A PAIR OF NEW NON-GLYCOSIDIC IRIDOIDS EPIMERS FROM
SCROPHULARIA NINGPOENSIS

Wei Zhang, Peng Liu, Xin-Yu Ji, Xiang-Yang Chen, Yan-Yan Jiang, and Bin Liu*

School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People’s Republic of China
* Corresponding author. E-mail: liubinyn67@163.com

Abstract – A pair of new non-glycosidic iridoid epimers, ningpogenins A and B (1a/1b), together with eighteen known ones (2-19) were isolated from the roots of Scrophularia ningpoensis. Their structures were elucidated by spectroscopic analyses, including 1D-, 2D-NMR, and HR-ESI-MS. Compound 1 is an unusual example of natural ningpogenin—L-pyroglutamic adducts. In addition, the cytotoxic effects of the new compound against HepG2, U251 and SH-SY5Y cell lines were evaluated.

Scrophularia ningpoensis Hemsl., belonging to the family Scrophulariaceae is widely distributed in China. The dried roots of S. ningpoensis (termed “xuanshen” in Chinese Pharmacopeia) had been used as a traditional and popular Chinese medicine to treat pharyngitis, laryngitis, tonsillitis, fever, erythema, furunculosis, and cancer. Previously chemical and pharmacological investigation of S. ningpoensis had led to the discovery of a number of iridoids and phenylpropanoid glycosides, some of which exhibited antimicrobial, anti-inflammatory, antitumor, and neuroprotective activities. As a part of our ongoing efforts to search for structurally diverse and bioactive compounds from traditional Chinese medicine, the chemical constituents of the dried roots of S. ningpoensis were investigated. Here we reported the isolation and structure elucidation of compounds 1-19. Among them, compounds 1a and 1b were a pair of new non-glycosidic iridoid epimers. Compound 1 was a natural adduct that is constructed through ningpogenin and L-pyroglutamic acid derivative. In addition, the cytotoxic effects of the new compound against HepG2 (human hepatocellular carcinoma), U251 (human glioma) and SH-SY5Y (human neuroblastoma) cell lines were evaluated.
Figure 1. Chemical structures of compounds 1-19

Figure 2. Key 1H-1H COSY and HMBC correlations of 1
Ningpogens A and B (1a/1b) was obtained as white amorphous powder. The molecular formula of 1 was determined as C$_{13}$H$_{19}$NO$_4$ by its HRESIMS at m/z 254.1390 [M+H]$^+$ (calcd for C$_{13}$H$_{20}$NO$_4$, 254.1392). The UV spectrum of 1 showed absorption maximum at 212 nm. The IR spectrum exhibited the characteristic absorptions for lactam (3425, 1683 cm$^{-1}$) and double bonds (1667 cm$^{-1}$) groups. Compound 1 exists as a pair of inseparable epimers (Figure 1). The 1H and 13C NMR spectra of 1 displayed two sets of signals in a ratio of approximately 1:1 (1a/1b, Figure 3). The 1H NMR spectrum for one isomer 1a showed signals for two oxymethine [δ$_H$ 5.01 (1H, m), 5.00 (1H, br d, J = 7.0 Hz)], three oxymethylene protons [δ$_H$ 3.72 (1H, m), 3.64 (1H, m), 3.80 (1H, m), 3.62 (1H, m), 4.12 (1H, br d, J = 13.0 Hz), 3.99 (1H, br d, J = 13.0 Hz)], and an olefin proton [δ$_H$ 5.63 (1H, br s)]. The 13C NMR and DEPT spectra of 1a exhibited thirteen carbon signals, including two oxygenated methines [δ$_C$ 88.1 (C-1), 87.4 (C-5')], three oxygenated methylenes [δ$_C$ 68.4 (C-3), 62.0 (C-9), 65.9 (C-10)], two olefin carbons [δ$_C$ 146.4 (C-7), 128.9 (C-8)], two methines [δ$_C$ 44.1 (C-5), 50.0 (C-6)], three methylenes [δ$_C$ 28.9 (C-4), 29.3 (C-3'), 29.1 (C-4')], and a carbonyl [δ$_C$ 181.5 (C-2')]. With the aid of 1H-1H COSY, HSQC, and HMBC experiments, all the 1H and 13C NMR signals of 1 were assigned as shown in Table 1. The 1H-1H COSY spectrum of 1a revealed the presence of the spin systems as shown in Figure 2. In the HMBC spectrum, correlations between H-1 and C-7, between H-3 and C-1/C-5, between H-8 and C-6/C-10, as well as between H-9 and
C-5/C-7 allowed the establishment of the planar structure of ningpogenin moiety (part I). The spin system from H-3' to H-4' in the 1H-1H COSY spectrum, as well as the HMBC correlations between H-5' and C-2'/C-3', between H-3' and C-2'/C-5', between H-4' and C-2'/C-5' established the planar structure of 5-hydroxypyrrolidin-2-one residue (part II). Furthermore, the two units part I and part II could be connected through an oxygen atom by HMBC cross-peaks from δ_H 5.01 (H-5') to δ_C 65.9 (C-10) and from δ_H 4.12, 3.99 (H-10) to δ_C 87.4 (C-5'). Analysis of the 1D and 2D NMR spectroscopic data of another isomer 1b reveals that the two isomers have the same 2D structure. The main differences between 1a and 1b involved resonances for CH$_2$-10 (δ_H 4.12/3.99 for 1a, and δ_H 4.08/4.03 for 1b), which implies that 1b is a C-5' isomer of 1a. Compound 1 being as a pair of inseparable stereoisomers (1a/1b) was isolated as a mixture. Unfortunately, no more samples were available to do more research to demonstrate the absolute configuration at C-5'. Therefore, it was determined only that 1a/1b possessed opposite configurations at C-5'.

Table 1. NMR data of 1 (CD$_3$OD, J in Hz)

<table>
<thead>
<tr>
<th>No.</th>
<th>1a</th>
<th>1b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.00 (br d, 7.0)</td>
<td>5.00 (br d, 7.0)</td>
</tr>
<tr>
<td>3</td>
<td>3.72 (m), 3.64 (m)</td>
<td>3.72 (m), 3.64 (m)</td>
</tr>
<tr>
<td>4</td>
<td>1.93 (m), 1.84 (m)</td>
<td>1.93 (m), 1.84 (m)</td>
</tr>
<tr>
<td>5</td>
<td>3.05 (m)</td>
<td>3.05 (m)</td>
</tr>
<tr>
<td>6</td>
<td>2.92 (m)</td>
<td>2.92 (m)</td>
</tr>
<tr>
<td>7</td>
<td>146.4</td>
<td>146.4</td>
</tr>
<tr>
<td>8</td>
<td>5.63 (br s)</td>
<td>5.63 (br s)</td>
</tr>
<tr>
<td>9</td>
<td>3.80 (m), 3.62 (m)</td>
<td>3.80 (m), 3.62 (m)</td>
</tr>
<tr>
<td>10</td>
<td>4.12, 3.99 (each br d, 13.0)</td>
<td>4.08, 4.03 (each br d, 13.0)</td>
</tr>
<tr>
<td>2'</td>
<td>181.5</td>
<td>181.5</td>
</tr>
<tr>
<td>3'</td>
<td>2.46, 2.19 (m)</td>
<td>2.46, 2.19 (m)</td>
</tr>
<tr>
<td>4'</td>
<td>2.31, 2.04 (m)</td>
<td>2.31, 2.04 (m)</td>
</tr>
<tr>
<td>5'</td>
<td>5.01 (m)</td>
<td>5.01 (m)</td>
</tr>
</tbody>
</table>

aMeasured at 500 MHz. bMeasured at 125 MHz. cOverlapped signals are reported without designating multiplicity.

In the NOESY spectrum, correlations between H-1 and H-5/H-6, and between H-5 and H-6 suggested that the relative configurations of C-1, C-5 and C-6 as shown in Figure 4. Based on the above evidences, the structure of 1 was elucidated.
Figure 4. Key NOESY correlations of 1

The eighteen known compounds were identified as 8-\textit{O}-\textit{cis}-cinnamoylharpagide (2), 8-\textit{O}-\textit{p}-coumaroylharpagide (3), 8-\textit{O}-feruloylharpagide (4), pedicularis-lactone (5), buergerinin B (6), martynoside (7), isomartynoside (8), acteoside (9), 6-\textit{trans}-\textit{p}-coumaroylsucrose (10), sibirioside A (11), 6-\textit{cis}-\textit{p}-coumaroylsucrose (12), (-)-oxerine (13), 5-[(\textit{\alpha}-D-galactopyranosyloxy)methyl]-1\textit{H}-pyrrole-2-carbaldehyde (14), angoroside C (15), darendoside B (16), n-butyl \textit{\beta}-\textit{D}-fructofuranoside (17), n-butyl \textit{\beta}-\textit{D}-fructopyranoside (18) and buddlin (19) by comparing their spectral data with those reported in the literature (Figure 1). Compounds 13 and 14 were firstly isolated from Scrophulariaceae species. Compounds 10 and 12 were firstly isolated from Scrophularia genus. Compounds 6 and 19 were firstly isolated from \textit{S. ningpoensis}.

The cytotoxicities of the new compound against three cancer cell lines (HepG2, U251 and SH-SY5Y) were evaluated by MTT assay. However, the mentioned compound was found to be devoid of significant cytotoxic activity at the concentration of 50 \textmu M.

EXPERIMENTAL

General

UV spectra were recorded on a PERSEE TU-1810 spectrometer (PERSEE, Beijing, China). IR spectra were determined on a Nicolet Impact 410 FTIR spectrophotometer (Thermo Electron Corporation, Massachusetts, USA) using KBr pellets. Optical rotations were determined using a Hanon P800 digital polarimeter (HANON, Jinan, China) at 25 °C. NMR spectra were recorded on Bruker Avance DRX-500 spectrometer (Bruker, Bremerhaven, Germany). HR-ESI-MS and ESI-MS were carried out on a Micromass ZabSpec mass spectrometer and a VG-20-250 mass spectrometer, respectively. Column chromatographies (CC) were performed on Sephadex LH-20 (GE Healthcare Bio-Sciences, Sweden), silica gel (200-300 mesh, Qingdao Marine Chemical Inc, Qingdao, P. R. China), Diaion HP2 MGL Macroporous adsorptive resins (Mitsubishi, Korea), and ODS (50 \textmu m; Merck; Germany). TLC was pre-coated with silica gel GF-254 (Qingdao Marine Chemical Inc, Qingdao, China). All the reagents were
of analytical grade.

Plant Material

The dried roots of *Scrophularia ningpoensis* were collected from Bozhou Medical Material Market in November 2013. A voucher specimen (No. 081218) identified by Prof. Chun-Sheng Liu (Beijing University of Chinese Medicine) was deposited with School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, P. R. of China.

Extraction and Isolation

The dried roots of *S. ningpoensis* (20.0 kg) were pulverized and extracted with 95% EtOH (3×160 L) for 3 h each time, then with 60% EtOH (3×160 L) for 1.5 h each time. The combined extracts were concentrated by a rotary evaporator at 45 °C to obtain a crude extract. The extract (2.0 kg) was suspended in H$_2$O and partitioned with petroleum ether, CHCl$_3$, EtOAc and n-butanol successively. The EtOAc-soluble fraction was dried to yield an extract (38.0 g), which was subjected to silica gel column chromatography using CHCl$_3$-MeOH (50:1 to 10:1, v/v) as an eluent to afford four fractions (Fr. A-D). Fr. B (8.1 g) was subjected to silica gel column chromatography using CH$_2$Cl$_2$-MeOH (50:1 to 30:1, v/v), and then was subjected to an ODS column using MeOH-H$_2$O (30:70, v/v) as an eluent to obtain compounds 8 (3.0 mg) and 9 (4.0 mg). Fr. C (4.0 g) was separated by silica gel column eluted with CHCl$_3$-MeOH (30:1) to afford four subfractions (Fr. C1-C4). Fr. C1 (15.3 mg) was subjected to MCI column chromatography eluted with MeOH-H$_2$O (70:30 to 100:0, v/v) to yield compound 1 (4.2 mg). Fr. C3 was subjected to silica gel column eluted with a gradient mixture of CHCl$_3$-MeOH (30:1 to 15:1, v/v), followed by ODS column eluted with MeOH-H$_2$O (70:30 to 100:0, v/v) to obtain compounds 2 (5.0 mg) and 10 (8.0 mg). The n-BuOH fraction (150.0 g) was separated into two fractions (Fr. G-H) by Diaion HP-2 MGL macroporous resin eluted with MeOH-H$_2$O in gradient. Fr. G was loaded onto silica gel column eluted with EtOAc-MeOH (from 50:1 to 40:1) to afford two subfractions (Fr. G1 and G2). Fr. G1 was purified by Sephadex LH-20 column (MeOH) and ODS column (MeOH-H$_2$O in gradient) to yield compounds 11 (3.1 mg), 12 (2.4 mg), 13 (4.9 mg), 14 (6.0 mg) and 15 (3.2 mg). Fr. G2 was subjected to an ODS column eluted with a gradient of MeOH-H$_2$O (20:80 to 100:0, v/v) to yield compounds 3 (4.0 mg) and 4 (5.3 mg). Fr. H was subjected to silica gel column chromatography using CHCl$_3$-MeOH in gradient (30:1 to 5:1, v/v) to afford three subfractions (Fr. H1-H3). Fr. H1 was subjected to an ODS column using MeOH-H$_2$O (80:20-100:0, v/v) to afford compounds 5 (6.2 mg), 18 (4.1 mg) and 19 (4.2 mg). Fr. H2 was separated by ODS column eluted with MeOH-H$_2$O (80:20) to yield compounds 6 (3.2 mg), 7 (2.2 mg) and 17 (4.7 mg). Fr. H3 was first subjected to MCI column (MeOH-H$_2$O in gradient) and then separated by ODS column to yield compound 16 (3.4 mg).
Ningpogenin A and B (1a/1b)

White amorphous powder; \([\alpha]_D^{25} + 15.8 (c 1.50, \text{MeOH})\); UV (MeOH) \(\lambda_{\text{max}}(\log c): 212 (3.43) \text{ nm}\); IR (KBr) \(v_{\text{max}}: 3425, 2922, 2858, 1683, 1667, 1060 \text{ cm}^{-1}\); \(^1\text{H} \text{ NMR (CD}_3\text{OD, 500 MHz)}, \ ^{13}\text{C} \text{ NMR (CD}_3\text{OD, 125 MHz)}, \) Table 1; ESI-MS: \(m/z\) 254.1 \([\text{M+H}]^+\), 276.1 \([\text{M+Na}]^+\); HR-ESI-MS: \(m/z\) 254.1390 \([\text{M+H}]^+\) (calcd for C\(_{13}\)H\(_{20}\)NO\(_4\), 254.1392).

Cytotoxic Assay

HepG2 (human hepatocellular carcinoma), U251 (human glioma) and SH-SY5Y (human neuroblastoma) cells were obtained from American Type Culture Collection (ATCC). The cells were seeded into 96-well plates and incubated at 37 °C in an atmosphere of 5% CO\(_2\) for 12 h. Different concentrations of the compounds were added to the cells followed by incubation for 48 h. Then 100 \(\mu\)L fresh culture medium and 10 \(\mu\)L MTT solution (5 mg/mL) were added to the cells with incubation for 4 h, after which the culture medium was removed and 150 \(\mu\)L DMSO was added to dissolve the formazan crystals, incubating for 10 min. The absorbance of plates was measured using SpectraMax i3x Multi-mode detection platform (Molecular Devices, Austria) at 490 nm.

ACKNOWLEDGEMENTS

This work was supported by Program for National Natural Science Foundation of China (No. 81774101).

REFERENCES