IODINE-CONTAINING 4,7-DIHALOGENO[\textit{b}]THIOPHENE BUILDING BLOCKS AND RELATED IODOGENO[\textit{b}]THIOPHENES: PROMISING MOLECULAR SCAFFOLDS FOR BIO-INSPIRED MOLECULAR ARCHITECTURE

Kozo Toyota* and Shinichi Mikami

Department of Chemistry, Graduate School of Science, Tohoku University, Aoba, Sendai, Miyagi 980-8578, Japan. E-mail: toyota@tohoku.ac.jp

Abstract – This review describes preparations and reactions of 4,7-dihalogeno[\textit{b}]thiophenes bearing iodine atom(s). A short survey of typical preparative methods for iodogenous[\textit{b}]thiophenes and relatively simple benzo[\textit{b}]thiophenes is included. Reactions of the iodine-containing 4,7-dihalogeno[\textit{b}]thiophenes are shown and their application to \(\alpha\) helix-inspired artificial molecular architecture is referred.

CONTENTS

1. Introduction

2. Short survey of preparative methods for iodogeno[\textit{b}]thiophenes

2.1. Preparation of iodobufenzo[\textit{b}]thiophenes from iodine-free precursors

2.1.1. By iodination of benzo[\textit{b}]thiophene derivatives

2.1.1.1. Direct iodination of the C-H bond

2.1.1.1.1. Direct C-H bond iodination at the 2-position

2.1.1.1.2. Direct C-H bond iodination at the 3-position

2.1.1.1.3. Direct C-H bond iodination at the 4-position

2.1.1.1.4. Direct C-H bond iodination at the 5-position

2.1.1.1.5. Direct C-H bond iodination at the 6-position

2.1.1.1.6. Direct C-H bond iodination at the 7-position

2.1.1.2. Iodination via C-Li bond

2.1.1.3. Iodination via C-B bond

2.1.1.4. Iodination via C-N bond

2.1.1.5. Iodination via C-Si bond
2.1.1.6. Iodination via other C-Metal bonds

2.1.2. By iodocyclization of (ethynyl)(sulfanyl)benzenes

2.2. Precursors for benzo[b]thiophene core; with or without iodine
 2.2.1. Benzene-based precursors for preparation of benzo[b]thiophenes
 2.2.2. Thiophene-based precursors for preparation of benzo[b]thiophenes
 2.2.3. Other precursors

3. Preparation and reactions of 4,7-dihalobenzo[b]thiophenes containing iodine
 3.1. Preparation of 4,7-dihalobenzo[b]thiophenes containing iodine
 3.1.1. Iodine at the 6-membered ring
 3.1.2. Iodine at the 5-membered ring
 3.2. Reactions of 4,7-dihalobenzo[b]thiophenes containing iodine

4. Conclusion

1. INTRODUCTION

Organic building block is an important concept in organic synthesis: In many cases, the building blocks correspond to synthetic intermediates and frequently called molecular scaffolds, focusing on their rolls in the synthetic strategy. Halogenated aromatic compounds are often used as such molecular scaffolds, because of the usefulness in many reactions as well as their relatively rigid and stable aromatic framework. From a synthetic point of view, multi-halo arenes containing different halogen atoms are especially valuable for molecular scaffolds, because good regioselectivity is expected in reactions such as halogen-metal exchange and transition metal-catalyzed cross couplings. Concerning the cross coupling reactions, it is well known that the reactivity is generally I > OTf > Br >> Cl. This order of reactivity makes iodine-containing arenes and heteroarenes particularly useful, and consequently, chemistry of such iodo-building blocks is worth studying. Among aromatic heterocyclic compounds, benzo[b]thiophenes have attracted a great interest in materials chemistry, medicinal chemistry, and synthetic chemistry, because of their unique and excellent properties. Thus, benzo[b]thiophenes containing several different halogen atoms are supposed to have a large potential for synthetic application. Furthermore, from a viewpoint of molecular scaffolds, 4,7-dihalobenzo[b]thiophenes bearing different halogen atoms (Figure 1, X ≠ Y) are useful building blocks with featured molecular geometry: They have an axis X...Y, where the C2-R bond locates nearly perpendicular to the X...Y axis, like pillars and beams which define floors of specific heights in architectural buildings. Preparation and utilization of benzo[b]thiophenes bearing iodine atoms at the benzene ring (i.e. C-4 to C-7 positions), however, seem to have been limited: This review shows a short survey of typical preparative methods for iodobenzo[b]thiophenes in Section 2, while Section 3 exhibits
preparations, reactions, and application of 4,7-dihalobenzo[b]thiophenes containing iodine. It should be mentioned here that reactivity of multi-ring-fused benzothiophenes such as benzodithiophenes containing more than two rings is much different from that of simple benzothiophenes. The reactions shown in this review are mainly those of simple benzo[b]thiophenes.

Figure 1. (a) Concept and numbering of a ‘quasi T-shape’ benzo[b]thiophene scaffold. (b) Structures of 4,7-dihalobenzo[b]thiophenes containing iodine. Atoms X and Y are halogen atoms. Structure 2 contains at least one iodine atom as X or Y.

2. SHORT SURVEY OF PREPARATIVE METHODS FOR IODOBENZO[b]THIOPHENES
First, we glance some typical preparative methods for iodobenzo[b]thiophenes, focusing on the derivatives having simple benzo[b]thiophene core. The synthetic methods can be divided into two categories, one is those from iodine-containing materials and the other is from iodine-free precursors.

2.1. Preparation of iodobenzo[b]thiophenes from iodine-free precursors
As the starting materials in this category do not contain iodine, (1) iodination of benzo[b]thiophene core or (2) simultaneous construction of benzo[b]thiophene framework and iodination (for example, iodocyclization) is needed. Various iodination methods have been applied for this purpose as listed below.

2.1.1. By iodination of benzo[b]thiophene derivatives
Several methods for direct or indirect iodination of C-H bond have been reported. Indirect iodination of C-H bond includes iodination of C-Li, C-B, or C-N bonds, for instance. Direct C-H iodination at each position is described in section 2.1.1.1., while indirect methods are noted in the sections from 2.1.1.2. to 2.1.1.6.

2.1.1.1. Direct iodination of the C-H bond
(As has been mentioned, reactivity of polyfused benzothiophenes, such as dibenzothiophenes and benzodithiophenes, differs from that of simple benzothiophenes. This review mainly treats simple two-ring benzo[b]thiophenes.)
In general, electrophilic substitution of parent benzo[\textit{b}]thiophene 1 takes place at C-3 position (Scheme 1, compound 1 to 2). 5

\[\text{Scheme 1} \]

Iodination, however, often occurs at either 2- or 3-position, or both (see, Schemes 2,3). 6 For selective iodination at C-2 position, deprotonation by organolithium reagent is generally used prior to reaction with iodine species such as I\(_2\) or ICl (indirect C-H iodination), see section 2.1.1.2. Direct iodination at C-4 to C-7 positions become possible, when the reactive C-2 and/or C-3 positions are already substituted or an appropriate directing group (NR\(_2\) or OR, for example) exists near or next to the desired position. It should be mentioned that introduction of the directing group itself may suffer from the relatively poor reactivity of the 6-membered ring moiety of benzo[\textit{b}]thiophenes. Thus, synthetic plans should be made, taking these facts into account. In many reported cases, the directing groups were introduced before completion of benzothiophene skeleton, which was constructed often from single-ring derivatives (see section 2.2.). Also in many cases, the directing groups were not removed after iodination but utilized for further conversion. The following sections describe some typical iodination methods at each position.

2.1.1.1. Direct C-H bond iodination at the 2-position
Probably, most popular method of iodination at this position is deprotonation-iodination (see section 2.1.1.2.). When the substrate is sensitive to bases, direct C-H iodination may become valuable. Simple iodination at C-2 position was performed with I\(_2\) using Mo catalyst to give 3 as a major product (Scheme 2). 7 (I\(_2\) is also used for iodination of C-3 position under different conditions, see section 2.1.1.1.2.)

\[\text{Scheme 2} \]
Iodination of C-2 position could also be performed using other iodination reagents such as NIS8 and PhI(OAc)\textsubscript{2} / I\textsubscript{2}9.

2.1.1.2. Direct C-H bond iodination at the 3-position

As electrophilic substitution tends to proceed at C-3 position, a variety of methods have been reported using I\textsubscript{2} as an common iodine source, usually with appropriate activating reagents, giving 4,5 (Scheme 3).10,11 In some cases, 1,2-dihalo-1,2-dihydrobenzo[b]thiophene derivatives are assumed to be formed as intermediates: In the following reaction, an intermediate 6 is proposed (Scheme 4).12 Iodocyclization of o-(alkylsulfanyl)(ethynyl)benzene is an alternative method to 3-iodobenzo[b]thiophenes, see section 2.1.2.

Scheme 3

![Scheme 3](image)

Scheme 3

1. **As electrophilic substitution tends to proceed at C-3 position, a variety of methods have been reported using I\textsubscript{2} as an common iodine source, usually with appropriate activating reagents, giving 4,5 (Scheme 3).**
2. In some cases, 1,2-dihalo-1,2-dihydrobenzo[b]thiophene derivatives are assumed to be formed as intermediates: In the following reaction, an intermediate 6 is proposed (Scheme 4).12 Iodocyclization of o-(alkylsulfanyl)(ethynyl)benzene is an alternative method to 3-iodobenzo[b]thiophenes, see section 2.1.2.

Scheme 4

![Scheme 4](image)

Scheme 4

2.1.1.3 Direct C-H bond iodination at the 4-position

As mentioned above, direct iodination at the 4- to 7-positions can occur when C-2 and/or C-3 positions are blocked by substituents, or when directing groups such as protected amino,13 unprotected amino,14 or hydroxyl14 groups exist at appropriate positions. In the following reactions, one of the two o-positions of the directing group was predominantly iodinated to give products 7, 9, 12 in good yields (Scheme 5). Utilization of such directing groups becomes valuable when the target compounds contain the directing
group-derived substituents. In fact, the directing nitrogen atoms remained in the molecules 8 and 10, while the iodine atoms in 7,9 were utilized and consumed during the process.

![Scheme 5](image)

2.1.1.4. Direct C-H bond iodination at the 5-position

A specific position was iodinated in the π-system of dibenzothiophenes 13 and 14 (Scheme 6).16,17

![Scheme 6](image)

2.1.1.5. Direct C-H bond iodination at the 6-position

Again, a directing group caused iodination at one of the o-positions of 15 (Scheme 7), in which the 5-membered ring is fully substituted.18 The directing OH group in 15 was well-designed and utilized to induce benzyne 17. In this case of 5-hydroxybenzo[b]thiophene 15, 6-iodo product 16 was formed, in contrast to the case of the 5-hydroxy derivative 11 in section 2.1.1.3., which led to the 4-iodo product 12. Thus, electronic effects of the substituents even in the distant 5-membered ring should be carefully evaluated, in a synthetic plan of iodination. 6-Iodobenzo[b]thiophenes were also obtained in some
specific cases, although there is no directing group on the benzene ring of 18 (Scheme 8). Electron-withdrawing group at C-3 position may prefer the iodination at C-6 position.

Furthermore, a particular 6-iodo derivative was prepared by indirect and formal C-H bond iodination via nitration-reduction-diazotization process, see section 2.1.1.4.

2.1.1.6. Direct C-H bond iodination at the 7-position

When a suitable amino or hydroxy directing group exists at C-6 position, the o-position more proximate to the sulfur atom (i.e., C-7 position) tends to be iodinated to give 19 and 20 (Scheme 9).
By analogous method shown in Scheme 7, arylene 23 was generated via the OH-directed iodination of 21 and triflation of 22 (Scheme 10).18

![Scheme 10](image)

2.1.1.2. Iodination via C-Li bond

As mentioned above (Scheme 3), direct C-H iodination of 2- or 3-position of benzo[\(b\)]thiophene suffers from low selectivity. On the other hand, C-H iodination of 4- to 7-positions generally demands a proximal directing group and/or appropriate protection of the reactive 2- and 3-positions. Thus, adequate activation using carbon-heteroatom bond, typically carbon-metal bond, is of use for selective iodination of 2- to 7- positions. Typical methods for C-Li bond formation is (i) deprotonation of C-H bond or (ii) halogen-lithium exchange of C-halogen bond. Both methods are used in preparation of iodobenzo[\(b\)]thiophenes.

(i) By deprotonation

In most cases deprotonation occurs at C-2 position (Scheme 11). Typical bases are BuLi, LDA, LiTMP, \textit{etc.}, while typical iodination reagents are I\(_2\), ICl, 1,2-diiodoethane, iodomethylactone, \textit{etc.}22,23

![Scheme 11](image)
When the 2-position is substituted as in the case of 24, deprotonation may occur at other positions such as the C-7 position, of which lithiation is facilitated probably by coordination of the sulfur lone pair.24,25

(ii) By halogen-lithium exchange

Halogen-lithium exchange is a useful tool for selective lithiation of desired positions, even if the 2,3-positions are not substituted (Scheme 12, compound 25 to 26).26 In some specific cases, the regioselectivity is very good as shown in the case of 2,3-dibromo derivative 27 to the 3-bromo-2-iodo form 28.27

![Scheme 12](image)

For use of organolithium reagents and alkali metal amides, possibility of so-called ‘halogen dance’ reaction should be kept in mind. In the case of 2-bromobenzothiophene 29, halogen dancing with KNH\textsubscript{2} or LDA leading to 2 was reported (Scheme 13).28,29

![Scheme 13](image)

2.1.1.3. Iodination via C-B bond

This iodination process of C-B bond can be preceded by Hartwig-Miyaura C-H borylation, Miyaura-Ishiyama C-X borylation, or lithiation-borylation process. For iodination of C-2 position of benzo[b]thiophene boronic acid 30, NIS / MeCN is often used (Scheme 14).30 Various iodine reagents such as I\textsubscript{2} / KF,31 PhI(OH)(OTs),32 and (CF\textsubscript{3})\textsubscript{2}CFI / hydroquinone / Cu33 have also been applied. Not only boronic acid but also trifluoroborate34 and triolborate like 3135 were subjected to iodination. The latter was applied to radiiodination using Na123I.36 Iodonium salts such as 33 were also prepared from boronic acid 32 and in some cases used for further transformation.32,37,38
2.1.1.4. Iodination via C-N bond

Most reactions of this category are those of diazonium salts. KI and NaI are typical iodine sources. Simple 5-aminobenzo[b]thiophene sulfate was subjected to diazotization and reaction with KI to produce 5-iodo derivative in 49% yield.49 Similarly, compound 34 was prepared as shown in Scheme 15.40

2.1.1.5. Iodination via C-Si bond

Typically, ICl / CH$_2$Cl$_2$ (or CHCl$_3$) is used for this conversion giving 35 and 36, for instance$^{41-45}$ (Scheme 16, see also Scheme 44). Iodination of 37 by BnMe$_3$N$^+$Cl$_2$I was also reported (Scheme 17).46
2.1.1.6. Iodination via other C-Metal bonds

Iodination reaction of benzothienobenzothiophene 38, by MeO group-directed alumination followed by transmetallation with ZnCl₂ and quenching with I₂, was reported to form 39, (Scheme 18). Halogen exchange reactions using copper catalyst were reported: Typical conditions for this exchange are NaI / cat. CuI / ethylenediamine ligand.

Tributylstannylbenzo[b]thiophenes were prepared from the corresponding bromobenzothiophenes using (n-Bu₃Sn)₂ / cat. Pd(PPh₃)₄ and then iodinated with I₂ in CHCl₃. Some radioactive iodo compounds (¹²⁵I or ¹³¹I) such as 41 were prepared from the stannanes 40, for example using Na¹²⁵I and H₂O₂ (Scheme 19). Trivalent iodo compound 43 was obtained via tributylstannanes 42.
2.1.2. By iodocyclization of (ethynyl)(sulfanyl)benzenes

In 1984, Larock and Harrison reported mercuration product 45 of o-(ethynyl)(sulfanyl)benzene 44 (Scheme 20). Later, Turos et al. described aliphatic iodocyclization of (benzylsulfanylethyl)alkynes leading to five-membered ring compounds. In 2001, Flynn et al. and Larock et al. reported preparation 3-iodobenzo[b]thiophenes such as 46 by iodocyclization of o-(ethynyl)(sulfanyl)benzene (Scheme 21). In some cases, in situ generated I₂, for example from FeCl₃ and NaI, was used. Thus, if the target compound is 2-substituted-3-iodobenzo[b]thiophene derivative, the iodocyclization is a candidate. Compared to cyclization of internal alkynes, iodocyclization of a terminal alkyne to 2-unsubstituted 3-iodobenzo[b]thiophene derivative has been scarcely reported.

Scheme 20

Scheme 21
2.2. Precursors for benzo[\textit{\text{b}}]thiophene core; with or without iodine

Classification of the ‘8 carbon – 1 sulfur’ framework of benzo[\textit{\text{b}}]thiophene precursors based on retrosynthesis-like bond cleavage (\textit{i.e.}, bond formation in actual synthesis)

Single-component precursors

Type 0

Type 1

Type 2-v1

Type 3-v1

Type 4-v2

Type 9-v7

Type (1,4)

Type (6,8)

Type (6,10)

Type (8,10)

Type (5,7,9)

Figure 2. Classification of benzo[\textit{\text{b}}]thiophene precursors

Figure 2 illustrates some possible precursors of benzo[\textit{\text{b}}]thiophenes as those of ‘8 carbon – 1 sulfur’ frameworks. Compared to the 5-membered ring moiety of benzo[\textit{\text{b}}]thiophenes, the 6-membered ring moiety generally exhibits lower reactivity, as mentioned in section 2.1. Moreover, introduction of substituents to the benzene moiety demands highly regioselective method, reflecting the low symmetry of benzo[\textit{\text{b}}]thiophene core. Thus, introduction of iodine atom to the 6-membered ring after completion of benzo[\textit{\text{b}}]thiophene skeleton does not seem to be a good idea, unless a directing group exists.

In contrast, if we use iodine-containing precursors of benzo[\textit{\text{b}}]thiophene, some reported preparative methods for benzothiophenes may be applicable and the synthesis will become easier. However, there are several restrictions due to high reactivity of iodine: it will be better to avoid halogen-metal exchange,
cross coupling reactions, and analogous reactions mediated by transition metals such as Pd, Cu, or Ni, throughout the synthetic process to iodobenzothiophenes, because reaction of iodine is easier than other halogens such as bromine and chlorine in these reactions. Furthermore, there may be a possibility of so-called halogen-dance side reaction in the case of halogen-metal exchange, and homo coupling side reaction in the case of cross coupling reactions. Other demerit of this strategy is possible increase in the number of synthetic steps. Consequently, iodine substituent is often used for preparation of precursors, and consumed prior to the conversion into the target benzothiophenes in many reported cases. Nevertheless, syntheses from iodine-containing precursors may prevail over the demerits in some appropriate cases. In order to help planning synthetic routes, this section lists some typical preparative methods of benzo[b]thiophenes, no matter whether the target compounds contain iodine or not.

2.2.1. Benzene-based precursors for preparation of benzo[b]thiophenes
If the target molecule contains iodine at the 6-membered ring moiety of benzo[b]thiophene, transformation of iodobenzene precursors will be practical. Among the possible precursors of types 1-4, those of types 2 and 3 have been utilized in many reports, as shown below.

Type 1 precursors
In general, this type of precursors possesses aliphatic sulfur functional group (Scheme 22).

The number of reports is not so large, compared to that of precursors containing arylsulfanyl functional groups such as thiophenol. Regioselectivity may be a problem in some specific cases (see Type 4 precursors part). Heating with Cu / quinoline is a standard method for decarboxylation of benzo[b]thiophene-2-carboxylic acid derivatives such as 47.

\[\begin{align*}
\text{Me} & \quad \text{CO}_2\text{H} \\
\begin{array}{c}
\text{I}_2, \text{dioxane, microwave, 180 } ^\circ \text{C} \\
80\%
\end{array} & \quad 47 \\
\text{Me} & \quad \text{CO}_2\text{H} \\
\begin{array}{c}
\text{Cu, quinoline} \\
\text{microwave, 200 } ^\circ \text{C}
\end{array} & \quad 100\%
\end{align*} \]
Type 2 precursors

Various methods belong to this category (Scheme 23). Iodocyclization is also included in this class (see section 2.1.2.). o-(Sulfanylbenzyl)ketones 49 are supposed to be intermediates in the reaction of o-tolyl thioesters 48 (type 3 precursor) with LDA followed by protonation.

Scheme 23

Syntheses from o-(2-bromoethenyl)(sulfanyl)benzenes 50 in the presence of CuI catalyst or under UV irradiation were reported. Concerning alkynes, cyclization of o-(ethynyl)(sulfanyl)benzenes 51 in the presence of Lewis acid catalysts has been investigated. Silica gel-assisted preparations of benzob[b]thiophenes 53 from alkynes 52 (terminal alkynes or haloalkynes) have also been reported.

Type 2-v1 precursors

Some synthetic methods using elemental sulfur in the final step were reported. Two of them are shown in Scheme 24. In these reactions, intermediates similar to the type 2 precursors are supposed. As a related preparation, Na2S was also used as a sulfur source (Scheme 24). For analogous but different combination of bromophenyl–sulfur–alkynyl precursor system of the type 2 class, see Scheme 26 (Type 2-v4).
Type 2-v3 precursors

Ohira-Bestmann reagent is normally used for conversion of aldehyde into terminal alkynes. However, in the reaction shown in Scheme 24, benzo[b]thiophene 54 was generated as a by-product.80 Substituents at the both \(o\)-positions of the CHO seems to be necessary for production of benzothiophenes. A combination of \(o\)-(acyl)(sulfanyl)benzene with a ylide \(\text{CH}_2\text{S}^+\text{Me}_2\) is another example of this class.81

Type 2-v4 precursors

Transition metal-mediated reactions of \(o\)-bromo(sulfanyl)benzene with alkynes led to benzothiophenes.82 In the case of 55 with unsymmetrical internal alkynes (\(R\)-C\(\equiv\)C-\(R'\)), the products 56 tend to be mixtures of isomers bearing the larger substituents at the C-2 position (Scheme 26).83

\[\begin{align*}
\text{CHO} & \quad \text{MeCOC} (=\text{N}_2)\text{P(O)(OMe)}_2 \\
\text{S} & \quad \text{K}_2\text{CO}_3, \text{MeOH-THF} \\
\text{Ad} & \quad \text{1-adamantyl} \\
\end{align*} \]

Scheme 25

\[\begin{align*}
\text{Br} & \quad \text{MeS} \\
\text{R} & \quad \text{cat. Pd(OAc)}_2 \\
\text{DMF, DBU, } & \quad \Delta \\
\text{R} & \quad \text{= } n\text{-Bu, 79\%} \\
\text{R} & \quad \text{= Ph, 90\%} \\
\end{align*} \]

Scheme 26
Type 3 and related precursors (Type 3-v1, Type 3-v2)
One example of Type 3 precursor has been shown in Scheme 23. Knoevenagel-type condensation of \(o-(\beta\text{-ketoalkylsulfanyl})\)phenyl carbonyl compounds is one of the typical traditional methods for preparation of 2-substituted benzo[\text{b}]thiophenes.\(^{84,85}\) \(o\)-(Acyl)thiophenols and \(o\)-fluorobenzaldehydes such as \(57\) and \(59\), respectively, are often used as starting materials (Scheme 27).\(^{86,87}\) Benzothiophene-2-carboxylates \(61\) containing iodine at the benzene moiety were prepared by this method.\(^{88}\)

![Scheme 27](image)

The following reaction of \(62\) can be regarded as a formal Wittig reaction between in situ generated CH=PPh\(_3\) and S-COCF\(_3\) groups, leading to \(63\) (Scheme 28).\(^{88}\) See also the related reference.\(^{89}\)

![Scheme 28](image)

Type 4 and related precursors
Preparation of the precursors of this category may be easier than other methods.\(^{90-96}\) However, regioselectivity become a problem in specific cases. For example, products \(64\) and \(65\) in Scheme 29 were not separated through column chromatographic treatment.\(^{95}\) In Scheme 30, structurally similar ketone \(66\)\(^{92}\) and ester \(67\)\(^{93}\) were prepared from different sulfur compounds and converted into 3- and 2-substituted benzo[\text{b}]thiophenes, respectively. Reaction of thiophenol with substituted propiolates in the presence of iodine and di-\(t\)-butyl peroxide (DTBP) led to benzo[\text{b}]thiophenes (Scheme 30).\(^{96}\) In these reactions, intermediates analogous to type 4 precursor were proposed (see also, Scheme 26).
Type (1,4) and related precursors
Some syntheses via benzyne derivatives were reported (Scheme 31). In this type of reactions, ketene dithioacetal or sulfanylacetylene were used as ‘2 carbon – 1 sulfur’ moieties. The regioselectivity was relatively good for some mono-substituted benzenes to give benzothiophenes like 68. A unique sulfur source related to this type of precursor is thiophthalic anhydride 69, which led to benzothiophene via double decarbonylation with Ni catalyst. The formation of the product depends on the choice of trialkylphosphines and a problem of regioisomers exists in the case of unsymmetrical alkynes.

Scheme 31
2.2.2. Thiophene-based precursors for preparation of benzo[b]thiophenes

As mentioned in Section 2.1.1.1., iodination at 2- and/or 3-positions of benzo[b]thiophene is not so difficult, compared to that at 4- to 7-positions. Thus, for the purpose of preparation of 2- or 3-iodobenzo[b]thiophenes, multi-step conversion from iodothiophene-based precursors is not so practical. Furthermore, relatively high reactivity of iodothiophene makes the route difficult:

The reactions in this section are those for preparation of iodine-free benzo[b]thiophene derivatives.

Type 0 and related Type (8,10) precursors

Bicyclic precursors such as tetrahydrobenzothiophenone 70 have been utilized (Scheme 32).100–102 After introduction of phenyl group, compound 71 was dehydrated and dehydrogenated with sulfur to give benzothiophene 72.100 A combination of 73 and a symmetrical alkyne was used as the ‘two-component’ type (8,10) precursor, which led to benzothiophene 74 via Alder-Rickert reaction.103

![Scheme 32](image)

Type 6 precursors

Reaction of 2-thienylacetonitrile anion with a ketene dithioacetal 75 followed by acid-catalyzed cyclization of 76 gave a 4-ferrocenylbenzo[b]thiophene 77 (Scheme 33).104 An analogous cyclization occurred, when 3-thienylacetonitrile was used (see Type 10 precursors section). As shown in Scheme 34, formation of 4-phenylbenzo[b]thiophene 72 by oxidative-photocyclization of phenyl(thienyl)butadiene 78 was reported (for analogous reaction, see Scheme 40).105 This type of photocyclization have been used for construction of multi-annulated heteroacenes.106,107

![Scheme 33](image)
Interestingly, activation of the triple bond in 79 with Au catalyst induced a nucleophilic attack of the thiophene π electrons leading to 7-phenyl derivative 81, after rearrangement of 80 (Scheme 34).108

Type (6,8) and Type (6,10) precursors

Diels-Alder reaction of 2-vinylthiophene 82 with maleic anhydride followed by hydrolysis of the adduct 83, dehydrogenation, and decarboxylation, forming benzo[\textit{b}]thiophene 1 was reported (Scheme 35).109,110

Reaction of 2,3-diiodothiophene 85 with zirconacyclopentadiene 84 afforded benzothiophene 86 (Scheme 36).43 2,2’-Diodobiphenyl reacted with 2,3-diphenylthiophene in the presence of AgOPiv, TfOH, and Pd catalyst to give phenanthrothiophene in 40\% yield.111 Reactions of 2,5-dimethoxytetrahydrofuran 87 with thiophenes 88 were mediated by ZnBr$_2$ or TfOH.112
Type 7 precursors
Two unique examples are shown below (Scheme 37).113,114 The latter adopted ring-closing metathesis of 89 using Grubbs second generation catalyst to give simple 4,4’-bibenzo[b]thiophene 90.

\begin{center}
\begin{tikzpicture}[scale=0.8]
\node at (0,0) {\textbf{Scheme 37}};
\node at (-2,0) {Type 7 precursors};
\node at (-2,1) {Two unique examples are shown below (Scheme 37).113,114 The latter adopted ring-closing metathesis of 89 using Grubbs second generation catalyst to give simple 4,4’-bibenzo[b]thiophene 90.};
\draw (0,0) -- (2,0) node[midway,above] {20\%};
\draw (0,0) -- (2,0) node[midway,below] {14\%};
\draw (2,0) -- (4,0) node[midway,above] {10\%};
\draw (2,0) -- (4,0) node[midway,below] {90\%};
\draw (4,0) -- (6,0) node[midway,above] {88\%};
\draw (4,0) -- (6,0) node[midway,below] {88\%};
\end{tikzpicture}
\end{center}

Type 8 precursors
A sigmatropic rearrangement of 91 was effectively applied to form 6-membered ring of 92, followed by oxidation leading to 93 (Scheme 38).115

\begin{center}
\begin{tikzpicture}[scale=0.8]
\node at (0,0) {\textbf{Scheme 38}};
\node at (-2,0) {Type 8 precursors};
\node at (-2,1) {A sigmatropic rearrangement of 91 was effectively applied to form 6-membered ring of 92, followed by oxidation leading to 93 (Scheme 38).115};
\draw (0,0) -- (2,0) node[midway,above] {68-91\%};
\draw (0,0) -- (2,0) node[midway,below] {110 \degree C};
\draw (2,0) -- (4,0) node[midway,above] {R1 = Me, Et; R2 = H, Cl, Me, OMe, etc.};
\draw (4,0) -- (6,0) node[midway,above] {88-91\%};
\draw (4,0) -- (6,0) node[midway,below] {110 \degree C};
\end{tikzpicture}
\end{center}

Type 9 and the related Type 9-v7 precursors
3-Substituted 2-thiopenaldehyde 94 reacted with a base and dimethyl fumarate to give 5,6-disubstituted benzo[b]thiophene (Scheme 39).116 The precursor of type 9 was supposed to be generated in situ. Starting from dialdehyde 95, naphthothiophene 96 was produced by detosylative cyclization of bis-N-tosylhydrazone.117 This type of detosylative cyclization was also performed using a gold catalyst in 77\% yield.
Type 10 precursors

Oxidative-photocyclization of 1-phenyl-4-(3-thienyl)butadiene 97 afforded 7-phenylbenzothiophene 81 in 39% yield (Scheme 40, see also type 6 precursor part).105 Ferrocenyl-substituted benzo[b]thiophene was prepared from 3-thienylacetonitrile, by analogous reaction shown in Scheme 33.104

2.2.3. Other precursors

A unique precursor 98 was utilized in preparation of a chiral 1,1'-bidibenzothiophene species 99 as shown in Scheme 41.45 The precursor 98 seems to be a benzene-based type 3 precursor, however, it can be regarded also as a part of two-component type (5,7,9) precursor. Thiophene and benzene rings were constructed at the same time by metal-catalyzed [2+2+2] cycloaddition in the presence of a chiral ligand.
Another 1,1'-bidibenzo thiophene derivative 103 was prepared by anodic oxidation of dibenzothiophene 102 (Scheme 42). In this case, the π-system of the starting biphenyl 100 is similar to the type 2-v1 precursor in Scheme 24, however, the disulfide 101 can be regarded also as a precursor. Desulfurization of 101 was performed with copper.

Scheme 43 exhibits a construction of benzothiophene 106 by a kind of tandem cyclization of two-component precursor 104 and 105, using the ketene dithioacetal 104 as a sulfur source.
3. PREPARATION AND REACTIONS OF 4,7-DIHALOBENZO[b]THIOPHENES CONTAINING IODINE

Despite the variety of preparative methods for benzo[b]thiophenes, syntheses of iodine-containing 4,7-dihalobenzo[b]thiophene building blocks have been limited. One reason is that iodine atoms in the precursor are often utilized for construction of benzothiophene skeleton and ‘consumed’ before completion of the final product. For purpose of making valuable multi-functional scaffolds in artificial molecular architecture, building blocks containing both iodine and other halogen atoms are desirable for regioselective transformations. Most of the reported preparations and reactions of iodine-containing 4,7-dihalobenzo[b]thiophene building blocks are summarized in this review as follows.

3.1. Preparation of 4,7-dihalobenzo[b]thiophenes containing iodine

3.1.1. Iodine at the 6-membered ring

4,7-Diiodobenzo[b]thiophene derivative 107 was prepared by iodination of bis(trimethylsilyl) derivative 86 (Scheme 44).\(^{43}\)

\[
\begin{array}{c}
\text{86} \\
\text{ICl, CH}_2\text{Cl}_2 \\
\text{76\%} \\
\text{87}
\end{array}
\]

\textbf{Scheme 44}

Regioselective transformation of a single iodine from unsymmetrical diiodo compounds (such as 107) may be possible in some specific situations, utilizing the electronic effect of the proximate sulfur atom. However, for cross coupling reactions, (bromo)(iodo)derivative or (chloro)(iodo)derivative seems to be advantageous (see section 3.2.). For preparation of such dihalo-compounds, transformation from (halo)(iodo)benzene precursors is practical, by reason mentioned in section 2.1.1.1., and this was realized by adopting silica gel-assisted cyclization of (ethynyl)(sulfanyl)dihalobenzenes 110 to 111 (Scheme 45).\(^{25}\)

In the preparation of 110 from the dibromoalkene 109, mild (formal) Corey-Fuchs reaction conditions using KOH / H\(_2\)O in acetone or DMSO was applied in order to keep the halogen atoms X and Y.\(^{61,25}\)
Reaction of the aldehyde 108 with Ohira-Bestmann reagent also afforded the 4,7-dihalobenzo[\(b\)]thiophenes 111 as minor products (Scheme 46).\(^8\) 4,7-Dihalobenzo[\(b\)]thiophenes obtained by silica gel-assisted cyclization and/or by Ohira-Bestmann reagents are listed in Chart 1.

4,7-Dibromo derivative 113 was alternatively prepared from the corresponding (\(t\)-butylsulfanyl)(ethynyl)benzene 112 by using AuCl catalyst in 1,4-dioxane-H\(_2\)O (Scheme 47).\(^7\) Bromine-lithium exchange of 113 occurred selectively at C-7 position and afforded 4-bromo-7-iodo derivative 114. This type of iodination is also applicable to 2-substituted derivatives, if the substituents are tolerable to butyllithiums, as shown in the cases of 115a,b to 116a,b, respectively.\(^8\)
3.1.2. Iodine at the 5-membered ring

3-Iodo-4,7-dibromobenzothiophene 118 was prepared by iodocyclization of 117 (Scheme 48).61

![Scheme 48]

2-Iodo-4,7-dihalobenzo[b]thiophenes 119 were prepared by deprotonation of 111 with LDA followed by reaction with 1,2-diiodoethane (Scheme 49).75,80 In general, this method using LDA can be applicable to other electrophiles and does not seem to affect the halogen atoms on the benzene ring.

![Scheme 49]

Silica gel-assisted cyclization was effectively applied to preparation of 2,4,7-trihalobenzo[b]thiophenes: (iodoethynyl)(sulfanyl)benzenes 121 were generated from the corresponding dihaloalkenes 120 and then converted into 2-iodobenzo[b]thiophenes 119 (Scheme 50).75 2,4,7-Trihalobenzo[b]thiophenes obtained by analogous silica gel-assisted cyclization are listed in Chart 2.75,80

![Scheme 50]

(Iodoethynyl)(sulfanyl)benzene 122 was also prepared from the corresponding terminal alkyne 117 using I_2 / 2,2,6,6-tetramethylpiperidine (TMP), and converted into benzothiophene 123 (Scheme 51).61 This method was applicable to other electrophiles, such as DMF, leading to 2-substituted benzothiophenes after silica gel-assisted cyclization.
3.2. Reactions of 4,7-dihalobenzo[b]thiophenes containing iodine

Reaction of the (bromo)(iodo) derivative 114 with LDA followed by treatment with iodomethane afforded 116a in good yield (Scheme 52; S. Mikami and K. Toyota, unpublished results). As the lithiation of 4,7-dihalobenzo[b]thiophene with LDA at C-2 position does not generally affect the halogen atoms at the 4,7-positions, succeeding reactions seem to be applicable to various electrophiles and the iodine atom can be ‘reserved’ until it is subjected to cross couplings.

The iodine-containing derivatives are expected to take important roles in cross coupling reactions. Takahashi et al. reported cross coupling reactions of diiodoanthrathiophene derivative 124 using 2.5 molar amount of the coupling partner to give the products 125–127 in good yields (Scheme 53).
In the case of an equimolar reaction of diiodo derivative, however, regioselectivity will become a problem. In fact, a cross coupling reaction of simple 4,7-diiodobenzo[b]thiophene 54 with ca. 1 molar equivalent of phenylboronic acid resulted in a mixture of 4-phenyl, 7-phenyl, and 4,7-diphenyl derivatives 128–130 with a significant amount of recovery of the substrate (Scheme 54).80

In contrast, reactions of (bromo)(iodo)- or (chloro)(iodo)-derivatives gave single products 132, 134, and 135 in medium to very good yields (Scheme 55).80 Furthermore, stepwise introduction of phenyl groups using (bromo)(chloro)(iodo)benzo[b]thiophene 136 demonstrated good yield for each step (Scheme 56).120
Introduction of different substituents have also been performed using (bromo)(iodo) derivative, which led to peptide- or α helix-inspired molecules.74 Chart 3 exhibits an α helix mimicking-oligoarene 137,121,122 and oligonaphthalene 138,123 The 4-bromo-7-iodo-2-methyl derivative 116a (Scheme 52, \(E = \text{Me}\)) was converted into oligoarene 140 containing five side chains [four (triisopropylsilyl)ethynyl groups and a methyl group] with main axis of \textit{ca.} 3 nm length.74 Stepwise Suzuki coupling afforded a sequence-defined oligoarene 139 with three different side chains (Chart 3). Further elongation of the functionalized oligoarenes is expected by using the 2-substituted 4,7-dihalobenzo[\(b\)]thiophene scaffolds.
4. CONCLUSION

In section 2.1., preparations of iodobenzo[b]thiophenes from iodine-free compounds were described. In section 2.2., synthetic methods for benzo[b]thiophenes were briefly surveyed based on a skeletal classification of the precursors. Apparently, several methods and reagents in section 2.2. do not match for preparation of iodine-containing benzo[b]thiophenes, mainly because of the high reactivity of the iodo-substituent. Nevertheless, various iodobenzo[b]thiophenes have been reported and some of them are described in section 2.2. In section 3, preparations of iodinated 4,7-dihalobenzo[b]thiophenes were summarized. Reactions of the iodine-containing 4,7-dihalobenzo[b]thiophene scaffolds as well as their application to artificial molecular architecture are also shown in this review.

ACKNOWLEDGEMENTS

The authors thank the Ministry of Education, Culture, Supports, Science and Technology, Japanese Government for support by Grants-in-Aid for Scientific Research (No. 23655026).
REFERENCES
51. K. Matsumura, M. Ono, A. Kitada, H. Watanabe, M. Yoshimura, S. Iikuni, H. Kimura, Y. Okamoto,

Kozo Toyota was born in Tokushima, Japan, in 1960. He was appointed at Tohoku University as a research associate in 1989, received his Ph.D. there in 1990 under the supervision of Prof. Masaaki Yoshifuji, and was promoted to associate professor in 2004 and a professor in 2012. The research in his group focuses on the study on the peptide-inspired molecular architecture with thiophene spacer and the related systems.
Shinchi Mikami was born in Aomori, Japan, in 1994. He received his B. Sc. and M. Sc. from Tohoku University under supervision of Prof. Kozo Toyota in 2017 and 2019, respectively. He is currently in the 2nd grade student of Ph.D. course in the same group.