DESIGN, SYNTHESIS AND INSECTICIDAL ACTIVITY OF 1-METHYL-3-(5-ARYL-4,5-DIHYDROISOXAZOL-3-YL)-1H-PYRAZOLE-5-CARBOXAMIDES

Liangkun Zhong,¹,² Fan Zhang,¹ Tao Jiang,¹ Xinghai Liu,¹ Tianming Xu,² Chengrong Ding,¹ Jie Chen,³ Jing Yuan,³* and Chengxia Tan¹*

¹ College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China. ² Zhejiang Base of National Southern Pesticide Research Centre, Zhejiang Research Institute of Chemical Industry, Hangzhou 310023, China. ³ School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China. E-mail: zhongliangkun@sinochem.com; 1015251265@qq.com; tanchengxia@zjut.edu.cn

Abstract – Pyrazole and its derivatives are a kind of important heterocyclic compounds used in agrochemicals development. In this research, a series of novel 1-methyl-3-(5-aryl-4,5-dihydroisoxazol-3-yl)-1H-pyrazole-5-carboxamides were synthesized and confirmed by ¹H NMR, ¹³C NMR and ESI-MS. The preliminary bioactivity indicated that most title compounds showed excellent potency against Mythimna separate (Walker) at 500 mg/L, compounds ZJ4, ZJ12, ZJ16, ZJ17 showed moderate insecticidal activity against Aphis craccivora at 500 mg/L. Especially, compounds ZJ4, ZJ12, ZJ17 exhibited around 60% insecticidal activities against M. separate at 100 mg/L. The results indicated that the potential of these pyrazole-5-carboxamides containing arylisoxazoline fragment to be utilized in pesticide discovery through further development.

INTRODUCTION

Summary of pesticide likeness analysis is widely used in agrochemicals development.¹ Pyrazole and its derivatives are a type of important heterocyclic compounds, which showing unique biological activities that researched in crop protection frequently.² In most instances, pyrazole containing substituted groups on different position would exhibit biological activity for diverse target. As like SDHI (succinate dehydrogenase inhibitor) fungicides, the pyrazole-4-carboxamide pharmacophore is still a research
hotspot that given some new products Pyrapropoyne, Inpyrfluxam, Isoflucypram etc. On the other hand, pyrazole-5-carboxamides usually show positive insecticidal/acaricidal activity such as Cyenopyrafen, Tebufenpyrad and Chlorantraniliprole. Thus, with the increase of resistant level of insects, searching for the novel, eco-friendly insecticides remains an urgent challenge for crop protection.

Recently, arylisoxazoline derivatives have received considerable attention due to their various bioactivities, including anticancer, antibacterial, antiviral, antiinflammatory, analgesics, and antifungal drugs. Besides, arylisoxazoline containing heterocycles showing their unique insecticidal activity in modern crop and animal protection especially, such as veterinary drug Afoxolaner, and insecticide Fluxametamide, the compounds are a relatively new class of agents inhibiting γ-aminobutyric acid (GABA)-gated and L-glutamate-gated chloride channels (GluCl). In 2018, another new active ingredient named Isocycloseram from Syngenta also have the same arylisoxazoline pharmacophore.

Figure 1. Substituted pyrazole derivatives as fungicides and insecticides / acaricides

Hence, it has been widely assumed that the combination of arylisoxazoline into a pesticide likeness molecular fragment pyrazole-5-carboxamides is an effective approach for discovering new bioactive molecules. Therefore, a series of 3-arylisoxazoline-pyrazole-5-carboxamide derivatives were designed

Figure 2. Design strategy of pyrazole-5-carboxamides containing arylisoxazoline moiety
and synthesized, and investigated their insecticidal activities against *Mythimna separate*, *Tetranychus cinnabarinus* and *Aphis craccivora*.

RESULTS AND DISCUSSION

Synthesis. The synthesis of the designed compounds ZJ1-ZJ17 is summarized in Scheme 1. The synthesis of intermediate 2 is a classical Knorr pyrazole synthesis. In the preparation of 4, a minor of regioisomer was produced that could be separated by column chromatography. The oxime 5 is prepared by aqueous hydroxylamine, due to its low completion by anhydrous hydroxylamine hydrochloride. The 1,3-dipolar cycloaddition between oxime 5 and substituted styrene gave intermediate 6 in a good yield, respectively. In the preparation of compound 7, aqueous sodium hydroxide (10%) as the base could fulfill hydrolysis completely. The target compounds were prepared by amide synthesis method, trimethylamine (TEA) as the base would have similar yield compare to other common base.

Reagents and conditions: (a) hydrazine hydrate, AcOH, 0-5 °C, 96%; (b) AcOH (aq.), 60 °C, 87%; (c) K$_2$CO$_3$, dimethyl sulfate, acetone, rt, 74%; (d) hydroxylamine (aq.), THF, rt; (e) NCS, DMF, 60 °C; styrene, TEA, rt, 87% (6A), 84% (6B); (f) NaOH (aq.), THF, reflux, 93% (7A); (g) arylamine, TEA, THF.

Scheme 1. Synthesis of pyrazole-5-carboxamides containing arylisoxazoline scaffold

Insecticidal activity

The initial insecticidal activity of title compounds is listed in Table 1. The results showed that most of the designed compounds have moderate insecticidal activities against *M. separate* and *T. cinnabarinus*, but insecticidal potency for *A. craccivora*. For example, the preliminary bioassays indicated that ZJ4-ZJ8,
ZJ11-ZJ17, showed favorable activity, and had 80% - 100% mortality against *M. separate* at 500 mg/L. And, the results showed no obvious structure-activity relationship (SAR) with different substituted of R1 on benzene. Among monosubstituted arylamine derivatives, *ortho*-substituted and *meta*-substituted were better than *para*-substituted arylamines, and the results showed no obvious difference between alkyl and halogen. In addition, compounds ZJ4, ZJ12, ZJ16, ZJ17 showed moderate insecticidal activity against *T. cinnabarinus*. According to the rescreening bioassay results, compounds ZJ4, ZJ12, ZJ17 showed insufficient activities against *M. separate* at 100 mg/L and 20 mg/L, and no activities against *T. cinnabarinus*.

Table 1. The insecticidal activity of title compounds against *M. separate*, *A. craccivora*, and *T. cinnabarinus* at 500 mg/L

<table>
<thead>
<tr>
<th>Compound</th>
<th>R1</th>
<th>R2</th>
<th>Mythimna separate</th>
<th>Aphis craccivora</th>
<th>Tetranychus cinnabarinus</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZJ1</td>
<td>4-F</td>
<td>3-CF$_3$-C$_6$H$_4$</td>
<td>63</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ZJ2</td>
<td>4-F</td>
<td>2-Cl-C$_6$H$_4$</td>
<td>75</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ZJ3</td>
<td>4-F</td>
<td>4-Me-C$_6$H$_4$</td>
<td>65</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ZJ4</td>
<td>4-F</td>
<td>3-Cl-C$_6$H$_4$</td>
<td>100</td>
<td>80</td>
<td>0</td>
</tr>
<tr>
<td>ZJ5</td>
<td>4-F</td>
<td>2-MeO-C$_6$H$_4$</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ZJ6</td>
<td>4-F</td>
<td>2-Me-C$_6$H$_4$</td>
<td>100</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>ZJ7</td>
<td>4-F</td>
<td>3-Me-C$_6$H$_4$</td>
<td>100</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>ZJ8</td>
<td>4-F</td>
<td>2-CO$_2$Me-C$_6$H$_4$</td>
<td>85</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ZJ9</td>
<td>4-F</td>
<td>2,4-2Cl-C$_6$H$_3$</td>
<td>58</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ZJ10</td>
<td>4-Cl</td>
<td>2-Cl-C$_6$H$_4$</td>
<td>75</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>ZJ11</td>
<td>4-Cl</td>
<td>4-Me-C$_6$H$_4$</td>
<td>85</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ZJ12</td>
<td>4-Cl</td>
<td>2-MeO-C$_6$H$_4$</td>
<td>100</td>
<td>70</td>
<td>0</td>
</tr>
<tr>
<td>ZJ13</td>
<td>4-Cl</td>
<td>2-CO$_2$Me-C$_6$H$_4$</td>
<td>85</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ZJ14</td>
<td>4-Cl</td>
<td>3-CF$_3$-C$_6$H$_4$</td>
<td>83</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ZJ15</td>
<td>4-Cl</td>
<td>2,4-2Cl-C$_6$H$_3$</td>
<td>95</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ZJ16</td>
<td>4-Cl</td>
<td>3-F-C$_6$H$_4$</td>
<td>100</td>
<td>70</td>
<td>0</td>
</tr>
<tr>
<td>ZJ17</td>
<td>4-Cl</td>
<td>2-Me-C$_6$H$_4$</td>
<td>100</td>
<td>80</td>
<td>0</td>
</tr>
<tr>
<td>Avermectin</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>
Table 2. The insecticidal activity of title compounds against *A. craccivora* and *M. separate*

<table>
<thead>
<tr>
<th>Compound</th>
<th>M. separate (%)</th>
<th>A. craccivora (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100 mg/L</td>
<td>20 mg/L</td>
</tr>
<tr>
<td>ZJ4</td>
<td>65</td>
<td>10</td>
</tr>
<tr>
<td>ZJ5</td>
<td>48</td>
<td>0</td>
</tr>
<tr>
<td>ZJ6</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>ZJ7</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>ZJ8</td>
<td>33</td>
<td>0</td>
</tr>
<tr>
<td>ZJ11</td>
<td>40</td>
<td>0</td>
</tr>
<tr>
<td>ZJ12</td>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td>ZJ13</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>ZJ14</td>
<td>35</td>
<td>0</td>
</tr>
<tr>
<td>ZJ15</td>
<td>48</td>
<td>0</td>
</tr>
<tr>
<td>ZJ16</td>
<td>40</td>
<td>0</td>
</tr>
<tr>
<td>ZJ17</td>
<td>62</td>
<td>15</td>
</tr>
<tr>
<td>Avermectin</td>
<td>100</td>
<td>95</td>
</tr>
</tbody>
</table>

CONCLUSIONS

In summary, seventeen novel pyrazole-5-carboxamide derivatives containing arylisoxazoline fragment were designed, synthesized and characterized. The bioassay results showed that some of them exhibited good insecticidal activity against *M. separate* at 500 mg/L, and moderate activity at 100 mg/L. Therefore, to explore higher active compounds with insecticidal activity, further structural optimization and bioactivities are in progress.

EXPERIMENTAL

General remarks

1H NMR and 13C NMR spectra were measured on a Bruker AV-600 spectrometer (Bruker Co., Switzerland) using TMS as an internal standard and CDCl$_3$ or DMSO-d_6 as the solvent. Chemical shift values (δ) were given in parts per million (ppm). ESI-MS data were determined by LCQ-Advantage Thermo Finnigan instrument (ThermoFinnigan, MA). Melting points were determined by an X-4 apparatus and uncorrected. All solvents and reagents were commercially available for analytical reagent (AR) grade and dried prior to use. Analytical thin-layer chromatography was carried out on silica gel GF$_{254}$, and spots were visualized with ultraviolet light. All plant and insect materials were obtained from
the Zhejiang Base of National Southern Pesticide Research Centre, Zhejiang Research Institute of Chemical Industry (Hangzhou, China).

Synthetic procedure for 2

Aqueous hydrazine hydrate (80%, 6.88 g, 0.11 mol) was added to a solution of 1 (21.8 g, 0.1 mol) in glacial acetic acid (50 mL). The reaction mixture was stirred at 0-5 °C for 5 h. The reaction completion was monitored by TLC. The crude 2 in AcOH was poured into ice-cold water. The solid thus separated out was filtered, washed, and dried to obtain 2. Yield: 96%. 1H NMR (600 MHz, CDCl3) δ: 1.38 (t, 3H, J = 7.2 Hz, CH3), 3.37 (s, 6H, CH3), 4.39 (q, 2H, J = 7.2 Hz, CH2), 5.61 (s, 1H, CH), 6.88 (s, 1H, Ar-H); 13C NMR (CDCl3, 150 MHz) δ: 14.2, 52.7, 61.2, 97.8, 107.0.

Synthetic procedure for 3

Intermediate 2 (3 g, 0.0149 mol) was added to an aqueous acetic acid (50%, 30 mL), the mixture was stirred at 60 °C. When the reaction was complete according to TLC analysis, the mixture was concentrated under vacuum to afford the title compound 3 (1.6 g). Yield: 87%, viscous solid. 1H NMR (600 MHz, CDCl3) δ: 1.42 (t, 3H, J = 7.2 Hz, CH3), 4.44 (q, 2H, J = 7.2 Hz, CH2), 7.35 (s, 1H, Ar-H), 10.03 (s, 1H, CH).

Synthetic procedure for 4

To potassium carbonate (26.5 g, 0.192 mol) and 3 (15 g, 0.096 mol) in acetone (450 mL), dimethyl sulfate (14.54 g, 0.115 mol) was added dropwise at room temperature. The reaction completion was monitored by TLC. The organic layer was filtered and concentrated. The crude product was purified by column chromatography to obtain the white solid 4 (12.1 g). Yield: 74%, white solid, mp 56-57 °C. 1H NMR (600 MHz, CDCl3) δ: 1.39 (t, 3H, J = 7.2 Hz, CH3), 4.28 (s, 3H, N-CH3), 4.39 (q, 2H, J = 7.2 Hz, CH2), 7.34 (s, 1H, Ar-H), 9.96 (s, 1H, CH); 13C NMR (CDCl3, 150 MHz) δ: 14.2, 40.6, 61.6, 110.9, 134.6, 149.3, 159.3, 185.8.

Synthetic procedure for 5

To a solution of intermediate 4 (5.1 g, 0.03 mol) in THF (20 mL), aqueous hydroxylamine (15 mL, 21%, 0.045 mol) was added at room temperature. Then, the organic solvent was concentrated, the crude product was washed to obtain 5 without purification.

General procedure for synthesis of compounds 6A and 6B

Crude compound 5 (4.0 g, 0.022 mol) and NCS (3.26 g, 0.028 mol) were added to
N,N-dimethylformamide (DMF, 100 mL), the mixture was stirred at 60 °C. The reaction completion was monitored by TLC. Then, substituted styrene (0.021 mol) was added to the reaction mixture. TEA (2.8 g, 0.028 mol) was added dropwise to the mixture at room temperature. The resulting mixture was poured into H₂O (100 mL), and the aqueous layer was extracted with EtOAc (100 mL + 60 mL×2). The crude product was purified by column chromatography to obtain the white solid 6. 6A: yield: 87%, yellow solid, mp 68-69 °C. ¹H NMR (600 MHz, CDCl₃) δ: 1.39 (t, 3H, J = 7.2 Hz, CH₃), 3.37 (q, 1H, J = 7.8 Hz, CH₂), 3.81 (q, 1H, J = 11.4 Hz, CH₂), 4.18 (s, 3H, Ar-CH₃), 4.36 (q, 2H, J = 7.2 Hz, CH₂), 5.69 (q, 1H, J = 7.8 Hz, CH), 7.05 (t, 2H, J = 8.4 Hz, Ph-H), 7.28 (s, 1H, Ar-H), 7.35 (q, 2H, J = 5.4 Hz, Ph-H); ¹³C NMR (150 MHz, CDCl₃) δ: 14.2, 39.8, 43.0, 61.4, 81.7, 109.7, 115.5, 115.7, 127.7, 134.0, 136.5, 141.0, 151.5, 159.5, 161.7, 163.4. 6B: yield: 84%, white solid, mp 70-71 °C, ¹H NMR (600 MHz, CDCl₃) δ: 1.37 (t, 3H, J = 7.2 Hz, CH₃), 3.36 (q, 1H, J = 8.4 Hz, CH₂), 3.81 (q, 1H, J = 11.4 Hz, CH₂), 4.18 (s, 3H, Ar-CH₃), 4.36 (q, 2H, J = 7.2 Hz, CH₂), 5.69 (q, 1H, J = 8.4 Hz, CH), 7.28 (s, 1H, Ar-H), 7.33 (q, 4H, J = 9.0 Hz, Ph-H); ¹³C NMR (150 MHz, CDCl₃) δ: 14.2, 39.8, 43.0, 61.4, 81.6, 109.7, 127.2, 128.9, 134.0, 139.3, 140.9, 151.5, 159.5.

Synthetic procedure for 7A
Intermediate 6A (0.014 mol) was added to a solution of aqueous NaOH (50%, 30 mL) in THF (20 mL), the mixture was refluxed for 3 h. The resulting mixture was concentrated under reduced pressure. Then, the salt mixture was solved in water, neutralized with HCl to obtain crude product 7A. Yield: 93%, viscous solid. ¹H NMR (600 MHz, CDCl₃) δ: 3.31 (q, 1H, J = 8.4 Hz, CH₂), 3.83 (q, 1H, J = 10.4 Hz, CH₂), 4.11 (s, 3H, Ar-CH₃), 5.72 (q, 1H, J = 8.4 Hz, CH₂), 7.12 (s, 1H, Ar-H), 7.22 (t, 2H, J = 8.4 Hz, Ph-H), 7.43 (q, 2H, J = 5.4 Hz, Ph-H); ¹³C NMR (150 MHz, CDCl₃) δ: 47.5, 86.2, 114.2, 120.6, 120.7, 133.5, 140.0, 142.1, 145.4, 156.7, 165.5.

General procedure for the preparation of the title compounds
The experiment was performed according to the reported method. ¹H NMR (600 MHz, CDCl₃) δ: 3.41 (q, 1H, J = 7.8 Hz, CH₂), 3.54 (q, 1H, J = 11.4 Hz, CH₂), 4.21 (s, 3H, Ar-CH₃), 5.69 (q, 1H, J = 8.4 Hz, CH), 7.02 (t, 2H, J = 8.4 Hz, Ph-H), 7.26–7.31 (m, 3H, Ar-H, Ph-H), 7.41–7.46 (m, 2H, Ph-H), 7.71 (d, 1H, J = 7.8 Hz, Ph-H), 7.95 (s, 1H, Ph-H), 8.20 (s, 1H, N-H); ¹³C NMR (150 MHz, CDCl₃) δ: 39.9, 42.9, 82.0, 105.5, 115.6, 115.8, 117.3, 121.6, 123.5, 127.6, 127.7, 129.6, 131.6, 136.1, 136.4, 137.6, 140.9, 151.9, 157.6. MS (ESI): 433 [M + H]⁺.
3-(5-(4-Fluorophenyl)-4,5-dihydroisoxazol-3-yl)-1-methyl-N-(2-chlorophenyl)-1H-pyrazole-5-carboxamide (ZJ2):

1H NMR (600 MHz, CDCl$_3$) δ: 3.41 (q, 1H, $J = 7.8$ Hz, CH$_2$), 3.84 (q, 1H, $J = 10.8$ Hz, CH$_2$), 4.23 (s, 3H, Ar-CH$_3$), 5.72 (q, 1H, $J = 7.8$ Hz, CH), 7.06 (t, 2H, $J = 9.0$ Hz, Ph-H), 7.11–7.13 (m, 1H, Ph-H), 7.21 (s, 1H, Ar-H), 7.32–7.38 (m, 3H, Ph-H), 7.43 (d, 1H, $J = 8.4$, Ph-H), 8.29 (s, 1H, N-H), 8.41 (d, 1H, $J = 8.4$, Ph-H); 13C NMR (150 MHz, CDCl$_3$) δ: 39.9, 42.9, 81.9, 105.2, 115.6, 115.8, 121.9, 125.9, 127.7, 127.8, 127.9, 129.3, 133.9, 136.6, 141.1, 151.6, 157.1. MS (ESI): 399 [M + H]$^+$.

3-(5-(4-Fluorophenyl)-4,5-dihydroisoxazol-3-yl)-1-methyl-N-(p-tolyl)-1H-pyrazole-5-carboxamide (ZJ3):

1H NMR (600 MHz, CDCl$_3$) δ: 2.35 (s, 3H, Ph-CH$_3$), 3.40 (q, 1H, $J = 7.8$ Hz, CH$_2$), 3.83 (q, 1H, $J = 10.8$ Hz, CH$_2$), 4.21 (s, 3H, Ar-CH$_3$), 5.71 (q, 1H, $J = 8.4$ Hz, CH), 7.04–7.07 (m, 2H, Ph-H), 7.14 (s, 1H, Ar-H), 7.18 (d, 2H, $J = 8.4$ Hz, Ph-H), 7.34–7.36 (m, 2H, Ph-H), 7.45 (d, 2H, $J = 8.4$ Hz, Ph-H), 7.74 (s, 1H, N-H); 13C NMR (150 MHz, CDCl$_3$) δ: 21.0, 39.8, 42.9, 81.9, 104.9, 115.6, 115.8, 120.4, 127.7, 127.8, 129.7, 134.3, 135.0, 137.0, 140.9. MS (ESI): 379 [M + H]$^+$.

3-(5-(4-Fluorophenyl)-4,5-dihydroisoxazol-3-yl)-1-methyl-N-(3-chlorophenyl)-1H-pyrazole-5-carboxamide (ZJ4):

1H NMR (600 MHz, DMSO) δ: 3.41 (q, 1H, $J = 7.8$ Hz, CH$_2$), 3.83 (q, 1H, $J = 10.8$ Hz, CH$_2$), 4.20 (s, 3H, Ar-CH$_3$), 5.69 (q, 1H, $J = 8.4$ Hz, CH), 7.03 (t, 2H, $J = 9.0$ Hz, Ph-H), 7.13–7.14 (m, 1H, Ph-H), 7.23–7.26 (m, 2H, Ar-H, Ph-H), 7.29–7.32 (m, 2H, Ph-H), 7.37–7.39 (m, 1H, Ph-H), 7.72 (t, 1H, $J = 1.8$ Hz, Ph-H), 8.11 (s, 1H, N-H); 13C NMR (150 MHz, CDCl$_3$) δ: 35.1, 38.2, 77.3, 100.8, 110.9, 111.0, 113.8, 115.9, 120.4, 123.0, 123.1, 125.3, 130.0, 131.3, 131.8, 133.4, 136.1, 152.8. MS (ESI): 399 [M + H]$^+$.

3-(5-(4-Fluorophenyl)-4,5-dihydroisoxazol-3-yl)-N-(2-methoxyphenyl)-1-methyl-1H-pyrazole-5-carboxamide (ZJ5):

1H NMR (600 MHz, CDCl$_3$) δ: 3.41 (q, 1H, $J = 8.4$ Hz, CH$_2$), 3.84 (q, 1H, $J = 10.8$ Hz, CH$_2$), 3.93 (s, 3H, CH$_3$), 4.23 (s, 3H, Ar-CH$_3$), 5.72 (q, 1H, $J = 8.4$ Hz, Ph-H), 6.93 (d, 1H, $J = 8.4$ Hz, Ph-H), 7.01 (t, 1H, $J = 7.8$ Hz, Ph-H), 7.06 (t, 2H, Ph-H), 7.09–7.13 (m, 1H, Ph-H), 7.16 (s, 1H, Ar-H), 7.35–7.38 (m, 2H, Ph-H), 8.41–8.43 (m, 2H, Ph-H, N-H); 13C NMR (150 MHz, CDCl$_3$) δ: 39.8, 42.9, 55.86, 81.7, 104.9, 110.1, 115.6, 115.8, 119.7, 121.1, 124.6, 126.9, 127.6, 127.7, 137.2, 140.9, 148.1, 151.8, 157.0. MS (ESI): 395 [M + H]$^+$.

3-(5-(4-Fluorophenyl)-4,5-dihydroisoxazol-3-yl)-1-methyl-N-(o-tolyl)-1H-pyrazole-5-carboxamide (ZJ6):

1H NMR (600 MHz, CDCl$_3$) δ: 2.29 (s, 3H, CH$_3$), 3.41 (q, 1H, $J = 7.8$ Hz, CH$_2$), 3.83 (q, 1H, $J = 10.4$ Hz, CH$_2$), 4.21 (s, 3H, Ar-CH$_3$), 5.66 (q, 1H, $J = 8.4$ Hz, CH), 7.03 (t, 2H, $J = 8.4$ Hz, Ph-H), 7.07 (dd, 1H, $J = 1.2$, 7.8 Hz, Ph-H), 7.19 (s, 1H, Ar-H), 7.23 (t, 1H, $J = 9.0$ Hz, Ph-H), 7.13–7.16 (m, 1H, Ph-H),
7.21–7.26 (m, 3H, Ph-H, Ar-H), 7.28–7.32 (m, 2H, Ph-H), 7.72–7.80 (m, 2H, Ph-H, N-H); 13C NMR (150 MHz, CDCl$_3$) δ: 17.8, 39.8, 42.9, 82.0, 105.1, 115.6, 115.7, 123.7, 126.2, 126.9, 127.7, 127.8, 130.8, 134.6, 136.2, 136.8, 140.9, 151.9, 157.5, 160.2. MS (ESI): 379 [M + H]$^+$.

3-(5-(4-Fluorophenyl)-4,5-dihydroisoxazol-3-yl)-1-methyl-N-(m-tolyl)-1H-pyrazole-5-carboxamide (ZJ7):

1H NMR (600 MHz, CDCl$_3$) δ: 2.35 (s, 3H, CH$_3$), 3.40 (q, 1H, $J = 7.8$ Hz, CH$_2$), 3.82 (q, 1H, $J = 10.8$ Hz, CH$_2$), 4.20 (s, 3H, Ar-CH$_3$), 5.69 (q, 1H, $J = 7.8$ Hz, CH), 6.99 (d, 1H, $J = 7.8$ Hz, Ph-H), 7.04 (t, 2H, $J = 9.0$ Hz, Ph-H), 7.19 (s, 1H, Ar-H), 7.23 (t, 1H, $J = 7.8$ Hz, Ph-H), 7.30–7.35 (m, 3H, Ph-H), 7.43 (s, 1H, Ph-H), 7.97 (s, 1H, N-H); 13C NMR (150 MHz, CDCl$_3$) δ: 21.5, 39.8, 42.9, 81.9, 105.2, 115.6, 115.8, 117.6, 121.1, 126.0, 127.7, 127.8, 129.0, 136.3, 136.9, 137.0, 139.2, 140.9, 151.9, 157.5. MS (ESI): 379 [M + H]$^+$.

Methyl 2-(3-(5-(4-fluorophenyl)-4,5-dihydroisoxazol-3-yl)-1-methyl-1H-pyrazole-5-carboxamido)benzoate (ZJ8):

1H NMR (600 MHz, CDCl$_3$) δ: 3.42 (q, 1H, $J = 7.8$ Hz, CH$_2$), 3.85 (q, 1H, $J = 10.8$ Hz, CH$_2$), 3.97 (s, 3H, O-CH$_3$), 4.25 (s, 3H, Ar-CH$_3$), 5.72 (q, 1H, $J = 7.8$ Hz, CH), 7.07 (t, 2H, $J = 9.0$ Hz, Ph-H), 7.16 (t, 1H, $J = 7.2$ Hz, Ph-H), 7.36–7.40 (m, 3H, Ph-H, Ar-H), 7.58–7.63 (m, 1H, Ph-H), 8.09 (dd, 1H, $J = 1.2$, 8.4 Hz, Ph-H), 8.77 (d, 1H, $J = 8.4$ Hz, Ph-H), 12.08 (s, 1H, N-H); 13C NMR (150 MHz, CDCl$_3$) δ: 39.9, 42.9, 82.0, 105.2, 115.6, 115.8, 117.6, 121.1, 126.0, 127.7, 128.9, 136.3, 136.9, 137.0, 139.2, 140.9, 151.9, 157.5. MS (ESI): 423 [M + H]$^+$.

N-(2,4-Dichlorophenyl)-3-(5-(4-fluorophenyl)-4,5-dihydroisoxazol-3-yl)-1-methyl-1H-pyrazole-5-carboxamide (ZJ9):

1H NMR (600 MHz, CDCl$_3$) δ: 3.41 (q, 1H, $J = 8.4$ Hz, CH$_2$), 3.84 (q, 1H, $J = 11.4$ Hz, CH$_2$), 4.22 (s, 3H, Ar-CH$_3$), 5.72(q, 1H, $J = 7.8$ Hz, CH), 7.06 (t, 2H, $J = 9.0$ Hz, Ph-H), 7.20 (s, 1H, Ar-H), 7.31 (dd, 1H, $J = 2.4$, 9.0 Hz, Ph-H), 7.34–7.38 (m, 2H, Ph-H), 7.45 (d, 1H, $J = 2.4$ Hz, Ph-H), 8.23 (s, 1H, N-H), 8.38 (d, 1H, $J = 9.0$ Hz, Ph-H); 13C NMR (150 MHz, CDCl$_3$) δ: 39.9, 42.9, 82.0, 105.2, 115.6, 115.8, 122.2, 127.7, 128.1, 129.0, 132.6, 136.3, 141.2, 151.6, 157.0. MS (ESI): 433 [M + H]$^+$.

N-(2-Chlorophenyl)-3-(5-(4-fluorophenyl)-4,5-dihydroisoxazol-3-yl)-1-methyl-1H-pyrazole-5-carboxamide (ZJ10):

1H NMR (600 MHz, CDCl$_3$) δ: 3.39 (q, 1H, $J = 8.4$ Hz, CH$_2$), 3.84 (q, 1H, $J = 10.8$ Hz, CH$_2$), 4.22 (s, 3H, Ar-CH$_3$), 5.71 (t, 1H, $J = 10.2$ Hz, CH), 7.11 (t, 1H, $J = 7.8$ Hz, Ph-H), 7.21 (s, 1H, Ar-H), 7.28–7.37 (m, 5H, Ph-H), 7.39–7.46 (m, 1H, Ph-H), 8.30 (s, 1H, Ph-H), 8.35–8.42 (m, 1H, N-H); 13C NMR (150 MHz, CDCl$_3$) δ: 39.9, 42.9, 81.8, 105.2, 121.8, 123.6, 125.5, 127.3, 127.8, 128.9, 129.3, 133.8, 134.0, 136.6, 139.1, 141.0, 151.6, 157.1. MS (ESI): 415 [M + H]$^+$.

HETEROCYCLES, Vol. 98, No. 5, 2019
3-(5-(4-Chlorophenyl)-4,5-dihydroisoxazol-3-yl)-1-methyl-N-(p-tolyl)-1H-pyrazole-5-carboxamide (ZJ11):

1H NMR (600 MHz, CDCl$_3$) δ: 2.33 (s, 3H, Ph-CH$_3$), 3.33 (q, 1H, $J = 7.8$ Hz, CH$_2$), 3.82 (q, 1H, $J = 10.8$ Hz, CH$_2$), 4.18 (s, 3H, Ar-CH$_3$), 5.66 (q, 1H, $J = 7.8$ Hz, CH), 7.13 (d, 2H, $J = 8.4$ Hz, Ph-H), 7.20 (s, 1H, Ar-H), 7.26 (d, 2H, $J = 7.8$ Hz, Ph-H), 7.31 (d, 2H, $J = 8.4$ Hz, Ph-H), 7.42 (d, 2H, $J = 8.4$ Hz, Ph-H), 7.97–8.10 (m, 1H, N-H); 13C NMR (150 MHz, CDCl$_3$) δ: 20.9, 39.8, 42.9, 81.8, 105.3, 120.7, 127.3, 128.9, 129.6, 134.4, 134.9, 137.1, 139.0, 140.7, 151.9, 157.5. MS (ESI): 395 [M + H]$^+$.

3-(5-(4-Chlorophenyl)-4,5-dihydroisoxazol-3-yl)-N-(2-methoxyphenyl)-1-methyl-1H-pyrazole-5-carboxamide (ZJ12):

1H NMR (600 MHz, CDCl$_3$) δ: 3.40 (q, 1H, $J = 7.8$ Hz, CH$_2$), 3.85 (q, 1H, $J = 11.4$ Hz, CH$_2$), 3.93 (s, 3H, O-CH$_3$), 4.22 (s, 3H, Ar-CH$_3$), 5.71 (q, 1H, $J = 7.8$ Hz, CH), 6.93 (d, 1H, $J = 8.4$ Hz, Ph-H), 7.00 (t, 1H, $J = 7.8$ Hz, Ph-H), 7.09–7.13 (m, 1H, Ph-H), 7.15 (s, 1H, Ar-H), 7.31 (q, 4H, $J = 7.8$ Hz, Ph-H), 8.37–8.44 (m, 2H, Ph-H, N-H); 13C NMR (150 MHz, CDCl$_3$) δ: 38.8, 42.9, 55.7, 81.6, 104.9, 110.0, 119.7, 121.1, 124.6, 126.9, 127.3, 128.9, 134.0, 137.2, 139.2, 140.8, 148.1, 151.8, 157.0. MS (ESI): 411 [M + H]$^+$.

Methyl 2-(3-(5-(4-chlorophenyl)-1-methyl-1H-pyrazole-5-carboxamido)benzoate (ZJ13):

1H NMR (600 MHz, CDCl$_3$) δ: 3.40 (q, 1H, $J = 7.8$ Hz, CH$_2$), 3.85 (q, 1H, $J = 11.4$ Hz, CH$_2$), 3.97 (s, 3H, O-CH$_3$), 4.24 (s, 3H, Ar-CH$_3$), 5.71 (q, 1H, $J = 8.4$ Hz, CH), 7.13–7.17 (m, 1H, Ph-H), 7.32–7.37 (m, 5H, Ar-H, Ph-H), 7.57–7.62 (m, 1H, Ph-H), 8.08 (dd, 1H, $J = 1.8$, 7.8 Hz, Ph-H), 8.76 (d, 1H, $J = 8.4$ Hz, Ph-H), 12.07 (s, 1H, N-H); 13C NMR (150 MHz, CDCl$_3$) δ: 40.0, 43.1, 52.8, 81.6, 105.8, 115.3, 120.2, 123.2, 127.3, 128.9, 131.1, 134.0, 134.8, 137.3, 139.4, 141.0, 141.1, 151.2, 157.7, 168.8. MS (ESI): 439 [M + H]$^+$.

3-(5-(4-Chlorophenyl)-4,5-dihydroisoxazol-3-yl)-1-methyl-N-(3-(trifluoromethyl)phenyl)-1H-pyrazole-5-carboxamide (ZJ14):

1H NMR (600 MHz, CDCl$_3$) δ: 3.40 (q, 1H, $J = 7.8$ Hz, CH$_2$), 3.84 (q, 1H, $J = 8.4$ Hz, CH$_2$), 3.97 (s, 3H, O-CH$_3$), 4.22 (s, 3H, Ar-CH$_3$), 5.66 (q, 1H, $J = 8.4$ Hz, CH), 7.23 (d, 2H, $J = 8.4$ Hz, Ph-H), 7.29 (t, 2H, $J = 8.4$ Hz, Ph-H), 7.33 (s, 1H, Ar-H), 7.37–7.44 (m, 2H, Ph-H), 7.71 (d, 1H, $J = 7.2$ Hz, Ph-H), 7.94 (s, 1H, Ph-H), 8.50 (s, 1H, Ph-H, N-H); 13C NMR (150 MHz, CDCl$_3$) δ: 38.9, 43.0, 52.8, 81.6, 105.8, 115.3, 120.2, 123.2, 127.3, 128.9, 131.1, 134.0, 134.8, 137.3, 139.4, 141.0, 141.1, 151.2, 157.7, 168.8. MS (ESI): 449 [M + H]$^+$.

3-(5-(4-Chlorophenyl)-4,5-dihydroisoxazol-3-yl)-1-methyl-N-(2,4-dichlorophenyl)-1H-pyrazole-5-carboxamide (ZJ15):

1H NMR (600 MHz, CDCl$_3$) δ: 3.39 (q, 1H, $J = 7.8$ Hz, CH$_2$), 3.84 (q, 1H, $J = 11.4$ Hz, CH$_2$), 4.22 (s, 3H, Ar-CH$_3$), 5.71 (q, 1H, $J = 7.8$ Hz, CH), 7.21 (s, 1H, Ar-H), 7.27–7.37 (m, 5H, Ph-H), 7.44 (d, 1H, $J = 2.4$ Hz, Ph-H), 8.23 (s, 1H, Ph-H), 8.37 (d, 1H, $J = 9.0$ Hz, N-H); 13C NMR (150 MHz, CDCl$_3$) δ: 39.9, 42.9,
81.8, 105.3, 122.4, 124.0, 127.3, 128.0, 128.9, 129.0, 130.1, 132.6, 134.1, 136.3, 139.1, 141.1, 151.5, 157.0. MS (ESI): 449 [M + H]+.

3-(5-(4-Chlorophenyl)-4,5-dihydroisoxazol-3-yl)-N-(3-fluorophenyl)-1-methyl-1H-pyrazole-5-carboxamide (ZJ16):

^1^H NMR (600 MHz, CDCl$_3$) δ: 3.39 (q, 1H, J = 9.6 Hz, CH$_2$), 3.84 (q, 1H, J = 11.4 Hz, CH$_2$), 4.20 (s, 3H, Ar-CH$_3$), 5.68 (q, 1H, J = 8.4 Hz, CH), 6.86 (td, 1H, J = 1.8, 7.8 Hz, Ph-H), 7.21 (d, 1H, J = 7.8 Hz, Ph-H), 7.23–7.29 (m, 4H, Ar-H, Ph- H), 7.32 (d, 2H, J = 7.8 Hz, Ph-H), 7.51–7.56 (m, 1H, Ph-H), 8.16 (s, 1H, N-H); 13C NMR (150 MHz, CDCl$_3$) δ: 39.9, 42.9, 81.9, 105.5, 107.9, 108.1, 111.7, 111.9, 115.8, 127.3, 129.0, 130.2, 134.2, 136.6, 138.9, 140.7, 151.9, 157.5. MS (ESI): 399 [M + H]+.

3-(5-(4-Chlorophenyl)-4,5-dihydroisoxazol-3-yl)-1-methyl-N-(o-tolyl)-1H-pyrazole-5-carboxamide (ZJ17):

^1^H NMR (600 MHz, CDCl$_3$) δ: 4.26 (s, 3H, Ph-CH$_3$), 3.39 (q, 1H, J = 8.4 Hz, CH$_2$), 3.82 (q, 1H, J = 11.4 Hz, CH$_2$), 4.19 (s, 3H, Ar-CH$_3$), 5.55–5.66 (m, 1H, CH), 7.10–7.17 (m, 1H, Ph-H), 7.17–7.25 (m, 4H, Ar-H, Ph-H), 7.26–7.34 (m, 3H, Ph-H), 7.67–7.70 (m, 1H, Ph-H), 7.86–7.96 (m, 1H, N-H); 13C NMR (150 MHz, CDCl$_3$) δ: 17.8, 39.8, 42.9, 81.9, 105.3, 124.2, 126.3, 126.8, 127.3, 128.9, 130.7, 134.1, 134.6, 136.8, 138.9, 140.8, 152.0, 157.7. MS (ESI): 395 [M + H]+.

Biological assay

Bioassays were performed on representative test organisms grown in the laboratory. The bioassay was repeated at each rate three times at 25±1 °C according to statistical requirements. Assessments were made on a dead/alive basis and corrected by applying Abbott’s formula. All compounds were dissolved in N,N-dimethylformamide and diluted with distilled water containing Triton X-100 (0.1 mg/L) to obtain a series of concentrations of 500, 100 mg/L and others for bioassays. For comparative purposes, Avermectins as control was tested under the same conditions. Evaluation was based on a percentage scale of 0-100 (0 = no activity, 100 = total kill) with the standard deviations ±5%.

Insecticidal activity against Mythimna separate

The experiment was performed on fourth-instar larvae of the M. separata was tested by leaf-dip method according to our reported method.

Insecticidal activity against Tetranychus cinnabarinus and Aphis craccivora

The insecticidal activity against Tetranychus cinnabarinus and Aphis craccivora was tested by foliar application according to the reported method.

ACKNOWLEDGEMENTS

This work was supported by Collaboration Innovation Center of Zhejiang Green Pesticide.
REFERENCES AND NOTES

