriariin B. This study was financially supported by the JSPS KAKENHI (Grant Number 15K07854 for H. A.).

REFERENCES AND NOTES

