SYNTHESIS OF SALACINOL-\(d_4\) AS AN INTERNAL STANDARD FOR MASS-SPECTROMETRIC QUANTITATION OF SALACINOL, A POTENT \(\alpha\)-GLUCOSIDASE INHIBITOR FOUND IN A TRADITIONAL AYURVEDIC MEDICINE “SALACIA”

Genzoh Tanabe,\(^1\,\,2\,\,*\) Sanami Teramae,\(^1\) Yousuke Kunikata,\(^1\) Shinsuke Marumoto,\(^3\) Shuhei Okugawa,\(^2\) Fumihiro Ishikawa,\(^1\) Weija Xie,\(^4\) Toshio Morikawa,\(^2\) and Osamu Muraoka\(^2\)

\(^1\)Faculty of Pharmacy, \(^2\)Pharmaceutical Research and Technology Institute, \(^3\)Joint Research Center, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan. \(^4\)State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China

Abstract – Accurate quantitative analysis of trace principles in extracts of biologically active natural medicines relies on the use of reliable internal standards (ISs), which, in the case of liquid chromatography–mass spectrometry (LC-MS) analysis, commonly correspond to isotope-labeled stable analogues of the analytes. Herein, we describe the synthesis of salacinol-1,1,5,5-\(C-d_4\) (7), an isotope-labeled stable analogue of salacinol (1), which, in turn, is a potent \(\alpha\)-glycosidase inhibitor isolated from Salacia (a traditional Ayurvedic medicine), and show that the isotopic purity of the labeled standard is satisfactory for LC-MS analysis.

INTRODUCTION

Diabetes mellitus is one of the largest global health emergencies of the 21st century, currently affecting \(\sim 425\) million people worldwide, including more than 200 million undiagnosed people according to the International Diabetes Federation. Over the past three decades, the global number of people living with diabetes has dramatically increased and is expected to reach \(\sim 693\) million by 2045 if no remedial measures are taken.\(^1\) Diabetes is classified as either Type 1 or Type 2, with the latter accounting for \(\sim 90\%)\) of all diagnosed cases. Patients suffering from Type 2 diabetes rely on the management of blood glucose
levels, which typically involves delaying the digestion of ingested carbohydrates and thus lowers postprandial blood glucose levels. \(\alpha\)-Glucosidase inhibitors are particularly useful for managing mild hyperglycemia in people newly diagnosed with Type 2 diabetes as well as for managing postprandial hyperglycemia; three anti-diabetics (voglibose, acarbose, and miglitol) are currently clinically used worldwide. In the late 1990s, salacinol (1), which shows potent \(\alpha\)-glucosidase inhibitory activity equal to that of voglibose and acarbose, was isolated from \textit{Salacia reticulata}, traditionally used for diabetes treatment in Ayurveda. \(^2\) Thereafter, kotalanol\(^3\) (2) and ponkoranol\(^4\) (3) as well as their de-\(O\)-sulfonated variations neosalacinol\(^5\) (4), neokotalanol\(^6\) (5), and neoponkoranol\(^7\) (6), were subsequently isolated from plants of the same genus as other principles exhibiting potent antidiabetic activities. Clinical trials revealed that the extract of \textit{Salacia reticulata} was effective for treatment of patients with Type 2 diabetes and exhibited minimal side effects. \(^8\) Based on this evidence, the plants of “\textit{Salacia}” genus have recently gained considerable attention as a possible functional food for diabetic patients and people with impaired glucose tolerance (i.e., those at high risk of developing the disease in the future). In view of the above, an efficient quality control method is urgently required to ensure the authenticity of these functional foods and their active constituent content, as well as to verify manufacturer claims. To evaluate the quality of \textit{Salacia} extracts, we developed two protocols for the quantitative analysis of sulfonium sulfate inner salts 1–3\(^9a,9c\) and their de-\(O\)-sulfonates 4–6\(^9b,9c\) based on liquid chromatography–mass spectrometry (LC-MS). Extracts prepared from a variety of raw \textit{Salacia} samples collected in different geographical regions (e.g., Thailand, India, and Sri Lanka) were evaluated by determining the distribution of sulfonium salts in stems, roots, leaves, and fruits. Isotope dilution mass spectrometry (IDMS) is widely accepted as a highly accurate analytical technique, being an ideal method for the quantitative analysis of small amounts of bioactive chemicals in biological fluids,\(^10\) natural medicine,\(^11\) agriculture\(^12\) or environment.\(^13\) Notably, IDMS features the use of isotopically labeled stable internal standards (ISs) behaving nearly identically to target analytes at all steps of the isolation and chromatographic procedures, which significantly reduces the systematic error due to losses occurring at every stage of analysis, including post-extraction sample work-up and calibration. So, the availability of such ISs would not only allow one to evaluate the quality of \textit{Salacia} raw materials themselves, but also permit the identification and quantitation of all sulfonium salt conjugates found in biological fluids. However, despite these advantages, no isotopically labeled ISs of salacinol-type \(\alpha\)-glucosidase inhibitors 1–6 have been synthesized to date. To prevent mass peak overlap, the molecular masses of prospective ISs are required to be at least three mass units larger than those of the target analytes. To address the above issue, we have designed and synthesized a deuterated salacinol derivative, salacinol-1,1,5,5-\(C\)-\(d_4\) (7), as a part of our continuing study on the quantitative analysis of \textit{Salacia} constituents (Figure 1).
Figure 1. A new class of natural \(\alpha\)-glucosidase inhibitors (1–6) from *Salacia* genus plants and a stable isotope-labeled salacinol-1,1,5,5-\(C\)-d\(_4\) (7)

RESULTS AND DISCUSSION

The retrosynthetic route to 7 is provided in Scheme 1. A thiosugar, 2,3,5-tri-\(O\)-benzyl-1,4-dideoxy-1,4-epithio-D-arabinitol-1,1,5,5-\(C\)-d\(_4\) (8), which is a common motif of natural \(\alpha\)-glucosidase inhibitors 1–6, was selected as a coupling partner for the known cyclic sulfate\(^{14}\) (9) in consideration of the syntheses of multiply deuterated analogues of other natural \(\alpha\)-glucosidase inhibitors 2–6. The four deuterium atoms of 8 were introduced stepwise by deuteride reductions. Initially, one deuterium was introduced by reducing D-glucono-1,5-lactone (10) with sodium borodeuteride (NaBD\(_4\)), with the second reduction featuring the double deuteration of ester 17 by lithium aluminum deuteride (LiAlD\(_4\)), and the final reduction corresponding to the monodeuteration of aldehyde 22 by NaBD\(_4\) (Scheme 1).

According to literature,\(^{15}\) 10 was acetylated with acetic anhydride in the presence of zinc chloride to give practically pure D-gluconolactone 2,3,4,6-tetraacetate (11) in 75% yield, which was subsequently converted to D-glucose-1-C-\(d\) 2,3,4,6-tetraacetate\(^{16}\) (12) by treatment with NaBD\(_4\) in a mixture of THF and H\(_2\)O. Even after several attempts, the yield of 82% reported for the reduction of 11 could not be reproduced and ended up being low or moderate (around 47–65%), despite the reaction mixture being
quenched with an ion-exchange resin (H+-form) according to the reported work-up protocol16. This result suggested that the acetyl moieties of \textbf{11} or \textbf{12} were partially hydrolyzed by the basic aqueous NaBD\textsubscript{4}, which decreased the yield of \textbf{12}. Therefore, NaBD\textsubscript{4} reduction was performed under pH-controlled conditions in an acetate buffer (pH = 5), reproducibly affording a ~2:1 anomeric mixture of \textbf{\(\alpha\)}- and \textbf{\(\beta\)}-12 in approximately 80% yield after column chromatography. Based on these results, the reduction of \textbf{11} with NaBD\textsubscript{4} was scaled up, and subsequent deacetylation of the resultant hemiacetal \textbf{12} with sodium methoxide afforded \textbf{D-glucose-1-C-d (13)}, which was acetalized with acidic acetone to give \textbf{1,2:5,6-di-O-isopropylidene-\(\alpha\)-D-glucofuranose-1-C-d}15 (\textbf{14}, 51% yield over three steps from \textbf{11}). The remaining hydroxyl in \textbf{14} was protected with benzyl bromide, and one of the two acetonide moieties of the resultant benzyl ether, \textbf{3-O-benzyl-1,2:5,6-di-O-isopropylidene-\(\alpha\)-D-glucofuranose-1-C-d} (\textbf{15}), was selectively removed by hydrolysis with 70% aqueous acetic acid to give \textbf{3-O-benzyl-1,2-O-isopropylidene-\(\alpha\)-D-glucofuranose-1-C-d (16}, 72% yield over two steps from \textbf{14}). The \textit{vic}-dial moiety of \textbf{16} was oxidized with sodium metaperiodate in the presence of sodium hydrogen carbonate, with oxidation of the resultant aldehyde by hypobromous acid affording methyl \textbf{3-O-benzyl-1,2-O-isopropylidene-\(\alpha\)-D-xylofuranuronate-1-C-d (17)} in 65% yield. Compound \textbf{17} was further reduced with LiAld\textsubscript{4} to give \textbf{3-O-benzyl-1,2-O-isopropylidene-\(\alpha\)-D-xylofuranose-1,5,5-C-d\textsubscript{3} (18)}. In addition to the signals of three methine carbons [\(\delta\) 82.3, 82.7, and 79.9], the 13C NMR spectrum of \textbf{18} featured characteristic C-1 and C-5 signals [(\(\delta\) 104.7, \textit{t}, \(J = 27.4\)) and (\(\delta\) 60.3, \textit{quint}, \(J = 21.5\)), respectively], which supported the 1,5,5-trideuterated structure of \textbf{18}. Upon treating compound \textbf{18} with methanol in the presence of a catalytic amount of sulfuric acid, deacetalization and methyl glycosidation proceeded simultaneously to give a ~1:1 anomeric mixture of methyl \textbf{3-O-benzyl-\(\alpha\)- and \(\beta\)-D-xylofuranoside-1,5,5-C-d\textsubscript{3} (\textbf{19}) in 70% yield over two steps from \textbf{17}. Compounds \textbf{\(\alpha\)}- and \textbf{\(\beta\)}-19 were converted to \textbf{8} by applying the protocol previously reported27 for the preparation of the non-deuterated version of \textbf{8}. Thus, a mixture of \textbf{\(\alpha\)- and \(\beta\)-19} was treated with methanesulfonfyl chloride to afford the corresponding bismesylates, methyl \textbf{3-O-benzyl-2,5-di-O-mesyl-D-xylofuranoside-1,5,5-C-d\textsubscript{3} (\textbf{\(\alpha\)}- and \textbf{\(\beta\)}-20)}, which were subjected to an S\textsubscript{N}2 substitution reaction with sodium sulfide in DMF to afford a ~1:1 anomeric mixture of methyl 2,5-dideoxy-2,5-epithio-3-O-benzyl-D-lyxofuranoside-1,1,5-C-d\textsubscript{3} (\textbf{\(\alpha\})- and \textbf{\(\beta\)}-21; 77% yield from \textbf{19}). Hydrolysis of \textbf{\(\alpha\)- and \(\beta\)}-21 in a mixture of 3 M hydrochloric acid and THF followed by NaBD\textsubscript{4} reduction of the resultant aldehyde \textbf{22} gave \textbf{3-O-benzyl-1,4-dideoxy-1,4-epithio-D-arabinitol-1,1,5,5-C-d\textsubscript{4} (23)} in 64% yield from \textbf{21}. Finally, the two hydroxyls of \textbf{23} were protected by treatment with benzyl bromide in the presence of sodium hydride to afford the key thiogluos \textbf{8} in 84% yield. The IR spectrum of \textbf{8} showed absorptions due to C–D stretching at 2719 and 2075 cm-1, whereas the corresponding 1H NMR spectrum displayed three signals at \(\delta_{1-2} 4.18\) (d, \(J_{2,3} = 4.0\) Hz), \(\delta_{1-3} \)}
4.11 (dd, $J_{3,2} = 4.0$, $J_{3,4} = 3.4$ Hz), and $\delta_{i-4} 3.55$ (d, $J_{4,3} = 3.4$ Hz), with the doublets of H-2 and H-4 implying that C-1 and C-5 carbons were both CD$_2$ moieties. The above carbons were also observed as two quintets at $\delta_{C-1} 32.6$ ($J = 21.1$ Hz) and $\delta_{C-5} 71.6$ ($J = 23.0$ Hz) in the 13C NMR spectrum. Moreover, the ESI-MS spectrum of 8 displayed a peak of the quasimolecular ion of the $[d_4]$-form at m/z 447 [M+Na]$^+$ (100%) along with those due to $[d_3]$- and $[d_2]$-forms at m/z 446 (14%) and m/z 445 (0.6%), respectively (Scheme 2).

The thus obtained thiosugar 8 with a moderate degree of deuteration was subsequently converted to salacinol-1,1,5,5-C-d_4 (7) according to the conventional protocol for salacinol synthesis.14,18 Specifically, S-alkylation of 8 with cyclic sulfate14 9 in gently refluxed 1,1,1,3,3,3-hexafluoropropanol (HFIP) in the presence of potassium carbonate gave sulfonium salt 24 in 88% yield. Finally, hydrogenolysis of 24 over Pd-C in 80% acetic acid smoothly afforded 7 in 74% yield (Scheme 3).
The 1H (800 MHz) and 13C (200 MHz) NMR spectra of 7 in D$_2$O are displayed in Figures 2 and 3, respectively, along with those of salacinol (1). As summarized in Table 1, the chemical shifts of all carbons of 7 were perfectly identical to those of 1 (deviations of 0.01 ppm) except for those of C-1 and C-5 (CD$_2$), which were observed as quintets at $\Delta\delta_{\text{C-1}}$ 50.2 and $\Delta\delta_{\text{C-5}}$ 61.2 and were slightly shifted upfield compared to those of 1 ($\Delta\delta_{\text{C-1}}$ 50.5 and $\Delta\delta_{\text{C-5}}$ 61.7) due to the effect of deuterium substitution. Similarly, the 1H NMR spectrum of 7 was similar to that of 1, except for the coupling patterns of H-2, H-3, and H-4 signals being simplified by the introduction of deuterium at C-1 and C-5. The negative-mode ESI-MS spectrum of 7 showed a peak at m/z 337.0530 {[M–H]$^-$, base peak (100%)} along with those due to [d$_3$]- and [d$_2$]-forms [m/z 336.0509 (19%) and m/z 335.0456 (1.5%), respectively]. Notably, signals at m/z 333 and 334, corresponding to [d$_0$] and [d$_1$] forms, respectively, were not detected. Thus, based on the observed ion intensities, the isotopic substitution grade of 7 was estimated as ~99% ([d$_4$]- and [d$_3$]-forms) (Figure 4).

Table 1. 1H and 13C NMR data of salacinol-1,1,5,5-C-d_4 (7) and salacinol (1) in D$_2$O

<table>
<thead>
<tr>
<th>Salacinol-1,1,5,5-C-d_4 (7)</th>
<th>Salacinol (1)</th>
<th>Deviations of the chemical shifts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position</td>
<td>δ^1_{H}</td>
<td>δ^2_{C}</td>
</tr>
<tr>
<td>H-1a,1b</td>
<td>–</td>
<td>50.2 (quint., J = 19.4)</td>
</tr>
<tr>
<td>H-2</td>
<td>4.82 (d-like, J = ca. 3.4)</td>
<td>79.4</td>
</tr>
<tr>
<td>H-3</td>
<td>4.51 (dd, J = 3.4, 2.6)</td>
<td>80.3</td>
</tr>
<tr>
<td>H-4</td>
<td>4.14 (d, J = 2.6)</td>
<td>72.6</td>
</tr>
<tr>
<td>H-5a</td>
<td>–</td>
<td>61.2 (quint., J = 18.7)</td>
</tr>
<tr>
<td>H-5b</td>
<td>–</td>
<td>4.13 (dd, J = 12.0, 4.9)</td>
</tr>
<tr>
<td>H-1’a</td>
<td>3.90 (dd, J = 13.5, 8.4)</td>
<td>52.4</td>
</tr>
<tr>
<td>H-1’b</td>
<td>4.06 (dd, J = 13.5, 3.2)</td>
<td>4.00 (dd, J = 13.5, 3.2)</td>
</tr>
<tr>
<td>H-2’</td>
<td>4.47 (ddd, J = 8.4, 7.3, 3.2)</td>
<td>68.3</td>
</tr>
<tr>
<td>H-3’</td>
<td>4.42 (ddd, J = 7.6, 3.4, 3.2)</td>
<td>82.7</td>
</tr>
<tr>
<td>H-4’a</td>
<td>3.93 (dd, J = 12.8, 3.2)</td>
<td>62.3</td>
</tr>
<tr>
<td>H-4’b</td>
<td>4.03 (dd, J = 12.8, 3.4)</td>
<td>3.97 (dd, J = 12.8, 3.2)</td>
</tr>
</tbody>
</table>

1800 MHz. 2200 MHz.
Figure 2. 1H NMR spectra (800 MHz) of 1 and 7 in D$_2$O

Figure 3. 13C NMR spectra (200 MHz) of 1 and 7 in D$_2$O
Finally, the behavior of \(\text{7} \) under the conditions of LC-MS analysis was compared to that of \(\text{1} \). According to a previously reported protocol,\(^{29} \) the quasi-molecular \([M-H]^-\) ions of \(\text{7} \) (\(m/z \ 337 \)) and \(\text{1} \) (\(m/z \ 333 \)) were monitored in selected ion monitoring (SIM) mode using negative-ion ESI ionization. The retention time (\(t_R \ 6.7 \) min) of \(\text{7} \) in the SIM chromatogram was perfectly identical to that (\(t_R \ 6.7 \) min) of \(\text{1} \), indicating that \(\text{7} \) can be used as an IS for stable IDMS of \(\text{Salacia} \) (Figure 5).
In conclusion, thiosugar-1,1,5,5-C-d$_4$ (8), a common motif of natural α-glucosidase inhibitors 1–6, was successfully synthesized starting from commercially available D-gluconolactone (10) by three-fold deuteride reduction and was subsequently converted to salacinol-1,1,5,5-C-d$_4$ (7) via S-alkylation with cyclic sulfate 9. 1H and 13C NMR spectroscopy demonstrated that four deuterium atoms were introduced into the structure of 7. The good isotopic purity of 7, estimated based on the intensities of the quasimolecular ion peaks in MS spectra, proved that 7 could function as a stable isotopically labeled IS for the IDMS of Salacia. Further studies on the synthetic application of 8 to other natural sulfonium salts 2–6 as well as those on its analytical application to the quality evaluation of Salacia raw materials and assessment of the disposition dynamics of natural sulfonium salts conjugates in biological fluids are in progress.

EXPERIMENTAL

Mps were determined on a hot-stage melting point apparatus and are uncorrected. IR spectra were measured on a FT-IR spectrophotometer. NMR spectra were recorded on a FT-NMR spectrometers (1H, 500 or 800 MHz; 13C, 125 or 200 MHz). Chemical shifts (\(\delta\)) and coupling constants (\(J\)) are given in ppm and Hz, respectively. Tetramethylsilane (TMS) was used as an internal standard for 1H NMR measurements in CDCl$_3$, whereas 13C NMR measurements utilized the solvent signal (77.0 ppm) of CDCl$_3$ for this purpose. Sodium 2,2-dimethyl-2-silapentane-5-sulfonate (DSS) was used as an external standard in the measurement of 1H and 13C NMR spectra in D$_2$O. Low-resolution and high-resolution mass spectra were recorded on a double-focusing mass spectrometer (FAB) or an orbitrap mass spectrometer (ESI). Optical rotations were determined with a digital polarimeter. Sodium borodeuteride (NaBD$_4$, isotopic purity: 99%) and lithium aluminum deuteride (LiAlD$_4$, isotopic purity: 98%) were purchased from Cambridge Isotope Laboratories, Inc. and Strem Chemicals, Inc., respectively. Column chromatography was performed over silica gel (45–106 μM). All the organic extracts were dried over anhydrous Na$_2$SO$_4$ prior to evaporation.

D-Glucono-1,5-lactone 2,3,4,6-tetraacetate (11). According to the literature,15 a mixture of D-glucono-1,5-lactone (10, 30 g, 168 mmol), acetic anhydride (106 mL, 1.0 mol), and zinc chloride (5.0 g, 37 mmol) was stirred at room temperature for 2.5 h. The reaction mixture was poured in to ice-cooled water (500 mL), and the resulting mixture was neutralized with sodium hydrogen carbonate. The deposited solid was filtered off, and the filtrate was extracted with AcOEt. The extract was washed with brine and condensed to give the title compound 11 (43.8 g, 75%) as a colorless oil. 1H NMR (800 MHz, CDCl$_3$) \(\delta\): 2.08/2.09/2.12/2.17 (each 3H, s, COCH$_3$), 4.27 (1H, dd, \(J = 12.8, 2.4\), H-6a), 4.41 (1H, dd, \(J = 12.8, 4.0, H-6b\)), 4.62 (1H, ddd, \(J = 8.8, 4.0, 2.4, H-5\)), 5.12 (1H, \(J = 8.8, H-2\)), 5.36 (1H, dd, \(J = 8.8, 8.8,\)
H-4), 5.56 (1H, dd, J = 8.8, 8.8, H-3). 13C NMR (200 MHz, CDCl$_3$) δ: 20.3/20.4/20.5/20.6 (COCH$_3$), 61.3 (C-6), 66.6 (C-4), 70.3 (C-2), 70.4 (C-3), 75.8 (C-5), 164.5 (C-1), 169.1/169.5/169.9/170.2 (COCH$_3$).

D-Glucose-1- C-d' 2,3,4,6-tetraacetate (12).

Method A: Sodium borodeuteride (NaBD$_4$, 25 mg, 0.60 mmol) was added portionwise to a mixture of compound 11 (412 mg, 1.19 mmol), THF (10 mL), and H$_2$O (2 mL) at 0 °C. After being stirred at 0 °C for 1 h, the reaction mixture was neutralized with ion exchange resin IR-120 (H$^+$-form). The ion exchange resin was filtered off, and washed with AcOEt. The combined filtrate and washings were diluted with water (5 mL) and extracted with AcOEt. The extract was washed with brine and condensed to give a colorless viscous oil (327 mg), which on column chromatography (n-hexane/AcOEt = 10/1 \rightarrow 5/1 \rightarrow 3/1) gave the title compound 12 (269 mg, 65%) as a colorless viscous oil.

Method B: Sodium borodeuteride (NaBD$_4$, 27.4 mg, 0.65 mmol) was added portionwise to a mixture of compound 11 (453 mg, 1.31 mmol), THF (8 mL), and acetate buffer (pH = 5.0, 2 mL) at 0 ° C. After being stirred at 0 °C for 2 h, the reaction mixture was diluted by addition of water (10 mL) and the resulting mixture was extracted with AcOEt. The extract was washed with brine and condensed to give a colorless viscous oil (407 mg), which on column chromatography (n-hexane/AcOEt = 10/1 \rightarrow 5/1 \rightarrow 3/1) gave the title compound 12 (369 mg, 81%) as a colorless viscous oil.

A mixture of α- and β-12 ($\alpha/\beta =$ ca. 2/1): 1H NMR (800 MHz, CDCl$_3$) δ: 2.024/2.041/2.101 (each 2H, s, COCH$_3$-α), 2.025/2.035/2.094/2.098 (each 1H, s, COCH$_3$-β), 3.49 (0.66H, d, J$_{OH-H2}$ = 1.6, OH-α), 3.76 (0.33H, ddd, J = 10.4, 4.8, 2.4, H-5-β), 3.85 (0.33H, s, OH-β), 4.14 (0.66H, dd, J = 12.0, 2.4, H-6a-α), 4.16 (0.33H, dd, J = 12.0, 2.4, H-6a-β), 4.24 (0.66H, dd, J = 12.0, 4.0, H-6b-α), 4.26 (0.33H, dd, J = 12.0, 4.8, H-6b-β), 4.27 (0.66H, ddd, J = 10.4, 4.0, 2.4, H-5-α), 4.89 (0.33H, d, J = 9.6, H-2-β), 4.90 (0.66H, dd, J = 10.4, J$_{OH-2}$ = 1.6, H-2-α), 5.086 (0.33H, dd, J = 10.4 9.6, H-4-β), 5.088 (0.66H, dd, J = 10.4, 9.6, H-5-α), 5.26 (0.33H, dd, J = 9.6, 9.6, H-3-β), 4.26 (0.66H, dd, J = 10.4, 9.6, H-3-α). 13C NMR (200 MHz, CDCl$_3$) δ: 20.6/20.65/20.68/20.72 (COCH$_3$-α), 20.6/20.7 (COCH$_3$-β, two signals overlapped with those of α-isomer), 61.9 (C-6α and C-6β), 67.4 (C-5α), 68.4 (C-4β), 68.5 (C-4α), 69.8 (C-3α), 71.0 (C-2α), 72.1 (C-3β), 72.2 (C-5β), 73.2 (C-2β), 89.8 (t, J = 25.8, C-1α), 95.1 (t, J = 25.0, C-1β), 169.6/170.1/170.2/170.8 (COCH$_3$-α), 169.5/170.8/170.9 (COCH$_3$-β, one signal overlapped with that of α-isomer).

1,2:5,6-Di-O-isopropylidene-α-D-glucofuranose-1-C-d' (14). According to the method B used for the preparation of 12, to a mixture of compound 11 (9.87 g, 28.5 mmol), THF (160 mL), and acetate buffer (pH = 5.0, 40 mL) was added portionwise NaBD$_4$ (597 mg, 14.3 mmol) at 0 °C, and the mixture was stirred at 0 °C for 2 h. Work-up gave 12 (8.67 g) as a colorless viscous oil, which was used without
further purification.
A mixture of the crude 12 (8.67 g), sodium methoxide (537 mg, 9.9 mmol), and dry MeOH (90 mL) was stirred at room temperature for 5 h. The reaction mixture was neutralized with ion exchange resin IR-120 (H+-form). The ion exchange resin was filtered off, and washed with wet MeOH. The combined filtrate and washings were condensed to give D-glucose-1-C-d (13, 4.79 g) as a colorless amorphous, which was used without further purification.
A mixture of the crude 13 (4.79 g), iodine (1.62 g, 6.4 mmol), and acetone (500 mL) was stirred at room temperature for 3.5 days. After the reaction mixture was poured into aqueous sodium thiosulfate-sodium hydrogen carbonate (300 mL), acetone was evaporated in vacuo from the resulting mixture, and the residue was extracted with AcOEt. The extract was washed with brine and condensed to give a colorless solid (4.19 g), which on column chromatography (n-hexane/AcOEt = 10/1→5/1→3/1) gave the title compound 14 (3.79 g, 51% from 11) as a pale yellow solid. Colorless needles (from n-hexane). Mp 103–105 °C, lit. 15 mp 107–109 °C. 1H NMR (500 MHz, CDCl3) δ 1.32/1.37/1.45/1.50 [each 3H, s, (CH3)2C], 2.61 (1H, d, J = 5.4, OH), 3.99 (1H, dd, J = 8.6, 5.2, H-6a), 4.07 (1H, dd, J = 7.5, 2.9, H-4), 4.17 (1H, dd, J = 8.6, 6.3, H-6b), 4.33 (1H, dd, J = 5.4, 2.9, H-3), 4.34 (1H, ddd, J = 7.5, 6.3, 5.2, H-5), 4.53 (1H, s, H-2).

13C NMR (125 MHz, CDCl3) δ 25.1/26.2/26.7/26.8 [s, (CH3)2C], 67.6 (C-6), 73.5 (C-5), 75.2 (C-3), 81.1 (C-4), 85.0 (C-2), 105.0 (t, J = 27.4, C-1), 109.6/111.8 [(CH3)2C].

3-O-Benzyl-1,2:5,6-di-O-isopropylidene-α-D-glucofuranose-1-C-d (15). A solution of 14 (3.47 g, 13.3 mmol) in DMF (30 mL) was added dropwise to a mixture of sodium hydride (636 mg, 15.9 mmol, 60% in liquid paraffin), benzyl bromide (1.9 mL, 16.0 mmol), and DMF (20 mL) at 0 °C. After being stirred at 0 °C for 1.5 h, the reaction mixture was poured into ice-cooled water (250 mL) and extracted with AcOEt. The extract was washed with brine and condensed to give a pale yellow oil (5.71 g), which on column chromatography (n-hexane/AcOEt = 10/1) gave the title compound 15 (4.28 g, 92%) as a colorless oil. [α]D24 = −40.4 (c 1.10, CHCl3). IR (neat): 2986, 2936, 2203 (C–D), 1496, 1454, 1373, 1254, 1215, 1114, 1076, 1034, 1003 cm⁻¹. 1H NMR (800 MHz, CDCl3) δ: 1.31/1.37/1.43/1.49 [each 3H, s, (CH3)2C], 4.00 (1H, dd, J = 8.8, 5.6 H-6a), 4.02 (1H, d, J = 3.2, H-3), 4.11 (1H, dd, J = 8.8, 6.4, H-6a), 4.15 (1H, dd, J = 7.2, 3.2, H-4), 4.37 (1H, ddd, J = 7.2, 6.4, 5.6, H-5), 4.58 (1H, s, H-2, -H-3), 4.64/4.68 (each 1H, d, J = 11.2, CH2Ph), 7.27–7.37 (5H, m, arom.). 13C NMR (125 MHz, CDCl3) δ: 25.4/26.2/26.7/26.83 [s, (CH3)2C], 67.4 (C-6), 72.3 (CH2Ph), 72.5 (C-5), 81.3 (C-4), 81.7 (C-3), 82.6 (C-2), 105.0 (t, J = 27.4, C-1), 109.0/111.8 [(CH3)2C], 127.6/127.8/128.4 (d, arom.), 137.6 (s, arom.). LRMS (FAB) m/z: 352 [M+H]+, 374 [M+Na]+. HRMS (FAB) m/z: [M+H]+ Calcd for C19H26O6 352.1869; Found 352.1872.

3-O-Benzyl-1,2-O-isopropylidene-α-D-glucofuranose-1-C-d (16). A mixture of 15 (4.28 g, 12.2 mol) and 70% aqueous acetic acid (60 mL) was heated at 50 °C for 4.5 h. After the reaction mixture was
poured into ice-cooled water (400 mL), the resulting mixture was neutralized with sodium hydrogen carbonate and extracted with AcOEt. The extract was washed with brine and condensed to give a pale yellow oil (3.54 g), which on column chromatography (n-hexane/AcOEt = 10/1) gave the title compound 15 (2.96 g, 78%) as a colorless oil. [α]D24 –47.7 (c 1.10, CHCl3). IR (neat): 3418, 2985, 2935, 2877, 2199 (C–D), 1497, 1454, 1377, 1354, 1303, 1253, 1215, 1192, 1153, 1076, 1029 cm−1. 1H-NMR (500 MHz, CDCl3) δ: 1.32/1.49 [each 3H, s, (C3H3)2C], 2.27/2.56 (each 1H, br s, OH), 3.69 (1H, dd, J = 11.5, 5.5, H-6a), 3.81 (1H, dd, J = 7.8, 3.5, 5.5, H-5), 4.10 (1H, d, J = 3.2, H-3), 4.13 (1H, dd, J = 7.8, 3.2, H-4), 4.55/4.74 (each d, J = 11.8, CH2Ph), 4.63 (1H, s, H-2), 7.30–7.38 (5H, m).

13C-NMR (125 MHz, CDCl3) δ: 26.2/26.7 [(C3H3)2C], 64.3 (C-6), 69.3 (C-5), 72.1 (CH2Ph), 79.9 (C-4), 82.0 (C-2/C-3), 104.9 (t, J = 27.4, C-1), 111.8 [(CH3)2C], 127.9/128.3/128.7 (d, arom.), 137.1 (s, arom.). LRMS (FAB) m/z: 312 [M+H]+, 334 [M+Na]+. HRMS (FAB) m/z: [M+H]+ Calcd for C16H22DO6 312.1556; Found 312.1546.

Methyl 3-O-benzyl-1,2-O-isopropylidene-α-D-xylofuranuronate-1-C-d (17). A mixture of 16 (2.96 g, 9.5 mmol), sodium metaperiodate (7.14 g, 33.3 mmol), sodium hydrogen carbonate (1.2 g, 14.3 mmol), water (45 mL), and THF (45 mL) was stirred at room temperature for 4 h. The precipitates were filtered off, and the filtrate was extracted with AcOEt. The extract was washed with brine and condensed to give the corresponding aldehyde as a pale yellow oil (2.66 g), as a pale yellow oil, which was then dissolved in a mixture of MeOH and water (9/1, 40 mL) and basified with sodium hydrogen carbonate (8.0 g, 95 mmol). To the mixture was added dropwise a solution of bromine (9.1 g, 56.9 mmol) in a mixture of MeOH and water (9/1, 20 mL) at room temperature, and the resulting mixture was stirred at room temperature for 7.5 h. After the reaction mixture was poured into aqueous sodium thiosulfate-sodium hydrogen carbonate (250 mL), the deposited precipitate was filtered off, and the filtrate was extracted with AcOEt. The extract was washed with brine and condensed to give a pale yellow oil (2.73 g), which on column chromatography (n-hexane/AcOEt = 10/1) gave the title compound 17 (1.92 g, 65%) as a colorless oil. [α]D24 –43.9 (c 1.16, CHCl3). IR (neat): 2990, 2935, 2206 (C–D), 1767, 1736, 1497, 1454, 1439, 1373, 1300, 1211, 1115, 1076, 1038 cm−1. 1H-NMR (500 MHz, CDCl3) δ: 1.32/1.48 [each 3H, s, (C3H3)2C], 3.75 (3H, s, CO2C6H4), 4.26 (1H, dd, J = 3.7, 0.6, H-3), 4.52/4.66 (each 1H, d, J = 12.0, CH2Ph), 4.61 (1H, s-like, H-2), 4.83 (1H, d, J = 3.7, H-4), 7.24–7.37 (5H, m, arom.). 13C-NMR (125 MHz, CDCl3) δ: 26.3/26.9 [(CH3)2C], 52.2 (CO2CH3), 72.3 (CH2Ph), 79.6 (C-4), 81.7 (C-2), 82.8 (C-3), 105.5 (t, J = 27.4, C-1), 112.4 [(CH3)2C], 127.7, 128.0, 128.4 (d, arom.), 136.9 (s, arom.), 168.3 (CO2CH3). LRMS (FAB) m/z: 310 [M+H]+, 332 [M+Na]+. HRMS (FAB) m/z: [M+H]+ Calcd for C16H22DO6 310.1400; Found 310.1421.

3-O-Benzyl-1,2-O-isopropylidene-α-D-xylofuranose-1,5,5-C-d3 (18). A solution of 17 (2.51 g, 8.13
mmol) in THF (10 mL) was added dropwise to a stirred suspension of lithium aluminum deuteride (LiAlD₄, 341 mg, 8.12 mmol) in THF (10 mL) at 0 °C, and the mixture was stirred at 0 °C for 30 min. The excess of deuteride was decomposed successively with AcOEt and 10% aqueous sodium hydroxide. The deposited gel was filtered off and was washed with THF. The combined filtrate and washings were condensed to give the title compound 18 (2.23 g) as a pale blown oil as an oil, which was used in the next step without purification. Analytical samples of the compound was obtained by means of column chromatography (n-hexane/AcOEt = 10/1→5/1→3/1) as a colorless oil. [α]D²⁴ −60.5 (c 1.27, CHCl₃). IR (neat): 3480, 2990, 2936, 2203/2110 (C–D), 1497, 1454, 1377, 1308, 1254, 1215, 1192, 1107, 1072, 1034, 1003 cm⁻¹. ¹H-NMR (500 MHz, CDCl₃) δ: 1.33/1.49 [each 3H, s, (CH₃)₂C], 2.18 (1H, s, OH), 4.02 (1H, d, J = 3.5, H-3), 4.27 (1H, dd, J = 3.5, H-4), 4.49/4.72 (each d, J = 12.0, CH₂Ph), 4.64 (1H, s, H-2), 7.29–7.38 (5H, m). ¹³C-NMR (125 MHz, CDCl₃) δ: 26.3/26.8 [(CH₃)₂C], 60.3 (quint., J = 21.5, C-5), 71.8 (CH₂Ph), 79.9 (C-4), 82.3 (C-2), 82.7 (C-3), 104.7 (t, J = 27.4, C-1), 111.7 [(CH₃)₂C], 127.7/128.2/128.6 (d, arom.), 137.0 (s, arom.). LRMS (FAB) m/z: 284 [M+H]⁺, 306 [M+Na]⁺. HRMS (FAB) m/z: [M+H]⁺ Calcd for C₁₅H₁₈D₃O₅ 284.1574 Found 284.1558.

Methyl 3-O-benzyl-α- and β-D-xylofuranoside-1,5,5-C-d₃ (α- and β-19). A mixture of the crude 18 (2.23 g), MeOH (90 mL), and concentrated sulfuric acid (1.5 mL) was stirred at room temperature for 15 h. The reaction was quenched by addition of excess sodium hydrogen carbonate, and the MeOH insoluble materials were filtered of and washed with MeOH. The combined filtrate and washings were condensed to give a pale yellow paste, which was extracted with CHCl₃. The CHCl₃ layer was condensed to give pale yellow oil (1.91 g), which on column chromatography (n-hexane/AcOEt = 10/1→5/1→3/1) gave a ca. 1:1 anomeric mixture of the title compounds α- and β-19 (1.46 g, 70% from 17) as a colorless oil. Pure two anomers of 19 partially separated by the column chromatography were used for analytical purpose.

Less polar isomer α-19: colorless oil. [α]D²⁴ +83.8 (c 0.26, CHCl₃). IR (neat): 3441, 2931, 2909, 2191/2106 (C–D), 1497, 1454, 1400, 1361, 1315, 1211, 1188, 1126, 1041 cm⁻¹. ¹H-NMR (500 MHz, CDCl₃) δ: 2.35 (1H, br s, OH), 2.65 (1H, d, J = 8.9, OH), 3.47 (3H, s, OCH₃), 4.13 (1H, dd, J = 6.9, 4.9, H-3), 4.24 (1H, d, J = 6.9, H-4), 4.29 (1H, dd, J = 8.9, 4.9, H-2), 4.61/4.84 (each 1H, d, J = 12.0, CH₂Ph), 7.29–7.39 (5H, m, arom.). ¹³C-NMR (125 MHz, CDCl₃) δ: 55.5 (OCH₃), 61.4 (quint., J = 21.5, C-5), 72.0 (CH₂Ph), 77.3 (C-4), 77.9 (C-2), 84.3 (C-3), 101.1 (t, J = 26.2, C-1), 127.7/128.0/128.5 (d, arom.), 137.4 (s, arom.). LRMS (FAB) m/z: 258 [M+H]⁺, 280 [M+Na]⁺. HRMS (FAB) m/z: [M+H]⁺ Calcd for C₁₃H₁₈D₃O₅ 258.1418 Found 258.1439.

More polar isomer β-19: colorless oil. [α]D²⁴ −85.2 (c 0.40, CHCl₃). IR (neat): 3406, 2927, 2160/2102 (C–D), 1496, 1454, 1396, 1334, 1211, 1176, 1099, 1049 cm⁻¹. ¹H-NMR (500 MHz, CDCl₃) δ: 2.44 (1H,
d, J = 4.3, OH), 2.55 (1H, br s, OH), 3.42 (3H, s, OCH₃), 4.08 (1H, dd, J = 6.9, 3.8, H-3), 4.30 (1H, dd, J = 4.3, 3.8, H-2), 4.33 (1H, d, J = 6.9, H-4), 4.57/4.71 (each 1H, d, J = 12.0, CH₂Ph), 7.28–7.38 (5H, m, arom.). ¹³C-NMR (125 MHz, CDCl₃) δ: 55.8 (OCH₃), 61.5 (quint., J = 21.5, C-5), 72.6 (CH₂Ph), 79.8 (C-2), 80.3 (C-4), 84.3 (C-3), 108.9 (C-55.78/55.83 (OCH₃)), 67.6/68.4 (each quint., J = 21.5, Cα-5/Cβ-5), 72.7/73.0 (CH₂Ph), 74.1/78.6 (Cα-4/Cβ-4), 79.5/80.7 (Cα-3/Cβ-3), 81.6/84.2 (Cα-2/Cβ-2), 99.9/106.7 (each t, J = 26.2, Cα-1/Cβ-1), 128.0/128.2/128.3/128.6/128.7 (d, arom.), 136.5/136.6 (s, arom.). LRMS (FAB) m/z: 258 [M+H]+, 280 [M+Na]+. HRMS (FAB) m/z: [M+H]⁺ Calcd for C₁₃H₁₆D₃O₅ 258.1418 Found 258.1441.

Methyl 3-O-benzyl-2,5-di-O-mesyl-d-xylofuranoside-1,5,5-C-d₃ (α- and β-20). Mesyl chloride (0.97 mL, 12.5 mmol) was added dropwise to a solution of the mixture of α- and β-19 (1.46 g) in pyridine (10 mL) at 0 °C. After being stirred at room temperature for 2 h, the reaction mixture was poured into ice-cooled water (50 mL) and extracted with AcOEt. The extract was washed with brine and condensed to a colorless oil (1.49 g), which on column chromatography (n-hexane/acetone = 10/1→5/1→3/1) as a colorless oil. ¹H-NMR (500 MHz, CDCl₃) δ: 2.99/3.00/3.04/3.06 (each 3H, s, OCH₃), 3.450/3.453 (each 3H, s, OCH₃), 4.31 (0.5H, dd, J = 6.3, 2.0, Hβ-3), 4.41–4.46 (1H, m, Hα-3 and Hα-4), 4.56 (0.5H, d, J = 6.3, Hβ-4), 4.57 (1H, d, J = 12.0, CH₂Ph x 2), 4.73/4.75 (each 0.5H, d, J = 12.0, CH₂Ph), 4.96 (0.5H, d, J = 4.9, Hα-2), 5.03 (0.5H, d, J = 2.0, Hβ-2), 7.30–7.40 (5H, m, arom.). ¹³C-NMR (125 MHz, CDCl₃) δ: 37.48/37.54/38.4/38.7 (OSO₂CH₃), 55.78/55.83 (OCH₃), 61.5/68.4 (each quint., J = 21.5, Cα-5/Cβ-5), 72.7/73.0 (CH₂Ph), 74.1/78.6 (Cα-4/Cβ-4), 79.5/80.7 (Cα-3/Cβ-3), 81.6/84.2 (Cα-2/Cβ-2), 99.9/106.7 (each t, J = 26.2, Cα-1/Cβ-1), 128.0/128.2/128.3/128.6/128.7 (d, arom.), 136.5/136.6 (s, arom.). LRMS (FAB) m/z: 436 [M+Na]⁺. HRMS (FAB) m/z: [M+Na]+ Calcd for C₁₃H₁₅D₂NaO₆S₂ 436.0788 Found 436.0762.

2,5-Dideoxy-2,5-epithio-3-O-benzyl-α- and β-D-lyxofuranoside-1,1,5,C-d₃ (α- and β-21). A mixture of the crude dimesylate α- and β-20 (2.33 g), sodium sulfide nonahydrate (2.71 g, 11.3 mmol), and DMF (35 mL) was heated at 100 °C for 4 h. After being cooled, the mixture was poured into ice-cooled water (180 mL) and extracted with AcOEt. The extract was washed with brine and condensed to a pale brown oil (1.49 g), which on column chromatography (n-hexane/AcOEt = 10/1→5/1) gave a ca. 1:1 anomic mixture of the title compounds α- and β-21 (1.12 g, 77% from 19) as a colorless oil. Pure two anomers of 21 partially separated by the column chromatography were used for analytical purpose. Less polar isomer α-21: colorless oil. [α]D²⁵ +30.5 (c 1.27, CHCl₃). IR (neat): 2927, 2909, 2168 (C=O), 1497, 1454, 1350, 1288, 1242, 1203, 1146, 1033 cm⁻¹. ¹H-NMR (500 MHz, CDCl₃) δ: 3.33 (1H, d, J = 2.3 Hz, H-2), 3.34 (3H, s, OCH₃), 4.36 (1H, d, J = 2.9 Hz, H-4), 4.48 (1H, dd, J = 2.9, 2.3 Hz, H-3), 4.50/4.63 (1H, d, J = 11.5 Hz, CH₂Ph), 7.27–7.37 (5H, m). ¹³C-NMR (125 MHz, CDCl₃) δ: 34.4 (quint.,
$J = 21.4, \text{ C-5}$, $48.4 (\text{ C-2})$, $55.0 (\text{ OCH}_3)$, $72.1 (\text{ CH}_2\text{Ph})$, $76.0 (\text{ C-4})$, $79.8 (\text{ C-3})$, $109.3 (t, J = 27.4, \text{ C-1})$, $127.9/128.0/128.5 (d, \text{ arom.})$, $137.5 (s, \text{ arom.})$. LRMS (FAB) m/z: $256 [\text{M+H}]^+$, $278 [\text{M+Na}]^+$. HRMS (FAB) m/z: $[\text{M+H}]^+$ Calcd for C$_{13}$H$_{14}$D$_3$O$_3$S 256.1084 Found 256.1089.

More polar isomer β-21: colorless oil. $[\alpha]_D^{24}$−47.5 (c 1.32, CHCl$_3$). IR (neat): 2956, 2927, 2126 (C–D), 1496, 1454, 1358, 1300, 1242, 1207, 1153, 1130, 1107, 1080, 1033 cm$^{-1}$. 1H-NMR (800 MHz, CDCl$_3$) δ: 3.48 (3H, s, OCH$_3$), 3.50 (1H, d, $J = 2.0$, H-2), 4.29 (1H, dd, $J = 3.2$, 2.0, H-3), 4.35 (1H, d, $J = 3.2$, H-4), 4.54/4.66 (each 1H, d, $J = 12.0$ Hz, CH$_2$Ph), 7.30–7.39 (5H, m).

1C-NMR (200 MHz, CDCl$_3$) δ: 34.5 (quint., $J = 22.0$, C-5), 50.4 (C-2), 56.4 (OCH$_3$), 71.7 (CH$_2$Ph), 78.1 (C-4), 80.0 (C-3), 105.9 (t, $J = 25.8$, C-1), 127.9/128.1/128.5 (d, arom.), 137.2 (s, arom.). LRMS (FAB) m/z: $256 [\text{M+H}]^+$, $278 [\text{M+Na}]^+$. HRMS (FAB) m/z: $[\text{M+H}]^+$ Calcd for C$_{13}$H$_{14}$D$_3$O$_3$S 256.1084 Found 256.1092.

3-O-Benzyl-1,4-dideoxy-1,4-epithio-D-arabinitol-1,1,5,5-C-d$_4$ (23). The crude mixture of α- and β-21 (1.12 g) was dissolved in THF (4 mL), and was treated with 3M hydrochloric acid (8 mL) at room temperature for 2 h. The reaction was quenched with sodium hydrogen carbonate, and NaBD$_4$ (223 mg, 5.3 mmol) was added in small portionwise at 0 °C, and the resulting mixture was stirred at room temperature for 1 h. The reaction mixture was diluted with water (30 mL) and extracted with AcOEt. The extract was washed with brine and condensed to give a pale brown oil (968 mg), which on column chromatography (n-hexane/AcOEt = 10/1→5/1→3/1) gave the title compound 23 (683 mg, 64%) as a pale yellow oil. $[\alpha]_D^{24}$+18.9 (c 1.19, CHCl$_3$). IR (neat): 3360, 2920, 2207/2099 (C–D), 1497, 1454, 1389, 1358, 1323, 1207, 1096, 1026, 910 cm$^{-1}$. 1H-NMR (800 MHz, CDCl$_3$) δ: 3.55 (1H, d, $J = 3.4$, H-4), 4.11 (1H, dd, $J = 4.0$, 3.4, H-3), 4.18 (1H, d, $J = 4.0$, H-2), 4.47/4.50 (each 1H, d, $J = 11.9$, CH$_2$Ph), 4.48/4.53 (each 1H, d, $J = 12.0$, CH$_2$Ph), 4.60/4.62 (each 1H, d, $J = 12.0$, CH$_2$Ph), 7.25–7.33 (15H, m).

328

2,3,5-Tri-O-benzyl-1,4-dideoxy-1,4-epithio-D-arabinitol-1,1,5,5-C-d$_4$ (8). A solution of thiosugar (23, 552 mg, 2.27 mmol) in DMF (4 mL) was added dropwise to a mixture of sodium hydride (273 mg, 6.8 mmol, 60% in liquid paraffin), benzyl bromide (0.8 mL, 6.73 mmol), and DMF (2 mL) at 0 °C. After being stirred at 0 °C for 30 min, the mixture was poured into ice-cooled water (30 mL) and extracted with AcOEt. The extract was washed with brine and condensed to give a pale yellow oil (1.2 g), which on column chromatography (n-hexane/AcOEt = 50/1→2/1) gave the title compound 8 (808 mg, 84%) as a colorless oil. $[\alpha]_D^{24}$+5.3 (c 0.75, CHCl$_3$). IR (neat): 2862, 2172/2075 (C–D), 1605, 1497, 1454, 1389, 1358, 1323, 1207, 1096, 1026, 910 cm$^{-1}$. 1H-NMR (800 MHz, CDCl$_3$) δ: 3.55 (1H, d, $J = 3.4$, H-4), 4.11 (1H, dd, $J = 4.0$, 3.4, H-3), 4.18 (1H, d, $J = 4.0$, H-2), 4.47/4.50 (each 1H, d, $J = 11.9$, CH$_2$Ph), 4.48/4.53 (each 1H, d, $J = 12.0$, CH$_2$Ph), 4.60/4.62 (each 1H, d, $J = 12.0$, CH$_2$Ph), 7.25–7.33 (15H, m, arom.).
13C-NMR (200 MHz, CDCl$_3$) δ: 32.6 (quint., $J = 21.1$, C-1), 48.8 (C-4), 71.5/71.9/73.0 (CH$_2$Ph), 71.6 (quint., $J = 23.0$, C-5), 85.0/85.1 (C-2/C-3) 127.6/127.67/127.68/127.72/127.82/128.35/128.36/128.41 (d, arom.), 137.9/138.1/138.2 (s, arom.). HRMS (ESI) m/z: [M+Na]$^+$ Calcd for C$_{26}$H$_{24}$D$_4$NaO$_3$S 447.1902; Found 447.1902.

2,3,5-Tri-O-benzyl-1,4-dideoxy-1,4-{([S]-[4-deoxy-1,3-O-isopropylidene-3-sulfooxy-D-erythritol-1-yl]-episulfoniumylidene]-D-arabinitol-1,1,5,5-C-d$_4$ (24). A mixture of thiosugar-1,1,5,5-C-d$_4$ (8, 200 mg, 0.47 mmol), cyclic sulfate (9, 180 mg, 0.80 mmol), potassium carbonate (26 mg, 0.19 mmol), and HFIP (1.5 mL) was heated under reflux for 24 h. After removal of the solvent at reduced pressure, the residue was purified on column chromatography (CHCl$_3$ → CHCl$_3$/MeOH = 80/1 → 50/1) to give title compound (24, 269 mg, 88%) as a colorless amorphous. $[\alpha]_D^{24} – 6.98$ (c 1.96, CHCl$_3$).

IR (neat): 2997, 2940, 2357/2330 (C–D), 1497, 1454, 1381, 1273, 1227, 1092, 1018 cm$^{-1}$. 1H-NMR (800 MHz, CDCl$_3$) δ: 1.26/1.45 [each 3H, s, (CH$_3$)$_2$C], 3.79 (dd, $J = 11.2$, 10.0, H-4’a), 3.83 (1H, dd, $J = 13.4$, 3.3, H-1’a), 3.96 (1H, br s-like, H-4), 4.15 (1H, dd, $J = 13.4$, 5.8, H-4’b), 4.27 (1H, ddd-like, $J = 9.9$, 3.3, 2.3, H-2’), 4.36 (1H, m, H-2), 7.15–7.36 (15H, m, arom.).

13C-NMR (200 MHz, CDCl$_3$) δ: 19.0/28.4 [each 3H, s, (CH$_3$)$_2$C], 47.3 (quint.-like, $J = ca. 22.0$, C-1), 50.0 (C-1’), 62.3 (C-4’), 65.3 (C-4), 66.0 (quint.-like, $J = ca. 23.9$, C-5), 67.0 (C-3’), 69.8 (C-2’), 72.2/72.5/73.7 (CH$_2$Ph), 82.0 (C-2), 83.3 (C-3), 99.8 [(CH$_3$)$_2$C], 127.9/128.0/128.6/128.7/128.8/128.9 (d, arom.), 135.8/136.0/136.5 (s, arom.).

1,4-Dideoxy-1,4-{[(S)-[2S,3S]-2,4-dihydroxy-3-(sulfooxy)butyl]episulfoniumylidene}-D-arabinitol-1,1,5,5-C-d$_4$ Inner Salt [Salacinol-1,1,5,5-C-d$_4$ (7)]. A suspension of 10% palladium-on-carbon (200 mg) in 90% aqueous acetic acid (4 mL) was pre-equilibrated with hydrogen. To the suspension was added a solution of 23 (260 mg, 0.40 mmol) in 90% aqueous acetic acid (4 mL), and hydrogenation was continued at room temperature and atmospheric pressure until the hydrogen uptake ceased. The catalyst was filtered off, and the catalyst was washed with water. The combined filtrate and washings were condensed at recuced pressure to give a pale yellow oil (165 mg), which on column chromatography (AcOEt/MeOH = 20/1→10/1→5/1→AcOEt/MeOH/H$_2$O = 5/1/0.5) gave the title compound 7 (100 mg, 74%) as a colorless prisms, mp 139–140 °C (from MeOH). $[\alpha]_D^{23} – 1.60$ (c 0.69, CH$_3$OH). IR (KBr): 3356, 1924, 2893, 2264/2118 (C–D), 1420 1303, 1246, 1184, 1111, 1092, 1056, 1011 cm$^{-1}$. 1H (800 MHz) and 13C (200 MHz) NMR data of 7 were summarized in Table 1. MS spectrum (ESI, negative mode) and HRMS data of 7 were given in Figure 4.

LC-MS Instruments and Conditions. A series LC-20A Prominence HPLC system (Shimadzu Co., Kyoto, Japan) was equipped with a binary pump, a degasser, an autosampler, a thermostated column
compartment and a control module connected with a LCMS-2010EV mass spectrometer equipped with an electrospray ionization (ESI) interface. The chromatographic separation was performed on an Asahipak NH2P-50 column (5 μm particle size, 2.0mm i.d.×150mm, Showa Denko K.K., Tokyo, Japan) operated at 40 °C. The mobile phase was consisted of acetonitrile and water (78:22, v/v), and was delivered at a flow rate of 0.2 mL/min. The injection volume was 1 μL. The mass spectrometer was operated at negative mode with selected ion monitoring (SIM). The optimal operating parameters of ESI for the maximum signal intensity of the molecular ions were obtained by direct infusion of the standard solutions of salacinol (1) and salacinol 1,1,5,5-C-d4 (7), and were as follows; nebulizing gas flow: 1.5 L/min, drying gas pressure: 0.15 MPa, CDL temperature: 250 °C, block heater temperature: 200 °C, CDL voltage: Constant-mode (−25 V), Q-array DS & RF voltage: Scan-mode. Under SIM mode, deprotonated molecular ions ([M−H]−) for each compound were observed at following retention times (1 m/z 333, tR 6.7 min and 7 m/z 337, tR 6.7 min).

Standard Solution Preparation. Accurately weighed 2.00 mg of 1 or 7 was introduced into a 20 mL volumetric flask and made up to the volume with water, the solution being used as a stock standard solution (100 μg/mL). Aliquots of 1.0 mL of the stock standard solution were transferred into a 20 mL volumetric flask and made up to the volume with 50% MeOH, the solutions being used as working solution (5.0 μg/mL) for constructing calibration curves. For the calibration an aliquot of 1 μL of the solution was injected into the LC-MS system.

ACKNOWLEDGEMENTS

This study was supported by a grant from the Houansha Foundation, 2017–2020 and by a Grant-in-Aid for scientific research from the Japan Society for the Promotion of Science [JSPS (KAKENHI), 15K08008, 15K08009, 16K08313, 17K08377 and 17H05438]. We are thankful for the financial support extended by the MEXT-Supported Program for the Strategic Research Foundation at Private Universities, 2014–2018, and the Antiaging Project for Private Universities. Thanks are also due to Takano Co., Ltd, Japan, for the financial support.

REFERENCES

