EXPLORATION OF MODERATE CONDITIONS AND SUBSTRATE VARIATION IN THE DIRECT CONDENSATION BETWEEN PHTHALIDE AND PRIMARY AMINE CATALYZED BY GaCl₃. ARE ALIPHATIC AMINES LESS REACTIVE THAN AROMATIC ONES? †

Ichiro Takahashi,¹* Yoshinori Nishiwaki,¹ Kenta Saitoh,¹ Takatoshi Matsunaga,¹ Akihiro Aratake,¹ Toshio Morita,¹ and Shinzo Hosoi²

¹ Department of Applied Chemistry and Biotechnology, Faculty of Engineering, University of Fukui, Bunkyo, Fukui 910-8507, Japan. ² The Research Center for Pharmacy Education, Kyoto Pharmaceutical University, 5 Nakachiki-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan. E-mail: ichiro@u-fukui.ac.jp; shosoi@mb.kyoto-phu.ac.jp

Abstract – Direct condensation between phthalide and a primary amine in the presence of Lewis acid was achieved for the first time in organic solvent-diluted reaction systems catalyzed by GaCl₃. The peripheral aspects of this reaction is discussed.

INTRODUCTION

Heterocyclic compounds containing phthalimidine (2,3-dihydroisoindol-1-one) skeletons have attracted considerable interests in recent years. Its publicity has never been comparable to that of isomeric indole analogues, however, trends of often-occurring crystalline (= easily identifiable) derivatives and a variety

Figure 1. Chemical structures of some bioactive phthalimidines

† Dedicated to Professor Tohru Fukuyama on his 70th birthday
of bioactivities have aroused its synthetic interest increasingly. Recently focused bioactive phthalimidines such as indoprofen (anti-inflammatory agent), staurosporine (protein kinase C inhibitor), and DN-2327 (also known as pazinaclone, anxiolytic agent) have attracted much attention (Figure 1).1-3 Since 1877, a number of “famous” phthalimidine skeleton syntheses have been known to literatures, for which the following classification is possible. Thus, condensation of phthalide with primary amine (Hessert-Sugasawa), condensation of 2-hydroxymethylbenzoic acid derivative (e.g., ring-opened type phthalide) with primary amine (Fischer), Clemmensen-type reduction of phthalimide (Graebe), rearrangement of phthalazone (Gabriel), CO insertion to benzimidine (Murahashi), and double Mannich condensation (Thiele), have played major roles ever since.1-5 However, applicabilities of all synthetic methods described above are more or less limited and unsatisfactory, due to severe reaction conditions, restrictions in substituents, or difficulties in purification. Focusing on this point, we previously reported the 1:1 condensation reaction between \textit{o-}phthalaldehyde (OPT) and primary amine in the presence of 1,2,3-\textit{H-}benzotriazole and 2-mercaptoethanol as dual synthetic auxiliaries to provide phthalimidines under mild reaction conditions in good isolated yields.6-11 Our method is believed to be useful in the preparation of phthalimidine framework of “type indoprofen”, where unsubstituted or symmetrically substituted benzene precursors are assumed as starting materials. Recent advancements deeply stem in the categories described above, too. Example of those appeared in literature are as follows: Mannich condensation-based annulation utilizing phthalaldehydic acid,12,13 use of polymethylhydrosiloxane (PMHS) as reductant for phthalimide,14 annulations of benzamidomethylide,15,16 and insertion of Pd catalyst to C-halogen or C-H bondings located ortho to carboxylic amide.17-20 However, preparations of phthalimidines exemplified by “type staurosporine” and “type DN-2327” are rather cumbersome business, because in general dissymmetrical substituents’ patterns apparently require dissymmetrical substrates, for which at some stage asymmetrization must be applied to distinguish oxidation states between 1-position and 3-position of isoindole moieties. To the best of our knowledge, asymmetrization (redox, etc.) of some equi-oxidation stage functionalities (carbonyl groups, aromatic C-H’s, etc.) have inevitably given rise to all possible isomers in the end, which would bring about difficulties in purification.21-25 To our surprise, the utility of in-advance-asymmetrized dissymmetrical substrate, which would solve the problems described above, had never been examined intensively. In this respect, we recently established a 1:1 condensation reaction between phthalide and a primary amine in the presence of a \textit{catalytic} amount of \textit{InCl}_3 under solvent-free conditions to give \textit{single} phthalimidines as sole products,26 innovating the \textit{oldest} procedure in the history of phthalimidine syntheses (known as the Hessert-Sugasawa procedure), which was introduced 140 years ago.22,28 Its assumed reaction mechanism is not involved with any intramolecular oxidation/reduction. Therefore,
the patterns of the substituents would directly be imported from those in the phthalide (including the carbonyl group at the 1-position), enabling the quick construction of phthalimidine cores such as “type staurosporine” or “type DN-2327” (Scheme 1). People may consult a number of natural/artificial phthalide derivatives in chemical catalogs at hand (or SciFinder, etc.).

![Scheme 1. Utility of phthalide as a template of phthalimidine](image)

We also recently categorized the HCC (hourly conversion per catalyst) value, a term numerically identical to the TON (turnover number) per hour, to determine whether a certain reaction is practically fast or slow. In this respect, HCC values of our InCl₃-catalyzed condensation between phthalide and aniline were ~ 1.25 at the most, indicating that the use of 1 mol% and 5 mol% of the catalyst would require 80 h and 16 h to complete. These estimates are in good accordance with the contemporary standard of organic syntheses, but, some problems remain. These include:

(i) The procedure was solvent-free but had a high concentration of components, which often induced the “solidification” of reaction mixtures, thus inhibiting the reaction itself (when resulting phthalimidines possessed high melting points, etc.).

(ii) Dilution of reaction mixtures with a variety of organic solvent systems could be used to overcome the situation described in (i); such dilution did not allow inhibited reactions themselves to proceed.

(iii) High reaction temperature (200 °C) was needed throughout.

In addition to these process modifications, we can demonstrate the following reasons, which have encouraged us greatly:

(i) The procedure involving the direct condensation between phthalide and primary amine (Hessert-Sugasawa) had never encountered good reagents, and therefore, it had never been studied enthusiastically.

(ii) Reagents containing In or Ga became convenient to laboratorial uses rather recently, and therefore, examples of their application to the annulation to form heterocycles have still been limited.

(iii) In the present stage, widely applicable mild-condition phthalimidine synthesis is limited to usages of 2-hydroxymethylbenzoic acid derivatives (ring-opened type phthalides), which in themselves require multistep syntheses.

(iv) One-step synthesis to phthalimidine starting from a variety of available phthalides is fascinating to the construction of compounds’ library in terms of medicinal chemistry.
In this report, we describe our attempts to obtain *moderate* reaction conditioned phthalide \rightarrow phthalimidine conversion, together with some peripheral unforeseen issues.

RESULTS AND DISCUSSION

In principle, the key to finding moderate reaction conditions involves setting temperatures as low as possible. Therefore, catalyst candidates in the present work *had to* show similar or higher reactivity than InCl_3 under the optimized conditions in our previous work (heated by bath at 200 °C = aniline reflux). On the other hand, in order to avoid instantaneous solidification of reaction mixtures due to neutralization between components, catalyst candidates must possess similar or lesser affinity than InCl_3 towards oxygen and nitrogen. Based on our previous inspections, the usable catalyst candidates in hand were ZnCl_2 and InCl_3, which belong to groups 12 and 13, respectively. We therefore embarked onto screening of Lewis acids, the central elements of which belong to groups 11 to 14 and *period numbers unlimited*, taking some deviations in catalyst activities into account. In this study, chlorides were examined in terms of commercial availability and ease of handling, based on our past experiences.

In general, aniline (6.6 mmol, used as both reagent and solvent) was added to a flask containing phthalide (1.0 mmol) and a catalyst (an appropriate amount) under Ar atmosphere for a few minutes with stirring, and the whole mixture was heated at gentle reflux (bath temperature = 200 °C) for an appropriate period. Whenever stirring was obstructed due to the viscosity of the solution (or the components themselves), the reaction time was extended as appropriate. After the usual work-up, crude products were purified by column chromatography on silica gel. Isolated components were ascertained by ^1H NMR spectral comparison with authentic samples prepared from our former methods (Scheme 2). The results are summarized in Table 1.

As for newly examined catalyst screenings, solidification of reaction mixtures was observed when CuCl, CuCl_2, HgCl_2, and TlCl_3 were utilized as catalysts (Entries 1, 2, 5, and 10), probably due to the strong affinity between metal cation centers with heteroatomic lone pairs; these reactions scarcely progressed, as was the case in past experiments. When CdCl_2, SnCl_2, and SnCl_4 were used as catalysts, the product yields were fair (Entries 4, 11 and 12), but rather lower than when ZnCl_2 catalyst was used (Entry 3). Meanwhile, when GaCl_3 was used as the catalyst (Entries 6-8), the isolated yields of 2-phenylphthalimidine were high and solely comparable to that obtained using InCl_3 (Entry 9). Longer reaction-time settings were adopted because the reagent of GaCl_3 was in itself very viscous, and had to be dispersed into the reaction mixtures to allow smooth stirring. As a result, hereafter, experiments were conducted using only GaCl_3 and InCl_3.
Scheme 2. Solvent-free 2-phenylphthalimidine-forming reaction

Table 1. Catalyst dependence

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>group</th>
<th>eq.</th>
<th>Time/h</th>
<th>Yield/%</th>
<th>Recovery/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CuCl</td>
<td>11</td>
<td>2</td>
<td>4</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>2</td>
<td>CuCl₂</td>
<td>2</td>
<td>4</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>3ᵃ</td>
<td>ZnCl₂</td>
<td>12</td>
<td>1</td>
<td>2</td>
<td>51</td>
<td>messy</td>
</tr>
<tr>
<td>4</td>
<td>CdCl₂</td>
<td>2</td>
<td>4</td>
<td>18</td>
<td>62</td>
<td>---</td>
</tr>
<tr>
<td>5</td>
<td>HgCl₂</td>
<td>2</td>
<td>4</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>6</td>
<td>GaCl₃</td>
<td>13</td>
<td>2</td>
<td>6</td>
<td>95</td>
<td>---</td>
</tr>
<tr>
<td>7</td>
<td>0.2</td>
<td>6</td>
<td>84</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>8</td>
<td>0.2</td>
<td>12</td>
<td>95</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>9ᵃ</td>
<td>InCl₃</td>
<td>2</td>
<td>2</td>
<td>95</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>10</td>
<td>TiCl₃</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>49</td>
<td>---</td>
</tr>
<tr>
<td>11</td>
<td>SnCl₂</td>
<td>14</td>
<td>2</td>
<td>2</td>
<td>29</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>SnCl₄</td>
<td>2</td>
<td>2</td>
<td>22</td>
<td>18</td>
<td>---</td>
</tr>
</tbody>
</table>

(a) Reported results in reference 26.

First, the 2-phenylphthalimidine-forming reaction was settled as the index in connection, and examinations were carried out by altering reaction temperatures (Scheme 3). The results are summarized in Figure 2.

Scheme 3. Temperature-variant 2-phenylphthalimidine-forming reactions
As mentioned above, in the very beginning of the reaction, the dispersion process of GaCl$_3$ might be slower than that of InCl$_3$ due to its viscosity producing less reactivity. However, when the systems were compared at the 6-h reaction point, for example, GaCl$_3$ appeared to exhibit higher activity than InCl$_3$. This was as expected from the younger-period central element belonging to group 13, which was supported in terms of our proposed HCC (= Hourly Conversion per Catalyst) index.29 In addition, the reactions were found to proceed somehow at ~100 °C, which was good news in terms of achieving milder reaction conditions.

We therefore identified a catalyst with activity higher than that of InCl$_3$, which enabled us to examine and optimize the reaction conditions. Related solvent-diluted reaction systems were studied (Scheme 4). The results were summarized in Table 2.

Scheme 4. Solvent-variant 2-phenylphthalimidine-forming reactions
Table 2. Solvent dependency (catalyst = GaCl$_3$)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Solvent</th>
<th>Time (h)</th>
<th>Temp. (bp/°C)</th>
<th>Yield (%)</th>
<th>X (eq.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>dioxane</td>
<td>6</td>
<td>100</td>
<td>15</td>
<td>6.6</td>
</tr>
<tr>
<td>2</td>
<td>ethylene glycol</td>
<td>6</td>
<td>196</td>
<td>10</td>
<td>6.6</td>
</tr>
<tr>
<td>3</td>
<td>xylene</td>
<td>6</td>
<td>143</td>
<td>48</td>
<td>6.6</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>24</td>
<td>143</td>
<td>59</td>
<td>6.6</td>
</tr>
<tr>
<td>5</td>
<td>toluene</td>
<td>6</td>
<td>110</td>
<td>31</td>
<td>6.6</td>
</tr>
<tr>
<td>6</td>
<td>toluene</td>
<td>24</td>
<td>110</td>
<td>68</td>
<td>6.6</td>
</tr>
<tr>
<td>7</td>
<td>toluene</td>
<td>48</td>
<td>110</td>
<td>80</td>
<td>6.6</td>
</tr>
<tr>
<td>8</td>
<td>toluene</td>
<td>48</td>
<td>110</td>
<td>78</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>benzene</td>
<td>48</td>
<td>110</td>
<td>86</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>benzene</td>
<td>6</td>
<td>80</td>
<td>0</td>
<td>6.6</td>
</tr>
</tbody>
</table>

When InCl$_3$ was used as catalyst, as reported in our previous paper, reactions did not proceed at all in solvent-diluted systems (conditions for Entries 1-3 in Table 2; not shown). GaCl$_3$ was then examined as a catalyst, first in polar solvent systems, in the hope that monomeric and active Lewis acid species would emerge. However, the isolated yields of 2-phthalamidine were poor (Entries 1 and 2). On the other hand, when solvent systems were switched to xylene and toluene (hydrocarbons), reactions were unexpectedly found to proceed smoothly at temperatures far lower than 200 °C (Entries 3-7). Additional experiments concerning equivalents of aniline (Entries 8 and 9) completed the optimization of the reaction conditions. Use of benzene as a solvent did not work at all (Entry 10). Entry 9 of Table 2 was thus selected as the protocol.

Further, in order to facilitate the comparison of results, Entry 9 of Table 2 was chosen as the protocol for solvent-free conditions. The two protocols (Methods A and B) described above are shown together as Scheme 5.

![Scheme 5. Optimized reaction conditions (Methods A and B)](image-url)
A number of primary amines other than aniline itself were then tested in the phthalimidine-forming reactions. The results are summarized in Table 3.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Amine</th>
<th>Yield/% Method A</th>
<th>Yield/% Method B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(p\text{-MeO-C}_6\text{H}_4\text{-NH}_2)</td>
<td>17</td>
<td>80</td>
</tr>
<tr>
<td>2</td>
<td>(p\text{-Me-C}_6\text{H}_4\text{-NH}_2)</td>
<td>41</td>
<td>84</td>
</tr>
<tr>
<td>3</td>
<td>(C_6\text{H}_5\text{-NH}_2^a)</td>
<td>86</td>
<td>95</td>
</tr>
<tr>
<td>4</td>
<td>(p\text{-Cl-C}_6\text{H}_4\text{-NH}_2)</td>
<td>43</td>
<td>73</td>
</tr>
<tr>
<td>5</td>
<td>(p\text{-Br-C}_6\text{H}_4\text{-NH}_2)</td>
<td>41</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>(p\text{-Ac-C}_6\text{H}_4\text{-NH}_2)</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>(p\text{-NO}_2\text{-C}_6\text{H}_4\text{-NH}_2)</td>
<td>trace</td>
<td>trace</td>
</tr>
<tr>
<td>8</td>
<td>(o\text{-NO}_2\text{-C}_6\text{H}_4\text{-NH}_2)</td>
<td>26</td>
<td>trace</td>
</tr>
<tr>
<td>9</td>
<td>(2\text{-C}_{10}\text{H}_7\text{-NH}_2)</td>
<td>26</td>
<td>trace</td>
</tr>
<tr>
<td>10</td>
<td>(C_6\text{H}_5\text{-CH}_2\text{-NH}_2^a)</td>
<td>trace</td>
<td>50</td>
</tr>
<tr>
<td>11</td>
<td>(p\text{-MeO-C}_6\text{H}_5\text{-CH}_2\text{-NH}_2)</td>
<td>trace</td>
<td>66</td>
</tr>
<tr>
<td>12</td>
<td>(n\text{-C}{12}\text{H}{25}\text{-NH}_2)</td>
<td>2</td>
<td>45(^b)</td>
</tr>
</tbody>
</table>

(a) Bp = 184 °C. (b) N-Dodecyl-2-hydroxymethylbenzamide (14%) as byproduct.

When aromatic amines (anilines) were used, the isolated yields of products by Method A showed lower yields than those by Method B in principle (Entries 1-4); however, in the case of \(p\)-bromoaniline, Method A showed yields substantially higher than those by Method B (Entry 5). When strong electron-withdrawing substituent-containing anilines such as \(p\)-acetyl- and \(p\)-nitro-anilines were used, the reactions had difficulty proceeded, as expected (Entries 6 and 7). However, when intermediate electron-withdrawing substituent-containing anilines such as \(o\)-nitroaniline and 2-naphthylamine were used, Method A showed improved yields compared to Method B (Entries 8 and 9). Thus, Method A might be shown to somehow compensate for Method B. In contrast, when aliphatic amines were used instead, the products were obtained in intermediate yields by Method B; however, the reactions were found to barely progress by Method A (Entries 10-12).

These results were surprising, since aliphatic amines are generally believed to advance reactions faster than anilines, owing to the presence of high electron-density-containing nitrogen centers. Incidentally, a benzamide (3) derivative was isolated out of Entry 12, together with phthalimidined (2). The benzamide (3) derivative had never been isolated in our past research, but was considered a key compound in the present reaction system. Therefore, we embarked on a series of experiments to determine the product distribution patterns by altering the primary amine, temperature, and catalyst presence/absence (Scheme 6). In cases with catalytic reactions (containing GaCl\(_3\) in the present work), either Method A or B
(Scheme 5) was adopted. On the other hand, in cases of non-catalytic reactions, the components were simply mixed, stirred, and evaporated, and the residues were subjected to chromatographic purifications whenever necessary. The results are summarized in Table 4.

![Scheme 6](image)

Scheme 6. Reaction between phthalide and aliphatic primary amines

Table 4. Product distribution patterns in the condensation between phthalide and aliphatic primary amines

<table>
<thead>
<tr>
<th>Entry</th>
<th>Compound</th>
<th>R-NH₂ equiv.</th>
<th>Catalyst</th>
<th>Solvent</th>
<th>Temp./°C</th>
<th>Time/h</th>
<th>Yield/%</th>
<th>3</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C₄H₅-NH₂</td>
<td>2</td>
<td>-----</td>
<td>-----</td>
<td>40</td>
<td>3</td>
<td>98</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>C₆H₁₃-NH₂</td>
<td>6.6</td>
<td>-----</td>
<td>-----</td>
<td>78</td>
<td>12</td>
<td>71</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>C₇H₁₅-NH₂</td>
<td>6.6</td>
<td>GaCl₃</td>
<td>-----</td>
<td>78</td>
<td>12</td>
<td>79</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>C₆H₅-NH₂</td>
<td>2</td>
<td>-----</td>
<td>-----</td>
<td>40</td>
<td>3</td>
<td>80</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>C₆H₁₃-NH₂</td>
<td>1</td>
<td>toluene</td>
<td>110</td>
<td>48</td>
<td></td>
<td>30</td>
<td>66</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>C₆H₁₃-NH₂</td>
<td>1</td>
<td>GaCl₃</td>
<td>toluene</td>
<td>110</td>
<td>48</td>
<td>0</td>
<td>87</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>C₆H₅-NH₂</td>
<td>6.6</td>
<td>GaCl₃</td>
<td>-----</td>
<td>131</td>
<td>12</td>
<td>0</td>
<td>70</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>C₆H₅-NH₂</td>
<td>6.6</td>
<td>GaCl₃</td>
<td>-----</td>
<td>131</td>
<td>12</td>
<td>49</td>
<td>35</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>9</td>
<td>C₆H₅-NH₂</td>
<td>6.6</td>
<td>GaCl₃</td>
<td>-----</td>
<td>155</td>
<td>12</td>
<td>7</td>
<td>47</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>C₆H₅-C₅H₂-NH₂</td>
<td>6.6</td>
<td>-----</td>
<td>-----</td>
<td>184</td>
<td>12</td>
<td>0</td>
<td>85</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>C₆H₅-C₅H₂-NH₂</td>
<td>6.6</td>
<td>GaCl₃</td>
<td>-----</td>
<td>184</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>C₆H₅-C₅H₂-NH₂</td>
<td>6.6</td>
<td>GaCl₃</td>
<td>-----</td>
<td>150</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>76</td>
<td></td>
</tr>
</tbody>
</table>

(a) In cases of mixtures, molar ratio between/among products were determined by integration ratio of benzylic proton signals in ¹H NMR spectra. See Experimental for example (Entry 9). (b) Aromatic amine (inserted for data comparisons).

The following tendencies were observed from the data in Table 4.

When aliphatic primary amines were used, amides (3) were isolated as the sole products irrespective of the presence/absence of catalyst at reaction temperatures <110 °C (Entries 1-4). When the reaction temperature reached ~110 °C, a reverse reaction from 3 to phthalide (1) began to be observed (Entry 5); this tendency was intensified by the presence of a catalyst during the temperature increase (Entries 6 and 7). When the reaction temperatures were set to intermediate, phthalimidine (2) was observed first, and mixtures containing 1–3 were available (Entries 8 and 9). However, when benzylamine was used, the reaction mixtures contained 1 and 2 but not 3 (Entry 10; not explicable in the present stage). Reactions
at high temperatures gave 2 as the sole product (Entries 11 and 12). In addition, when N-butyl- and N-hexyl-2-hydroxymethylbenzamide (isolated) were subjected to the reaction conditions for Entries 5 and 6, 1 was recovered as the sole product, and no phthalimidines were detected. 26

Based on the above results, we assumed that the plausible reaction paths in the present reaction system were those in Scheme 7. In order to clarify this, possible catalyst chelations were abbreviated. The possible electrophilic reactive centers of phthalide (1) towards the primary amine were those at the 1-position (path A) and 3-position (path B). In the case of path A, the benzamide derivative (3; isolated) was formed first, followed by dehydrative annulations to afford phthalimidine (2). On the other hand, in the case of path B, the benzoic acid derivative (4; not determined) was to be formed first, followed by dehydrative annulations to afford phthalimidine (2).

Scheme 7. Plausible reaction paths in the present reaction system (1)

From the results in Table 4, reactive amines were limited to aliphatic ones (surprisingly, except for benzylamine) to react at the 1-position and afford the benzamide derivative. 32 The 1-position has a carbon center that is δ+ greater than that of the 3-position, which would match with nucleophilic aliphatic amines in terms of the HSAB rules. 33 On the other hand, open-chain benzamide (3) is heated to obtain predominantly phthalide (1) and a small amount of phthalimidine (2), irrespective of the presence/absence of a catalyst. Therefore, the chance for phthalimidine (2) formation is limited to the attack of a nucleophile towards the less electrophilic 3-position, made possible by high reaction temperature settings. The results summarized in Table 4 could be interpreted rationally, taking the matters described above into account. Our working hypothesis is outlined as Scheme 8.
Thus, the reaction between aniline and phthalide (1) can progress at a relatively low reaction temperature (Method A) to provide phthalimidine (2), since the path to amide (3) is practically omitted and no obstacle is expected. In contrast, the reaction between aliphatic amine and phthalide (1) preferentially progresses to form amide (3) first, and therefore cannot provide 2 until the reverse reaction (3 to 1) is intensified to overcome the path (1 to 3) to regenerate 1. This requires additional energy compared to the reaction with anilines. On the other hand, our literature searches showed that N-phenyl-2-hydroxymethylbenzamide (a derivative of 4) was reported to undergo dehydrative annulation upon heating just above melting point (159-161 °C) for a short preriod. The result described above is not contradictory to the fact that we had never detected the formation of 4 at all in the present study.

In conclusion, though we previously reported the direct condensation reaction between phthalide and amine catalyzed by InCl₃, we aimed to determine milder reaction conditions, examined GaCl₃ as a proximal catalyst candidate, and succeeded when anilines were used as amines by lowering the temperature and extending usable reactants. However, when aliphatic amines reacted with phthalide, obstructed by the 1-position attack preferentially located even at the low-temperature region, temperature lowering of the phthalimidine-forming reaction itself was unsuccessful.

Further attempts to lower the temperature and apply N-substituted-2-hydroxymethylbenzamides for the synthesis of compounds peripheral to phthalimidines are now underway in our laboratories.

EXPERIMENTAL

General Information. All melting points are uncorrected. Infrared (ir) spectra were measured with a JASCO FT/IR-620 Fourier transform infrared spectrometer. ¹H (300 MHz) nuclear magnetic resonance (nmr) spectral measurements were carried out with a JEOL JNM-AL300 Fourier transform NMR spectrometer. ¹³C (125 MHz) NMR spectral measurements were carried out with a JEOL JNM-ECX500 Fourier transform NMR spectrometer. All signals are expressed as ppm downfield from tetramethylsilane (TMS) used as an internal reference (δ value). The following abbreviations are used: singlet(s), doublet(d), triplet(t), quartet(q), multiplet(m), broad(b). Positional numbers are assembled as
follows: no prime, isoindole or benzene ring; single prime, substituent of 1-position, double prime, substituent of 2-position. Mass spectra (ms; FAB mode) were taken with a JEOL JMS DX303 mass spectrometer, where mass numbers of local maxima (relative intensities in parentheses) are recorded. All chemicals and solvents were commercially purchased in the purest grade and used without further purifications.

Typical Experimental Procedures.

Example of Method A (in solution; Entry 3 of Table 3)

A solution of aniline (0.093 g, 1.0 mmol) in toluene (5 mL) was added to the reaction flask containing phthalide (0.134 g, 1.0 mmol) and GaCl$_3$ (0.01425 g, 0.2 mmol) under Ar atmosphere over ca. 3 min with stirring, and the whole mixture was heated at gentle reflux utilizing an oil bath (135 °C) for 48 h. During the rise of temperature, powdered phthalide melted off and was fully dissolved in solution. On the other hand, GaCl$_3$ (viscous oil in itself) obstructed stirring in the beginning, but stirring became easier in due course as GaCl$_3$ was partially dissolved in solution. Then, the reaction mixture was cooled to room temperature and poured onto ice-cold 1% HCl, and then extracted with EtOAc. Organic layer was washed by satd. aq. NaHCO$_3$, dried over anhyd. MgSO$_4$, and then filtered. Evaporation gave a crude product, which was purified by column chromatography (silica gel, eluted by hexane-EtOAc) to give pure 2-phenylphthalimidine (0.180 g, 86%).

In addition to the remaining Entries of Table 3, reactions shown as Table 2 and Entries 5 and 6 of Table 4 were carried out using the similar procedure to that described above. In the case of Entry 7 of Table 3, formation of a trace amount of 2-(p-nitrophenyl)phthalimidine was determined by the 1H NMR spectral comparison of crude mixture with the authentic sample prepared using our former methods.6-11

Method B (solvent free; Entry 3 of Table 3)

Aniline (0.614 g, 6.6 mmol) was added to the reaction flask containing phthalide (0.134 g, 1.0 mmol) and GaCl$_3$ (0.0442 g, 0.2 mmol) under Ar atmosphere over ca. 3 min with stirring, and the whole mixture was heated at gentle reflux utilizing an oil bath (200 °C) for 12 h. During the rise of temperature, powdered phthalide melted off and fully mixed with aniline. On the other hand, GaCl$_3$ (viscous oil in itself) obstructed stirring in the beginning, but stirring became easier in due course as GaCl$_3$ was partially dissolved in solution. Then, the reaction mixture was cooled to room temperature and poured onto ice-cold 1% HCl, and then extracted with EtOAc. Organic layer was washed by satd. aq. NaHCO$_3$, dried over anhyd. MgSO$_4$, and then filtered. Evaporation gave a crude product, which was purified by column chromatography (silica gel, eluted by hexane-EtOAc) to give pure 2-phenylphthalimidine (0.200...
In addition to the remaining Entries of Table 3, reactions shown as Table 1 and Entries 3, 8, 9, 11, and 12 of Table 4 were carried out using the similar procedure to that described above.

Direct Condensation between Phthalide and Aliphatic Primary Amine (Entry 4 of Table 4).

A mixture of phthalide (0.268 g, 2 mmol) and hexylamine (0.404 g, 4 mmol) was stirred at room temperature for 3 h. Then, the reaction mixture was evaporated *in vacuo*, and the crude product was purified by column chromatography (silica gel, eluted by hexane-EtOAc) to give pure N-hexyl-2-hydroxymethylbenzamide as a colorless oil (0.240 g, 51%).

Reactions shown as Entries 1, 2, 7, and 10 of Table 4 were carried out using the similar procedure to that described above.

\(^1\)H NMR spectra of known compounds were compatible with those we reported previously. Some other physical data of products are as follows.

2-(p-Methoxyphenyl)phthalimidene. White solid, mp 136-138 °C (lit., \(^{11}\) 136-139 °C).

2-(p-Methylphenyl)phthalimidene. White solid, mp 139-141 °C (lit., \(^{10}\) 140-141.5 °C).

2-Phenylphthalimidene. White solid, mp 158 °C (lit., \(^{11}\) 162-164.5 °C).

2-(p-Chlorophenyl)phthalimidene. White solid, mp 179-181 °C (lit., \(^{11}\) 180-183 °C).

2-(p-Bromophenyl)phthalimidene. White solid, mp 179-181 °C (lit., \(^{11}\) 181-182 °C).

2-(p-Acetylphenyl)phthalimidene. Lemon-yellow solid, mp 236-239 °C (lit., \(^{11}\) 237-239 °C).

2-(2-Naphthyl)phthalimidene. Beige solid, mp 183-185 °C (lit., \(^{35}\) 188-189 °C).

2-(Phenylmethyl)phthalimidene. White solid, mp 87-90 °C (lit., \(^{11}\) 92-95 °C).

2-(p-Methoxyphenylmethyl)phthalimidene. Slightly gray solid, mp 87-90 °C (lit., \(^{11}\) 102-105 °C).

2-Dodecylphthalimidene. Lemon-yellow oil (lit., \(^{12}\) lemon-yellow oil).

N-Dodecyl-2-hydroxymethylbenzamide. Colorless oil (lit., \(^{36}\) oil).

N-Butyl-2-hydroxymethylbenzamide. Colorless oil (lit., decomposes, \(^{32}\) colorless oil).

N-Hexyl-2-hydroxymethylbenzamide. Colorless oil. \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 7.51 (1H, dd, \(J = 8\) Hz and 2 Hz, H-6), 7.38 (1H, ddd, \(J = 7\) Hz, 7 Hz, and 2 Hz, H-4), 7.29 (1H, ddd, \(J = 8\) Hz, 7 Hz, and 2 Hz, H-5), 7.27 (1H, dd, \(J = 7\) Hz and 2 Hz, H-3), 7.16 (1H, bt, \(J \sim 6\) Hz, NHCH\(_2\)), 5.00 (1H, t, \(J = 6\) Hz, ArCH\(_2\)OH), 4.49 (2H, d, \(J = 6\) Hz, ArCH\(_2\)OH), 3.35 (2H, td, \(J = 7\) Hz and 7 Hz, NHCH\(_2\)), 1.57 (2H, tt, \(J = 7\) Hz and 7 Hz, NCH\(_2\)CH\(_3\)), 1.43-1.22 (6H, m, methylene protons), 0.89 (3H, t, \(J = 7\) Hz, CH\(_2\)CH\(_3\)). \(^{13}\)C NMR (CDCl\(_3\)) \(\delta\) 170.1 (C=O), 140.1 (C-2), 136.0 (C-1), 131.2 (C-4), 130.8 (C-6), 128.2 (C-3), 127.6 (C-5), 64.8 (C-1”), 40.3 (C-1”), 31.5 (C-2”), 29.6 (C-3”), 26.7 (C-4”), 22.6 (C-5”), 14.2 (C-6”). IR (KBr):
ν_{max} (cm$^{-1}$) ca. 3300 (O-H and N-H), 1629 (C=O), 1536 (amide), 1032 (C-O), 723 (arom). MS (FAB): m/z (rel. intensities) 236 [(M+1)$^+$, 100], 218 (85), 165 (1), 134 (21), 118 (6), 105 (5), 43 (8). HRMS (FAB): Calcd. for C$_{14}$H$_{22}$NO$_2$: 236.1650; Found: 236.1650.

Mixture of Products from the Reaction between Phthalide and Heptylamine (Entry 9 of Table 4).

1H NMR (CDCl$_3$) δ 7.88 (0.55H, d, J = 8 Hz, H-7 of PD), 7.79 (0.36H, d, J = 8 Hz, H-7 of PI), 7.69 (0.55H, dd, J = 7 Hz and 7 Hz, H-5 of PD), 7.68 (0.36H, dd, J = 7 Hz and 7 Hz, H-5 of PI), 7.64 (0.09 H, d, J = 8 Hz, H-6 of BA), 7.55-7.33 (1.91H, m, H-4, H-6 of PD, H-4, H-6 of PI, and H-4 of BA), 7.28-7.23 (0.18H, m, H-3 and H-5 of BA), 5.31 (1.1H, s, benzyl of BA), 4.61 (0.18H, s, benzyl of BA), 4.37 (0.72H, s, H-3 of PI), 3.65 (0.18H, td, J = 7 Hz and 7 Hz, NHCH$_2$ of BA), 3.59 (0.72H, t, J = 7 Hz, NCH$_2$ of PI), 1.80-1.55 (0.9H, m, NCH$_2$CH$_2$ of PI and BA), 1.45-1.10 (3.6H, m, methylene of PI and BA), 0.87 (1.35H, bt, J ~ 6 Hz, CH$_3$ of PI and BA).

ACKNOWLEDGMENTS

The authors are grateful to Dr. Akio Baba (Osaka University) for instructive suggestions on indium and gallium reagents. We are also indebted to Emeritus Professor Shinpei Kojima (Kyoto University) for useful discussions.

REFERENCES

30. A. Baba, “*Years of aiming toward the development of easily-understandable reactions in synthetic organic chemistry,*” the new year lectures of the society of synthetic organic chemistry, Osaka, January 2013.
19990428.