ANTIVIRAL ACTIVITY OF SOME C₃-SYMMETRICAL N-METHYL BENZYLAMINE-SUBSTITUTED 1,3,5-TRIAZINES AND RELATED COMPOUNDS

Shunsuke Shimomura,¹ Kazumi Yokomizo,² Jian-Rong Zhou,² Nobuko Mibu,¹ Makoto Furutachi,¹ and Kunihiro Sumoto¹*

¹Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan. ²Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan. E-mail: kunihiro@fukuoka-u.ac.jp

Abstract – We report a few new C₃-symmetrical 1,3,5-triazine (TAZ) derivatives and the results of evaluation of their anti-herpes simplex virus type 1 (anti-HSV-1) activity and cytotoxic activity against Vero cells. Among the tested TAZ derivatives 3a-3f, a new C₃-symmetrical trisubstituted TAZ molecule (3d-Me) showed a considerably high level of anti-HSV-1 activity (EC₅₀ = 4.2 μM) with low cytotoxicity (CC₅₀ => 200 μM) against Vero cells, but its activity was lower than that of original N-demethylated compound 3d-H (A). The results for N-methylated C₃-symmetrical multivalent molecules (3c-Me-3e-Me) seem to provide interesting information for a derivatization in the search for new C₃-type symmetrical antiviral TAZ derivatives.

Supramolecular interaction by macromolecules with two-fold (C₂) or three-fold (C₃) geometry is one of the common interactions in many important biological responses.¹² To develop new multivalent symmetrical bioactive compounds or leads, we have recently designed and synthesized a few new molecules with such geometry and evaluated their bioactivities in order to find new types of bioactive leads.³¹⁴ In connection with this project, we have recently reported the preparation of various C₃-symmetrical trivalent 1,3,5-triazine (TAZ) derivatives and the results of biological evaluation of the synthesized symmetrical TAZ derivatives.⁵¹¹ Among previously targeted C₃-symmetrical TAZ derivatives, we found that C₃-symmetrical tri-substituted TAZ derivative 3d-H (A) showed a high level of anti-HSV-1 activity (EC₅₀ = 0.98 μM) and a considerably low level of cytotoxic activity (CC₅₀ => 200 μM) against Vero cells.¹⁰ Regarding the carbohydrate recognition property of TAZ derivative 3d-H (A), the results of our thermodynamic
experiments indicated that the C3-type TAZ derivative 3d-H (A) is a potential new lead having a carbohydrate recognition property in the search for antiviral active molecules (Figure 1).12

As an extension of molecular modification of these compounds, we further synthesized some new C3-symmetrical TAZ derivatives having three N-methylated benzylamine groups on a symmetrical TAZ framework. In this paper, we describe the results of a few additional syntheses of such geometrical TAZ derivatives and evaluation of their anti-HSV-1 activities and structure-activity relationships (SARs).

Figure 1. Antiviral lead compound (A)

RESULTS AND DISCUSSION
A few additional C3-symmetrical TAZ derivatives (3) were newly synthesized from 2,4,6-trichloro-1,3,5-triazine (TCTAZ, 1) as a starting material using a substitution reaction by nucleophiles such as arylalkylamine or arylamine derivatives (2) (Scheme 1). The details for the preparation of these C3-symmetrical TAZ derivatives (3) are given in EXPERIMENTAL.

Scheme 1. Synthetic pathway of target C3-symmetrical TAZ derivatives (3)
Table 1. Anti-HSV-1 activities of C₃-symmetrical triamino-substituted TAZ derivatives (3a-3f)

<table>
<thead>
<tr>
<th>Compound</th>
<th>Structure</th>
<th>EC₅₀ (µM)</th>
<th>CC₅₀ (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3a</td>
<td></td>
<td>>100</td>
<td>>200</td>
</tr>
<tr>
<td>3b</td>
<td></td>
<td>>100</td>
<td>>200</td>
</tr>
<tr>
<td>3c-H</td>
<td></td>
<td>13.2</td>
<td>5.5</td>
</tr>
<tr>
<td>3c-Me</td>
<td></td>
<td>>100</td>
<td>>200</td>
</tr>
<tr>
<td>3d-H (A)</td>
<td></td>
<td>0.98</td>
<td>292.2</td>
</tr>
<tr>
<td>3d-Me</td>
<td></td>
<td>4.2</td>
<td>>200</td>
</tr>
<tr>
<td>3e-H</td>
<td></td>
<td>5.4</td>
<td>291.8</td>
</tr>
<tr>
<td>3e-Me</td>
<td></td>
<td>>100</td>
<td>>200</td>
</tr>
<tr>
<td>3f</td>
<td></td>
<td>>100</td>
<td>>200</td>
</tr>
<tr>
<td>aciclovir</td>
<td></td>
<td>1.1</td>
<td>>444</td>
</tr>
</tbody>
</table>

a) Data were taken from reference 10.
b) Data were taken from reference 14.
c) Data were taken from reference 16.
As can be seen in EXPERIMENTAL, the yields in the procedure for C3-symmetrical TAZ derivatives (3a–3f) with the starting TCTAZ (1) were good, and this method for synthesis of TAZ derivatives10 was reconfirmed to be useful as a general procedure for the synthesis of N-methylated C3-type TAZ derivatives. The presence of a phenylethylamino functionality in the C3-type TAZ molecules (3f) also gave a good result. The structures of the obtained new C3-symmetrical TAZ derivatives were established by spectroscopic methods and elemental analysis. Correct molecular ion peaks were observed in high-resolution positive FAB-MS spectra of all TAZ derivatives (3a–3f). The geometries of the obtained symmetrical TAZ derivatives were confirmed from 13C-NMR spectroscopic data.

The anti-HSV-1 activities (EC\textsubscript{50}) determined by plaque reduction assays15 and cytotoxicity (CC\textsubscript{50}) of C3-type TAZ derivatives (3a–3f) against Vero cells are summarized in Table 1. Among the tri-substituted symmetrical TAZ derivatives tested (3a–3f), the C3-symmetrical derivative 3d-Me having three substituted N-methylated benzylamino groups showed the highest anti-HSV-1 activity (EC\textsubscript{50} = 4.2 \mu M) and low cytotoxicity (CC\textsubscript{50} => 200 \mu M). It is noteworthy that the C3-type compounds 3c-Me and 3e-Me, but not compound 3d-M, having three N-methylated benzylamines in the TAZ template (listed in Table 1) showed no anti-HSV-1 activities (EC\textsubscript{50} => 200 \mu M) and low cytotoxicity (CC\textsubscript{50} => 200 \mu M). In contrast, we previously observed that all of the C3-symmetrical TAZ derivatives (3c-H10, 3d-H (A)10 and 3e-H14) corresponded to the compounds 3c-Me, 3d-Me and 3e-Me that have three benzylamino groups with free NH functionality showed considerably high anti-HSV-1 activities (EC\textsubscript{50} = 0.98–13.2 \mu M). Non-N-methylated compound 3d-H (A) corresponding to (3d-Me) showed a high level of anti-HSV-1 activity (EC\textsubscript{50} = 0.98 \mu M) with a low level of cytotoxicity (CC\textsubscript{50} = 292.2 \mu M).10 The results obtained indicated that the presence of three N-methylated benzylamino groups as substituents seems to be an undesirable structure for the expression of anti-HSV-1 activity. The reason for decreased activity of N-methylated compounds may the lack of a hydrogen bonding donor property of the -NH- functionalities in these molecules.

In connection with the trivalent C3-type symmetrical TAZ derivatives and the purpose of comparison of the biological activities of TAZ derivatives, we further prepared C3-type TAZ derivatives (3a, 3b and 3f). The structures of target compounds obtained in this study are shown in Table 1. The results of biological evaluation of these compounds and data for aciclovir16 are also shown in Table 1. The arylamine-substituted TAZ derivatives (3a and 3b) unfortunately showed no anti-HSV-1 activity (EC\textsubscript{50} => 100 \mu M) and showed low cytotoxicity (CC\textsubscript{50} => 200 \mu M). The arylethylamine-substituted C3-symmetrical derivative (3f) also showed no anti-HSV-1 activity (EC\textsubscript{50} => 100 \mu M).

On the basis of the information obtained by evaluation of biological activities of newly synthesized C3-type tri-substituted TAZ derivatives in Table 1 together with previous information on the C3-type TAZ
series, we are considering N-non-methylated benzylamine-substituted TAZ derivative is a favorable modification for new C₃-type antiviral TAZ molecules. Further molecular modifications of these related TAZ derivatives with the aim of developing new antiviral compounds are under way.

EXPERIMENTAL

Melting points were determined using a micro melting point apparatus (Yanaco MP-S3) without correction. IR spectra were measured by a Shimadzu FTIR-8100 IR spectrophotometer. MicromATR Vision [an apparatus for attenuated total reflectance (ATR)] was used for a neat sample operation. Low- and high-resolution mass spectra (LR-MS and HR-MS) were obtained by a JEOL JMS HX-110 double-focusing model equipped with an FAB ion source interfaced with a JEOL JMA-DA 7000 data system. ¹H- and ¹³C-NMR spectra were obtained by ECG600R. Chemical shifts were expressed in δ ppm downfield from an internal TMS signal for ¹H-NMR and the carbon signal of the corresponding solvent [CDCl₃ (77.00 ppm), DMSO-d₆ (39.50 ppm)] for ¹³C-NMR. The signal assignments were confirmed by two-dimensional (2D)-NMR analyses: ¹H-¹H 2D correlation spectroscopy (COSY), ¹H-¹³C heteronuclear multiple-quantum coherence (HMQC), and ¹H-¹³C heteronuclear multiple-bond connectivity (HMBC). Microanalyses were performed with a Yanaco MT-6 CHN corder. Routine monitoring of reactions was carried out using precoated Kieselgel 60F₂₅₄ plates (E. Merck). Detection of products was accomplished with UV light and iodine. Microwave irradiation experiments were carried out in a CEM Discover Focused Microwave System. Open column, flash column, and centrifugal chromatography separations of the reaction products were performed on silica gel (Kanto 60N or Able-Biott) with a UV detector. Commercially available starting materials were used without further purification, and dry solvents were used in all reactions.

Procedure for Preparation of C₃-Symmetrical Tribenzylamino-substituted TAZ Derivatives (3a-3f) (Table 1):

N²,N⁴,N⁶-Triphenyl-1,3,5-triazine-2,4,6-triamine (3a)¹⁷

To a solution of TCTAZ (184 mg, 1.0 mmol) in 1,4-dioxane (2.0 mL) was added a solution of aniline (0.911 mL, 10 mmol) in 1,4-dioxane (2.0 mL) dropwise at 0 °C, and the mixture was continuously stirred for 30 min at 0 °C and then for another 60 min at room temperature. Then the mixture was subjected to microwave irradiation (MW) at 100 °C (100 W) for 60 min with stirring. After addition of water (20 mL), the resulting mixture was extracted with CH₂Cl₂ (30 mL×3). The combined organic layer was washed with brine (10 mL) and dried over MgSO₄. After evaporation of the solvent, the residual solid was purified by silica gel column chromatography with n-hexane/AcOEt as an eluent to give the desired product (3a) (289 mg, 82% yield) as a white solid. Mp 233-234 °C (Lit.¹⁷ mp 236-237 °C); FAB-MS (positive) m/z 355 (M+H)⁺. HRMS (FAB) Calcd for C₂₁H₁₉N₆⁺: m/z 355.1666 (M+H)⁺. Found: 355.1674; ¹H-NMR (DMSO-d₆) δ 7.00 (3H, t,
\(J = 8.0\ Hz,\ \text{Ar H-4 in C}_6\text{H}_5\), 7.29 (6H, dd, \(J = 6.9, 8.0\ Hz,\ \text{Ar H-3 in C}_6\text{H}_5\)), 7.81 (6H, d, \(J = 6.9\ Hz,\ \text{Ar H-2 in C}_6\text{H}_5\)), 9.24 (3H, br s, NH); \(^{13}\text{C-NMR (DMSO-d}_6\)) \(\delta\ 120.3\ (\text{Ar C-3 in C}_6\text{H}_5\)), 122.0 (Ar C-4 in C\(_6\)H\(_5\)), 128.3 (Ar C-2 in C\(_6\)H\(_5\)), 139.9 (Ar C-1 in C\(_6\)H\(_5\)), 164.1 (Ar C-1,3,5 in triazine). \textit{Anal.} Calcd for C\(_{21}\)H\(_{18}\)N\(_6\): C, 71.17; H, 5.12; N, 23.71. Found: C, 71.20; H, 5.09; N, 23.76.

\(N^2,N^4,N^6\)-Tris(3,4-dimethoxyphenyl)-1,3,5-triazine-2,4,6-triamine (3b)\(^{18}\)

To a solution of TCTAZ (184 mg, 1.0 mmol) in 1,4-dioxane (2.0 mL) was added a solution of 3,4-dimethoxyaniline (1.53 g, 10 mmol) in 1,4-dioxane (2.0 mL) dropwise at 0 °C, and the mixture was continuously stirred for 30 min at 0 °C and then for another 60 min at room temperature. Then the mixture was subjected to microwave irradiation (MW) at 100 °C (100 W) for 60 min with stirring. After addition of water (20 mL), the resulting mixture was extracted with CH\(_2\)Cl\(_2\) (30 mL×3). The combined organic layer was washed with brine (10 mL) and dried over MgSO\(_4\). After evaporation of the solvent, the residual solid was purified by silica gel column chromatography with n-hexane/AcOEt as an eluent to give the desired product (3b)\(^{18}\) (483 mg, 90% yield) as a brown solid. Mp 111-119 °C; FAB-MS (positive) \(m/z\ 535\ (M+H)^+\). HRMS (FAB) Calcd for C\(_{27}\)H\(_{18}\)N\(_6\)O\(_6^+\): \(m/z\ 535.2300\ (M+H)^+\). Found: 535.2300; \(^1\text{H-NMR (DMSO-d}_6\)) \(\delta\ 3.42-3.92\ (18H, m, \text{OCH}_3\text{ on Ar C-3, Ar C-4 in C}_6\text{H}_5\)), 6.84 (3H, d, \(J = 8.4\ Hz,\ \text{Ar H-5 or Ar H-6 in C}_6\text{H}_5\)), 7.03-7.55 (6H, m, Ar H-2, Ar H-5 or Ar H-6 in C\(_6\)H\(_5\)), 8.92 (3H, br s, NH); \(^{13}\text{C-NMR (DMSO-d}_6\)) \(\delta\ 55.4\ (\text{OCH}_3\text{ on Ar C-3 or Ar C-4 in C}_6\text{H}_5\)), 55.9 (OCH\(_3\) on Ar C-3 or Ar C-4 in C\(_6\)H\(_5\)), 106.3, 112.0, 112.6 (Ar C-2, Ar C-5, Ar C-6 in C\(_6\)H\(_5\)), 133.5, 144.3, 148.5 (Ar C-1, Ar C-3, Ar C-4 in C\(_6\)H\(_5\)), 164.1 (Ar C-1,3,5 in triazine). \textit{Anal.} Calcd for C\(_{27}\)H\(_{30}\)N\(_6\)O\(_6\)*0.3H\(_2\)O: C, 60.06; H, 5.71; N, 15.56. Found: C, 60.07; H, 5.59; N, 15.55.

\(N^2,N^4,N^6\)-Trisbenzyl-N\(^2\),N\(^4\),N\(^6\)-trimethyl-1,3,5-triazine-2,4,6-triamine (3c-Me)

To a solution of TCTAZ (184 mg, 1.0 mmol) in 1,4-dioxane (4.0 mL) was added N-methyl-1-phenylmethanamine (1.29 mL, 10 mmol) dropwise at 0 °C, and the mixture was continuously stirred for 30 min at 0 °C and then for another 60 min at room temperature. Then the mixture was subjected to microwave irradiation (MW) at 100 °C (100 W) for 60 min with stirring. After addition of water (20 mL), the resulting mixture was extracted with CH\(_2\)Cl\(_2\) (30 mL×3). The combined organic layer was washed with brine (10 mL) and dried over MgSO\(_4\). After evaporation of the solvent, the residual solid was purified by silica gel column chromatography with CH\(_2\)Cl\(_2\) as an eluent to give the desired product (3c-Me) (413 mg, 94% yield) as a white solid. Mp 69-71 °C; FAB-MS (positive) \(m/z\ 439\ (M+H)^+\). HRMS (FAB) Calcd for C\(_{27}\)H\(_{30}\)N\(_6^+\): \(m/z\ 439.2605\ (M+H)^+\). Found: 439.2623; \(^1\text{H-NMR (DMSO-d}_6\)) (125 °C) \(\delta\ 3.04\ (9H, s, N-\text{CH}_3\)), 4.78 (6H, s, N-CH\(_2\)-C\(_6\)H\(_5\)), 7.16-7.32 (15H, m, Ar H-2,3,4 in C\(_6\)H\(_5\)); \(^{13}\text{C-NMR (DMSO-d}_6\)) (125 °C) \(\delta\ 33.1\ (N-\text{CH}_3\)), 50.6 (N-CH\(_2\)-C\(_6\)H\(_5\)), 126.0, 126.8, 127.5 (Ar C-2, Ar C-3, Ar C-4 in C\(_6\)H\(_5\)), 138.3 (Ar C-1 in C\(_6\)H\(_5\)), 165.1
(Ar C-1,3,5 in triazine). Anal. Calcd for C_{27}H_{30}N_{6}: C, 73.94; H, 6.89; N, 19.16. Found: C, 73.83; H, 6.88; N, 19.13.

N^2,N^4,N^6-Tris(3,4-dimethoxybenzyl)-N^2,N^4,N^6-trimethyl-1,3,5-triazine-2,4,6-triamine (3d-Me)

To a solution of TCTAZ (184 mg, 1.0 mmol) in 1,4-dioxane (2.0 mL) was added a solution of 1-(3,4-dimethoxyphenyl)-N-methylmethanamine (1.91 mL, 10 mmol) in 1,4-dioxane (2.0 mL) dropwise at 0 °C, and the mixture was continuously stirred for 30 min at 0 °C and then for another 60 min at room temperature. Then the mixture was subjected to microwave irradiation (MW) at 100 °C (100 W) for 60 min with stirring. After addition of water (20 mL), the resulting mixture was extracted with CH$_2$Cl$_2$ (30 mL×3). The combined organic layer was washed with brine (10 mL) and dried over MgSO$_4$. After evaporation of the solvent, the residual solid was purified by silica gel column chromatography with n-hexane/AcOEt as an eluent to give the desired product (3d-Me) (543 mg, 88% yield) as a white solid. Mp 113-114 °C; FAB-MS (positive) m/z 619 (M+H$^+$). HRMS (FAB) Calcd for C$_{33}$H$_{43}$N$_{6}$O$_6$: m/z 619.3239 (M+H$^+$). Found: 619.3254; 1H-NMR (DMSO-d_6) (125 °C) δ 3.04 (9H, s, N-C$_3$), 3.70 (9H, s, OCH$_3$ on Ar C-3 in C$_6$H$_3$), 3.75 (9H, s, OCH$_3$ on Ar C-4 in C$_6$H$_3$), 4.71 (6H, s, N-CH$_2$-C$_6$H$_3$), 6.79 (3H, d, J = 7.8 Hz, Ar H-6 in C$_6$H$_3$), 6.86 (3H, d, J = 7.8 Hz, Ar H-5 in C$_6$H$_3$), 6.90 (3H, s, Ar H-2 in C$_6$H$_3$); 13C-NMR (DMSO-d_6) (125 °C) δ 33.0 (N-C$_3$), 50.3 (N-CH$_2$-C$_6$H$_3$), 55.5 (OCH$_3$ on Ar C-3 in C$_6$H$_3$), 55.7 (OCH$_3$ on Ar C-4 in C$_6$H$_3$), 112.8 (Ar C-2 or Ar C-5 in C$_6$H$_3$), 112.9 (Ar C-2 or Ar C-5 in C$_6$H$_3$), 119.7 (Ar C-6 in C$_6$H$_3$), 131.4 (Ar C-1 in C$_6$H$_3$), 148.0 (Ar C-4 in C$_6$H$_3$), 148.9 (Ar C-3 in C$_6$H$_3$), 165.1 (Ar C-1,3,5 in triazine). Anal. Calcd for C$_{33}$H$_{42}$N$_{6}$O$_6$: C, 64.06; H, 6.84; N, 13.58. Found: C, 64.05; H, 6.82; N, 13.50.

N^2,N^4,N^6-Tris(benzo[d][1,3]dioxol-5-ylmethyl)-N^2,N^4,N^6-trimethyl-1,3,5-triazine-2,4,6-triamine (3e-Me)

To a solid of 1-(benzo[d][1,3]dioxol-5-yl)-N-methylmethanamine hydrochloride (2.02 g, 10 mmol) were successively added a solution of TCTAZ (184.4 mg, 1.0 mmol) in 1,4-dioxane (4.0 mL) dropwise and triethylamine (1.39 mL, 10 mmol) at 0 °C, and the mixture was continuously stirred for 30 min at 0 °C and then for another 60 min at room temperature. Then the mixture was subjected to microwave irradiation (MW) at 100 °C (100 W) for 60 min with stirring. After addition of water (20 mL), the resulting mixture was extracted with CH$_2$Cl$_2$ (30 mL×3). The combined organic layer was washed with brine (10 mL) and dried over MgSO$_4$. After evaporation of the solvent, the residual solid was purified by silica gel column chromatography with n-hexane/AcOEt as an eluent to give the desired product (3e-Me) (99 mg, 17% yield) as a yellow solid. Mp 106-109 °C; FAB-MS (positive) m/z 571 (M+H$^+$). HRMS (FAB) Calcd for C$_{30}$H$_{31}$N$_{6}$O$_6$: m/z 571.2300 (M+H$^+$). Found: 571.2301; 1H-NMR (DMSO-d_6) (125 °C) δ 3.02 (9H, s, N-C$_3$), 4.68 (6H, s, N-CH$_2$-C$_6$H$_3$), 5.93 (6H, s, O-CH$_2$-O), 6.69-6.83 (9H, m, Ar H-2, Ar H-5, Ar H-6 in
C₆H₃); ¹³C-NMR (DMSO-đ) (125 °C) δ 33.0 (N-CH₃), 50.4 (N-CH₂-C₆H₃), 100.1 (O-CH₂-O), 107.3, 107.3, 120.1 (Ar C-2, Ar C-5, Ar C-6 in C₆H₃), 132.3 (Ar C-1 in C₆H₃), 145.7 (Ar C-3 or Ar C-4 in C₆H₃), 146.8 (Ar C-3 or Ar C-4 in C₆H₃), 165.0 (Ar C-1,3,5 in triazine). Anal. Calcd for C₃₀H₃₀N₆O₆: C, 63.15; H, 5.30; N, 14.73. Found: C, 63.16; H, 5.36; N, 14.62.

N²,N⁴,N⁶-Tris(3,4-dimethoxyphenethyl)-1,3,5-triazine-2,4,6-triamine (3f)¹⁹
To a solution of TCTAZ (184 mg, 1.0 mmol) in 1,4-dioxane (2.0 mL) was added a solution of 2-(3,4-dimethoxyphenyl)ethan-1-amine (1.81 g, 10 mmol) in 1,4-dioxane (2.0 mL) dropwise at 0 °C, and the mixture was continuously stirred for 30 min at 0 °C and then for another 60 min at room temperature. Then the mixture was subjected to microwave irradiation (MW) at 100 °C (100 W) for 60 min with stirring. After addition of water (20 mL), the remaining mixture was extracted with CH₂Cl₂ (30 mL×3). The combined organic layer was washed with brine (10 mL) and dried over MgSO₄. After evaporation of the solvent, the residual solid was purified by silica gel column chromatography with n-hexane/AcOEt as an eluent to give the desired product (3f) (540 mg, 87% yield) as a white solid.¹⁹ Mp 125-130 °C; FAB-MS (positive) m/z 619 (M+H)⁺. HRMS (FAB) Calcd for C₃₃H₄₅N₆O₆: m/z 619.3239 (M+H)⁺. Found: 619.3246; ¹H-NMR (CDCl₃) δ 2.58-2.96 (6H, m, NH-CH₂-CH₂-C₆H₃), 3.38-3.70 (6H, m, NH-CH₂-CH₂-C₆H₃), 3.84 (9H, s, OCH₃ on Ar C-3 or Ar C-4 in C₆H₃), 3.85 (9H, s, OCH₃ on Ar C-3 or Ar C-4 in C₆H₃), 4.30-5.40 (3H, m, NH), 6.72 (3H, s, Ar H-2 in C₆H₃), 6.74 (3H, d, J = 8.1 Hz Ar H-6 in C₆H₃), 6.79 (3H, d, J = 8.1 Hz Ar H-5 in C₆H₃); ¹³C-NMR (CDCl₃) δ 35.7 (NH-CH₂-CH₂-C₆H₃), 42.2 (NH-CH₂-CH₂-C₆H₃), 55.9 (OCH₃ on Ar C-3 or Ar C-4 in C₆H₃), 56.1 (OCH₃ on Ar C-3 or Ar C-4 in C₆H₃), 111.5 (Ar C-5 in C₆H₃), 112.2 (Ar C-2 in C₆H₃), 120.8 (Ar C-6 in C₆H₃), 131.9 (Ar C-1 in C₆H₃), 147.7 (Ar C-3 or Ar C-4 in C₆H₃), 149.1 (Ar C-3 or Ar C-4 in C₆H₃), 166.3 (Ar C-1,3,5 in triazine). Anal. Calcd for C₃₃H₄₂N₆O₆: C, 64.06; H, 6.84; N, 13.58. Found: C, 63.92; H, 6.79; N, 13.49.

Antiviral Activity Assay and Cytotoxicity
The anti-HSV-1 activities (EC₅₀ values) of the synthesized TAZ derivatives (3a~3f) were measured by using a plaque reduction assay,¹⁵ and their cytotoxicity against Vero cells (CC₅₀) was also evaluated as we described previously. The results are summarized in Table 1 together with data for aciclovir.¹⁶

REFERENCES AND NOTES

18. This compound has been listed in the Japanese Published Unexamined Patent Applications without physical or spectroscopic data [P2001-166144A].