TOTAL SYNTHESIS OF (−)-ZEPHYRANTHINE

Koki Ishii,1 Yuna Seki-Yoritate,1 Mizuki Ishibashi,1 Ming Wai Liaw,1§ Takeshi Oishi,2 Takaaki Sato,1* and Noritaka Chida1*

1 Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan. 2 School of Medicine, Keio University, 4-1-1 Hiyoshi, Kohoku-ku, Yokohama 223-8521, Japan. E-mail: takaakis@applc.keio.ac.jp (TS), chida@applc.keio.ac.jp (NC)

This paper is dedicated with respect to Professor Tohru Fukuyama on the occasion of his 70th birthday.

Abstract – Stereoselective total synthesis of (−)-zephyranthine 1 based on the chiral pool approach starting from D-arabinose is described. The three consecutive chiral centers in (−)-zephyranthine were effectively constructed by the sequential [3,3] sigmatropic rearrangements (Claisen, Overman, and Claisen rearrangements) with chirality transfer of the hydroxy groups in D-arabinose.

(−)-Zephyranthine 1 is an Amaryllidaceae alkaloid isolated from Zephyranthes candida and Cyrtanthus elatus, and structurally classified as a member of the lycorine-type alkaloids.1 Since alkaloids of the

Figure 1. Structure of (−)-zephyranthine 1 and its synthetic plan

§ Visiting student from Department of Chemistry, Hong Kong University of Science and Technology, Hong Kong, China.
lycorine class have a synthetically attracting tetracyclic ABCD-ring core as well as a wide variety of biological activities. Numerous synthetic studies have been reported. However, reports on the synthesis of zephyranthine, possessing five contiguous chiral centers, are limited. In 1979, the Tsuda, Takagi, and Irie research group reported the first total synthesis of racemic zephyranthine. Enantioselective synthesis of (+)-trianthine, an enantiomer of (–)-zephyranthine, was reported from the Oppolzer’s laboratory in 1994. In 2017, the Sun group disclosed the asymmetric syntheses of (–)-zephyranthine, (–)-α-lycorane, and (+)-clivonine from the common intermediate derived by a Pd-catalyzed cinnamylolation of and N-tert-butanesulfinyl imine. Our group has been engaged in the synthesis of highly functionalized natural products utilizing sequential [3,3] sigmatropic rearrangements of enantiopure allylic polyols, which are derived from easily available natural chiral pool. The salient feature of this chiral pool/sigmatropic rearrangement methodology is the highest level of the chirality transfer of hydroxy groups in the starting allylic polyols, enabling the stereoselective formation of C-C and/or C-N bonds. In this communication, we report the chiral total synthesis of (–)-zephyranthine based on the chiral pool/sigmatropic rearrangement methodology starting from D-arabinose.

Our synthetic plan (Figure 1) suggested that 1 would be obtained by the dihydroxylation of the alkene followed by reduction of the lactam carbonyl in pentacycle 2. Compound 2 was planned to be constructed from diene 3 by the ring-closing metathesis (RCM) and Pictet-Spengler reactions. Acyclic amide-ester 4 having the suitable functionalities and stereocenters would be a precursor of diene 3. For the construction of the three contiguous chiral centers (C-10b, 4a, and 4, zephyranthine numbering) in 4, three consecutive sigmatropic rearrangements of allylic polyol 5 (1st: Claisen, 2nd: Overman, and 3rd: Claisen rearrangements) were envisioned as the key transformations. For the second and third rearrangements, we planned to apply the sequential Overman/Claisen rearrangement in a one-pot process via a cyclic orthoamide derivative. Acyclic polyol 5, possessing an alkene moiety and proper array of hydroxy groups, would be easily obtained by Wittig reaction of D-arabinose.

Wittig reaction of the known acetonide 6, prepared from D-arabinose in one step, with ylide generated from 7 afforded Z-alkene 8 and its E-isomer in 60 and 19% yields, respectively (Scheme 1). Reaction of 1,4-diol 8 with MeC(OMe)2NMe2 in o-xylene at 160 °C gave a product of Claisen rearrangement 9 in 81% yield as a single isomer. The structure of 9 was fully confirmed by the single X-ray crystal analysis. The amide function in 9 was reduced to give diol 10, of which hydroxy groups were protected as benzylxoxymethyl (BOM) ethers to provide 11 (94% for 2 steps). Mild acid hydrolysis of 11 cleanly removed an acetonide group to give allylic diol 12 in 92% yield. With allylic vicinal diol 12 in hand, the sequential Overman/Claisen rearrangement in a one-pot process was examined. Thus, treatment of 12 with Cl3CCN, DBU, and a catalytic amount of ZnCl2 at 0 °C afforded cyclic orthoamide 13 as a single diastereomer in 90% yield. Heating of 13 in t-BuPh in the presence of water (2.4 equiv)
Scheme 1. Construction of three contiguous chiral centers by the sequential sigmatropic rearrangements

BOM = -CH₂OCH₂Ph

in a sealed tube at 180 °C gave Overman rearrangement product 14 through equilibrium with imidate 13' 13. After the consumption of 13 was confirmed by TLC analysis, triethyl orthoacetate and 2-nitrophenol were added to the resulting 14. Further heating of the reaction mixture at 140 °C successfully afforded the sequential Overman/Claisen rearrangement product 4 as a single isomer in 57% yield in a one-pot operation.

As the three contiguous chiral centers (C-10b, 4a, and 4) in zephyranthine have been successfully generated in a stereoselective manner by the sequential sigmatropic rearrangements, we then turned our attention to the construction of the ABCD-ring system (Scheme 2). First, the D-ring was formed as a γ-lactam under Isobe’s conditions. 14 Reaction of 4 with Cs₂CO₃ in DMSO transformed the trichloroacetamide moiety in 4 to an isocyanate, which was then treated with aqueous base to give γ-lactam 15 in 75% yield. Hydrogenation of 15, followed by acid hydrolysis afforded saturated diol 16 in one-pot process with 84% yield. Diol 16 was then converted to diene 3 by the double Nishizawa-Grieco dehydration. 15 Thus, treatment of 16 with excess amount of Bu₃P and o-nitrophenyl selenocyanate afforded di-selenide 17, which, without isolation, was oxidized by NaIO₄ to provide diene 3 in 89% from 16. RCM reaction of 3 with Grubbs II catalyst smoothly constructed the C-ring, and ACD-ring 18 was obtained in 81% yield. 16 The Pictet-Spengler reaction of 18 with paraformaldehyde and trifluoroacetic acid generated the B-ring to afford ABCD-ring 2 in 92% yield. 17 Dihydroxylation of
with \(\text{K}_2\text{OsO}_4 \cdot 2\text{H}_2\text{O} \) in the presence of NMO proceeded in a stereoselective manner to give the desired \(\alpha \)-diol 19a and its isomeric \(\beta \)-diol 19b in 70 and 12% yields, respectively.18 Finally, reduction of the lactam carbonyl in 19a by the action of \(\text{BH}_3 \cdot \text{THF} \)^5,19 furnished (–)-zephyranthine 1 in 79% yield. The spectral data and \([\alpha]_D\) value of synthetic 1 were in good accordance with those reported by Sun.\(^4d\)

In conclusion, we have accomplished the chiral total synthesis of (–)-zephyranthine 1 in 16 steps from D-arabinose. This synthesis fully revealed that the chiral pool approach from carbohydrates utilizing the sigmatropic rearrangements is a powerful method for the stereoselective synthesis of natural products in optically pure forms. Especially, the highest level of the chirality transfer in the sigmatropic rearrangements of acyclic secondary alcohols originated from the starting sugar would be useful and reliable for the stereoselective generation of C-C and C-N bonds. Further study on the synthesis of structurally complex natural products based on the chiral pool/sigmatropic rearrangement strategy is underway.

ACKNOWLEDGEMENTS

This research was partially supported by a Grant-in-Aid for Scientific Research (B) from MEXT (26288018).
REFERENCES AND NOTES

6. For the sequential Overman/Overman rearrangement of allylic 1,2-diols derived from carbohydrates

10. For experimental details and spectral data of new compounds, see the supporting information.

11. In the Claisen rearrangement, a small amount of the primary acetate derivative of 9 was formed as the byproduct, which was converted to 9 by basic methanalysis in a one-pot operation.

13. We found that the addition of water accelerated the orthoamide-type Overman rearrangement, giving the rearranged product in higher yield. Although the role of water has not been clarified, it might act as proton source that catalyzed the rapid equilibration between cyclic orthoamide 13 and trichloroimidate 13′.

18. The ABCD-ring structure in 2 was important for the stereoselective dihydroxylation. Under the same reaction conditions, compound 18 possessing the ACD-ring with a rotatable catechol ring showed low stereoselectivity (α-diol : β-diol = 1.5 : 1). The dihydroxylation of 2 would proceed from the less hindered convex face of the rigid ABCD-ring framework.