STRATEGY FOR THE SYNTHESIS OF C-ARYL GLUCOSIDES AS SODIUM GLUCOSE COTRANSPORTER 2 INHIBITORS

Masatoshi Murakata and Masahiro Nagase*

API Process Development Department, Pharmaceutical Technology Division, Chugai Pharmaceutical Co., Ltd, 5-5-1 Ukima, Kita-ku, Tokyo 115-8543, Japan.
*Email: shimizumsh@chugai-pharm.co.jp

Abstract – Sodium glucose cotransporter 2 (SGLT2) inhibitors are currently the focus of attention in the treatment of diabetes. Since the discovery of the first SGLT inhibitor phlorizin, a natural O-aryl glucoside, extensive efforts in the search for selective SGLT2 inhibitors have continued and several C-aryl glucosides have been launched onto the market. This review presents routes and strategies collected from both drug discovery chemistry and industrial process chemistry for the synthesis of nine pioneering C-aryl glucoside SGLT2 inhibitors (dapagliflozin, canagliflozin, ipragliflozin, empagliflozin, luseogliflozin, tofogliflozin, ertugliflozin, bexagliflozin, and sotagliflozin). The synthetic strategies employed for the construction of the carbon backbone of these inhibitors are classified into four types, and details of various synthetic routes and methods are described.
1. INTRODUCTION

Sodium glucose cotransporter 2 (SGLT2) inhibitors have been receiving much attention for their role in the treatment of diabetes.¹ The first SGLT inhibitor to be discovered was phlorizin (1), which is a natural O-aryl glucoside isolated from the bark of apple trees (Figure 1). However, this compound shows non-selective inhibitory activity towards SGLT1 and SGLT2,² causing gastrointestinal side effects because SGLT1 exists mainly in the intestine.³ Furthermore, phlorizin (1) is problematic as a drug candidate owing to its metabolic instability (hydrolysis of the O-glycosidic bond). Therefore, various compounds have been synthesized to overcome the drawbacks of phlorizin (1).

Figure 1. Structure of phlorizin
Inspired by the structure of phlorizin (1), many selective SGLT2 inhibitors have been developed as potential new drugs for the treatment of diabetes. Both O-aryl glucoside and C-aryl glucoside compounds have been investigated, and C-aryl glucosides in particular have met great success.\(^4\) Various pathways for the synthesis of C-aryl glucosides with SGLT2 inhibition activity have been documented in the literature, and several reviews have also been published.\(^5\) The present review deals with the synthesis of C-aryl glucoside SGLT2 inhibitors that had been approved as of 2019. The synthetic strategies and methods described here consist of those published in academic journals but not those appearing in patents. All of the C-aryl glucosides discussed in this review feature a structure depicted by the general molecule in Figure 2. The structures of individual C-aryl glucoside SGLT2 inhibitors are shown in Figure 3.

Figure 2. General structure of SGLT2 inhibitors

Figure 3. Structures of SGLT2 inhibitors
2. SYNTHETIC STRATEGIES

The four main synthetic strategies and their key reactions are shown in Figure 4.

Figure 4. Synthetic strategies: key reactions and substrates
Most C-aryl glucosides can be synthesized by way of carbon-carbon bond-forming reactions between sugar electrophiles as sugar moieties and aryl metal compounds as aromatic moieties (A in Figure 4). With this strategy, reactions between several kinds of sugar electrophiles and aryl carbanions generated from aryl halides by halogen-metal exchange reactions are carried out to form the desired carbon-carbon bond. In many cases, gluconolactone derivatives are used as the sugar electrophiles for 1,2-addition reactions of aryl carbanions (A-1); this method has been applied to the synthesis of dapagliflozin, canagliflozin, ipragliflozin, empagliflozin, tofogliflozin, ertugliflozin, and bexagliflozin. Thiolactone has been also used (A-1: synthesis of luseogliflozin). In addition, a dihydro-2(3H)-furanone derivative has been used as the sugar electrophile for the 1,2-addition reaction (A-1: synthesis of ipragliflozin). Moreover, the use of a glycosyl halide, anhydro-sugar, or glycal epoxide as the sugar electrophile has also been shown to be efficient for the synthesis of C-aryl glucosides (A-2: synthesis of dapagliflozin, canagliflozin, and ipragliflozin). More recently, by use of α-oxo-vinylsulfone, cross-coupling with aryl boronate has been demonstrated to afford a C-aryl glycal leading to a C-aryl glucoside (A-3: synthesis of ipragliflozin).

Condensation of amides, the backbones of which have the necessary oxygen functional groups, with aryl carbanions is another strategy for carbon-carbon bond formation between an aliphatic moiety and an aromatic moiety. Weinreb and piperazine amides have been used to achieve effective condensation (B in Figure 4: synthesis of ertugliflozin). Morpholine amide has also been used (B in Figure 4: synthesis of sotagliflozin).

In a third strategy, formation of the desired carbon-carbon bonds has been attained by 1,2-addition of carbanions/enolates as aryl moieties to chiral aldehydes bearing O-functional groups. For example, 1,2-addition of a carbanion generated by the deprotonation of aryl dithiane to tri-oxygenated tetrahydrofuran-carbaldehyde yields a useful intermediate leading to a C-aryl glucoside (C in Figure 4: synthesis of ertugliflozin). In addition, 1,2-addition of lithium enolate generated by the deprotonation of an aryl methyl ketone to an aldehyde prepared from L-arabinose affords the desired carbon skeleton (C in Figure 4: synthesis of ertugliflozin). The reaction of an aldehyde derived from L-xylose with aryllithium affords a 1,2-adduct that can be converted into a C-aryl glucoside after several steps (C in Figure 4: synthesis of sotagliflozin).

A fourth strategy for the synthesis of a C-aryl glucoside involves a reaction without the use of aromatic carbanions or the use of carbanions or enolates bearing aromatic rings mentioned above. The aromatic ring of the C-aryl glucoside is constructed by [4+2]cycloaddition of a dienone-yn bearing tetrahydropyran followed by oxidation. Subsequent reduction of the carbonyl group derived from the dienone moiety leads to the desired C-aryl glucoside (D in Figure 4: synthesis of tofogilflozin).
3. SYNTHESIS

The strategies involved in the synthesis of the SGLT2 inhibitors examined in this review focus on those that have been described in academic journals; the details of methods described in patents are excluded.8-10 The synthetic processes discussed here include those of medicinal chemistry and process chemistry. Both approaches are valuable for the creation of new drugs, with medicinal chemistry being useful for the discovery of new drugs and process chemistry being useful for drug preparation on an industrial scale.

3.1. SUGAR ELECTROPHILES WITH ARYL METAL COMPOUNDS

3.1.1. Lactones with aryl metal compounds

Various C-aryl glucoside SGLT2 inhibitors have been synthesized by the 1,2-addition of an aryl carbanion generated from an aryl halide to a protected gluconolactone. The aryl moieties can be in various configurations. In this section, the syntheses of eight SGLT2 inhibitors are described (dapagliflozin, canagliflozin, ipragliflozin, empagliflozin, luseogliflozin, tofogliflozin, ertugliflozin, and bebagliflozin). The synthetic routes of these C-aryl glucosides are illustrated in Schemes 1–11.

(1) Dapagliflozin

Among the C-aryl glucoside SGLT2 inhibitors depicted in Figure 3, the first to be synthesized was dapagliflozin (2); its synthetic route (Scheme 1) appeared in the literature in 2008.11

![Scheme 1. Synthesis of dapagliflozin (2) via gluconolactone]

The synthetic strategy is as follows: construction of a carbon backbone by connecting a sugar electrophile to an aryl nucleophile, carbon-carbon bond formation by 1,2-addition of an aryl carbanion to a protected...
gluconolactone as a sugar electrophile, and generation of a carbanion from an aryl halide by halogen-metal exchange. The aryl moiety for connecting to the sugar electrophile is prepared by Friedel–Crafts acylation. Acylation catalyzed by AlCl₃ of phenetole with 5-bromo-2-chlorobenzoyl chloride generated from commercially available benzoic acid 11 affords p-benzophenone 12. Although the regioselectivity (para:ortho) is 7 to 1, para-12 is obtained in 64% isolated yield by two times recrystallization. Reduction of the carbonyl group is attained by use of triethylsilane (Et₃SiH) with boron trifluoride diethyl etherate (BF₃·OEt₂) to give the desired diaryl methane 13 in 62% yield.

After lithiation of 13 by bromine-lithium exchange using n-butyllithium (n-BuLi), 1,2-addition to trimethylsilylgluconolactone 14 under cryogenic conditions followed by treatment with methanesulfonic acid (MsOH) in MeOH affords an anomeric mixture of O-methyl lactols 15. Removal of the anomeric methoxy group is achieved by reduction with a combination of Et₃SiH and BF₃·OEt₂ to afford tetraacetate 16 which is purified by recrystallization to remove the small amount of anomer formed during reduction. Finally, hydrolysis of tetraacetate 16 with aqueous LiOH affords dapagliflozin (2) in quantitative yield.

(2) Canagliflozin

Synthesis of canagliflozin (3) using this strategy is illustrated in Scheme 2. Here, the aryl moiety of canagliflozin (3) is synthesized starting from 5-bromo-2-methylbenzoic acid (17).

Scheme 2. Synthesis of canagliflozin (3) via gluconolactone

After conversion of benzoic acid 17 to the corresponding acid chloride, Friedel–Crafts acylation with fluorophenylthiophene using AlCl₃ affords aryl ketone in 86% yield. Reduction of the carbonyl group gives the desired aryl bromide 18 in 78% by use of Et₃SiH with BF₃·OEt₂.
Bromide 18 is treated with \(n \)-BuLi, and then the resulting lithiated aryl moiety is subjected to 1,2-addition to trimethylsilylgluconolactone 14. Treatment with MsOH in methanol affords desilylated \(O \)-methyl lactols 19 in 91% yield. After removal of the anomeric methoxy group, the crude product is purified by crystallization to afford canagliflozin (3) in 57% yield.

(3) Ipragliflozin

Synthesis of ipragliflozin (4) using this strategy is illustrated in Scheme 3.14 With this method, ipragliflozin (4) is synthesized through direct reduction of lactol (1,2-addition adduct) without preparation of \(O \)-methyl lactols.

Aryl halide 21 is prepared starting from thiophene (20) and 5-bromo-2-fluorobenzaldehyde. Deprotonation at the 2-position of thiophene (20) with \(n \)-BuLi followed by 1,2-addition is carried out, and then reduction by use of \(\text{Et}_3\text{SiH} \) with \(\text{BF}_3\cdot\text{OEt}_2 \) affords the desired aryl bromide 21 in 64% yield as the aryl part of ipragliflozin (4).

Bromine-lithium exchange of 21 with \(n \)-BuLi followed by 1,2-addition to benzylgluconolactone 22 gives a lactol, reduction of which with \(\text{Et}_3\text{SiH} \) and \(\text{BF}_3\cdot\text{OEt}_2 \) gives benzylated ipragliflozin 23 in 61% yield. Deprotection by use of boron trichloride in the presence of pentamethylbenzenene affords ipragliflozin (4) in 64% yield.

(4) Empagliflozin

Synthesis of empagliflozin (5) using this strategy is illustrated in Scheme 4.15 Formation of \(O \)-methyl lactol and reduction conditions for removal of the methoxy group with this synthesis are examined in detail.
Scheme 4. Synthesis of empagliflozin (5) via gluconolactone

Aryl halide 27 is prepared starting from 5-iodo-2-chlorobenzoic acid (24) and fluorobenzene. After conversion of benzoic acid 24 to the corresponding acid chloride, the highly regioselective Friedel–Crafts reaction is performed to give fluorobenzophenone 25 in 95% yield after recrystallization. Aromatic substitution of 25 with (S)-hydroxytetrahydrofuran under basic conditions gives benzophenone 26 in 87% yield after crystallization. Reduction is achieved by use of tetramethyldisiloxane with aluminum chloride (AlCl₃) to give the desired aryl iodide 27 in 92% yield after crystallization.

Iodine-metal exchange followed by 1,2-addition to trimethylsilylgluconolactone 14 is attained with isopropylmagnesium chloride/lithium chloride (iPrMgCl•LiCl) complex at −20 °C to 0 °C to give lactol 28. When iPrMgCl is used alone, the reaction is sluggish and results in the decomposition of the arylmagnesium chloride. When the corresponding aryl bromide is used instead of aryl iodide 27, bromine-magnesium exchange with iPrMgCl•LiCl complex proceeds more slowly.

Treatment of the resulting mixture of lactol 28, which is obtained by the reaction of aryl iodide 27 with iPrMgCl•LiCl complex followed by 1,2-addition to 14, with aqueous HCl in methanol affords methyl furanoketal 29 as an anomic mixture (β/a=1:1). This five-membered ring compound is converted to O-methyl β-pyranoketal 30 over 3 to 5 h. Treatment of the crude 30 (O-unprotected; tetrahydroxy compound) with a combination of Et₃SiH and BF₃·OEt₂ in MeCN/CH₂Cl₂ affords β-C-glucoside 5 (β/α=>99:1) in 65% yield after crystallization. Careful study has revealed that the water content of the reaction mixture affects
the formation of the furanoside side product. The reaction of 30 by use of AlCl₃ gives results comparable to that of BF₃·OEt₂ (5: 67% yield, after crystallization). Interestingly, the reaction with AlCl₃ is much less sensitive to water. In contrast to the β/α selectivity for reduction of tetraol 30, the selectivity in reduction of tetra-O-protected derivatives (O-acetys, O-benzyls, and O-allyls) of 30 were low for which chelation effects are proposed.

(5) Luseogliflozin

Synthesis of luseogliflozin (6) using this strategy is illustrated in Scheme 5. This compound contains a sulfur atom in its aliphatic six-membered ring.

![Scheme 5. Synthesis of luseogliflozin (6) via gluconolactone](image)

Commercially available D-glucurono-3,6-lactone 31 is converted into 5-thio-D-glucose penta-O-acetate 32 in eight steps according to a method described in the literature. Selective deacetylation at the anomeric position gives alcohol 33. Protection of the resulting hydroxy group with 3,4-dihydropyran followed by removal of all acetyl groups is performed, and then the resulting hydroxy groups are protected with benzyl bromide to afford ether 34. Deprotection of the tetrahydropyranyl group by use of pyridinium p-
toluenesulfonate followed by oxidation with acetic anhydride-DMSO (Albright–Goldman method)\(^{18}\) affords the desired thiolactone 36.

Aryl bromide 40 is prepared from commercially available 4-methoxy-2-methylbenzoic acid 37.\(^{19}\) Bromination of 37 with bromine in the presence of Fe (cat.) gives a mixture of 3- and 5-bromo derivatives, from which the desired bromide 38 is isolated by recrystallization (34% yield). Acid chlorination followed by Friedel–Crafts reaction with phenetole gives benzophenone 39 in 82% yield. Reduction of 39 with a combination of Et\(_3\)SiH and BF\(_3\)-OEt\(_2\) gives aryl bromide 40 in 99% yield.

Treatment of 40 with magnesium powder gives a Grignard reagent, which is subjected to 1,2-addition to thiolactone 36 to afford thiolactol 41 as a single isomer (anomeric configuration has not been determined). Reduction by use of a combination of Et\(_3\)SiH and BF\(_3\)-OEt\(_2\) in MeCN gives benzyl ether 42 (\(\beta/\alpha > 96:4\)). The \(\beta\)-isomer is subjected to hydrogenolysis to afford luseogliflozin (6) in 81% yield.

(6) Tofogliflozin

Synthesis of tofogliflozin (7) by use of lactones with aryl metal compounds has been achieved in four ways.\(^{20-23}\) As shown in Figure 3, this compound has a unique spiroketal-dihydroisobenzofuran moiety.

![Scheme 6. Synthesis of tofogliflozin (7) via gluconolactone](attachment:image-url)
The first synthesis of tofogliflozin (7) was accomplished by way of the spiroketal intermediate 47a by referring to the synthesis of antibiotic papulacandins, which have a similar spiroketal moiety (Scheme 6). In this synthetic route, reduction of commercially available 2-bromoterephthalic acid 43 followed by protection of hydroxyl groups with trityl chloride gives bromobenzyl ether 45a. Bromine-lithium exchange with sec-butyllithium followed by 1,2-addition to benzylgluconolactone 22 gives lactol 46a. Deprotection of the trityl group and spirocyclization are attained by use of BF₃·OEt₂ together with Et₃SiH to afford the key intermediate 47a (45% yield from 1,2-addition) which is then converted to the aldehyde 48a by Dess–Martin oxidation. Addition of a Grignard reagent (4-ethylphenylmagnesium bromide) followed by reduction of the resulting hydroxy group furnishes penultimate tetrabenzyl ether 49a. Finally, hydrogenolysis using palladium hydroxide [Pd(OH)₂] on activated charcoal/H₂ with HCl affords tofogliflozin (7) in 66% (from aldehyde 48a).

However, the highly viscous properties of the synthetic intermediates with benzyl protecting groups such as 49a are troublesome and not appropriate for large scale synthesis. Considering that a crystalline penultimate product would be more suitable for quality control of the final product, various protecting groups of 7 were examined. Among the protecting groups screened, introducing a methoxycarbonyl group to 7 was found to afford a crystalline solid 49b. In addition, pentaol 47b as the precursor of 48b is also a stable crystal. Therefore, the synthetic route using crystalline solids 47b and 49b was developed as shown in Scheme 6 by the series of compounds labelled “b”.

Bromodiol 44 is converted into 2-methoxy-2-propyl ether 45b with 2-methoxypropene, and then bromine-lithium exchange with n-BuLi and subsequent 1,2-addition to trimethylsilylgluconolactone 14 gives lactol 46b. Removal of all the protecting groups and stereospecific spirocyclization under acidic conditions (p-toluenesulfonylic acid in MeOH) affords the crystalline pentaol 47b (60% yield over 3 steps). After permethoxycarbonylation of the five hydroxy groups of 47b to 48b by use of methoxycarbonyl chloride and a stoichiometric amount of 4-dimethylaminopyridine (DMAP), an ethylphenyl moiety is introduced by a Suzuki-coupling-type reaction of 4-ethylphenylboronic acid according to Kuwano and Yokogi’s method. Use of a combination of palladium acetate and 1,1’-bis(diphenylphosphino)ferrocene (dppf) as catalysts is found to give the best results for this coupling reaction, and crystalline coupling product 49b is obtained in 88% isolated yield. Hydrolysis with aqueous NaOH affords tofogliflozin (7), with >99% purity in quantitative yield.

A synthetic route for tofogliflozin (7) partially inspired from empagliflozin synthesis has also been reported. The key reactions are the same as those in the synthesis of empagliflozin: reduction of a biaryl ketone with a silane reagent, and iodine-metal exchange by use of a combination of Grignard reagent and LiCl.
As illustrated in Scheme 7, after acetylation of the hydroxy group of hydroxymethylbenzoic acid 50, regioselective iodination with a combination of sodium periodate and iodine according to Lulinski’s method gives m-iodobenzoic acid 52. This acid is converted into acid chloride 53. Friedel–Crafts reaction of which with ethylbenzene gives biaryl ketone 54. High regioselectivity is attained (para/ortho = 33; 64% chemical yield) when 2.2 equivalents of AlCl₃ as catalyst along with 3.5 equivalents of ethylbenzene is used. Reduction of biaryl ketone 54 by use of tetramethyldisiloxane [(Me₂SiH)₂O] with 3 equivalents of AlCl₃ affords biarylmethane in 96% yield. After removal of the acetyl group by hydrolysis, protection of the hydroxy group with trimethylsilyl chloride (TMSCl) gives the aryl moiety 56 in 98% yield. Iodine-metal exchange by use of ’PrMgCl·LiCl complex followed by 1,2-addition to trimethylsilyl gluconolactone 14 at −20 °C affords the coupling product 57. This coupling product 57 is converted into tofogliflozin (7) in 71% yield by acidic treatment with MsOH. The reaction temperature is critical for the chemical yield: reactions at −10 °C and 0 °C give the coupling product 57 in yields of 63% and 41%, respectively. When excess Grignard reagent is used, yields of the coupling product decrease: this phenomenon is also observed in the synthesis of empagliflozin (5). 15

Scheme 7. Synthesis of tofogliflozin (7) via gluconolactone with benzylaryl bromide

A synthetic route featuring a one-pot reaction has also been reported. The regioselective halogen-lithium exchange of homo-diiodobenzenes has proven to be an efficient tool for the synthesis of tofogliflozin (7). 23 Three-component coupling for construction of a carbon backbone of 7 in a one-pot process by the sequential bromine-lithium exchange reactions of alkoxymethyl-2,4-dibromobenzene is envisioned as illustrated in Figure 5.
The bromine-lithium exchange reaction of 2,4-dibromo-1-(1-methoxy-1-methylethoxymethyl)benzene (58) was expected to occur preferentially at the 2-position because the oxygen atoms of the methoxymethoxy group were expected to coordinate to a lithium atom by the proximity effect. In fact, as illustrated in Scheme 8, it was found that the reaction of 58 with n-BuLi followed by quenching with aqueous NH₄Cl afforded a mixture of para-bromobenzene 59-2H and ortho-bromobenzene 59-4H in various ratios depending on the reaction conditions. Reaction in THF at −78 °C gives 59-2H and 59-4H in the ratio of 3 to 1. By use of a mixture of toluene and tert-butyl methyl ether as solvents, the regioselectivity was improved (59-2H/59-4H = 9:1). The ratio of 59-2H to 59-4H reached 40:1 by slow addition of n-BuLi at 0 °C (over 30 min). This interesting phenomenon suggested that dibromide 58 would act as a mediator to increase the overall regioselectivity. A mechanistic rationale for this high regioselectivity is depicted in Figure 6.

Figure 5. Regioselective/sequential Br-Li exchange/three-component coupling

Scheme 8. Regioselective Br-Li exchange of dibromide

Figure 6. Mechanism of regioselective Br-Li exchange
The slow addition of \(n \)-BuLi would make a mixture composed of lithiated products and the remaining starting material \(58 \). The resulting solution would cause a bromine-lithium exchange reaction between \textit{para}-lithiated product \(\text{60-4Li} \) and the remaining starting material \(58 \). Thus, this process could enrich the desired \textit{ortho}-lithiated product \(\text{60-2Li} \), because \textit{para}-lithiated product \(\text{60-4Li} \) is converted back to \(58 \), which could change into \textit{ortho}-lithiated product \(\text{60-2Li} \).

In order to verify the speculation above, a reaction with excess substrate \(58 \) to \(n \)-BuLi is carried out. It is found that the reaction in the presence of an additional 0.3 equivalent of \(58 \) to \(n \)-BuLi used at 0 °C afforded the monobromide \(\text{59-2H} \) derived from \textit{ortho}-lithiated product \(\text{60-2Li} \) with dramatically high selectivity (\(\text{59-2H} / \text{59-4H} = 220:1 \)).

In the one-pot synthetic route, for a more cost-effective synthesis that avoids excessive use of \(58 \), split addition of \(n \)-BuLi is carried out to create an environment in which \(58 \) is present during the bromine-lithium exchange. As shown in Scheme 9, a solution of dibromide \(58 \) is prepared from benzyl alcohol \(61 \); to this solution, 0.8 equivalent of \(n \)-BuLi at \(-10 \) °C to 0 °C is added initially, followed by an additional 0.3 equivalent of \(n \)-BuLi for completion of bromine-lithium exchange. The mixture is added to trimethylsilylgluconolactone \(14 \) and then treated with TMSCl to afford \(62 \). The \textit{ortho}-regioselectivity in this 1,2-addition is very high (53:1). A second lithiation with \(n \)-BuLi followed by addition of 4-ethylbenzaldehyde affords the regioselective double 1,2-addition product \(63 \). These five operations (from dibromobenzyl ether \(58 \) to the double 1,2-addition product \(63 \)) are accomplished in a one-pot process.

Scheme 9. Synthesis of tofogliflozin (7) via regioselective Br-Li exchange of dibromide
Further construction of the spiro-ring together with the removal of both the methoxymethylethyl group and the trimethylsilyl group are attained by a telescoping process: treatment of the crude 1,2-addition product 63 with aqueous HCl affords benzhydrol 64 (97% conversion). Hydrogenolysis of 64 by use of 5% Pd on activated charcoal/H\textsubscript{2} affords tofogliflozin (7) in 99.5% conversion.

(7) Ertugliflozin

Ertugliflozin (8) has a bridged bicyclic ketal moiety. 1,2-Addition of aryl metals to lactones 65–67 (Figure 7), which already have oxygen functionalized substituents set at the C5-position, has been attempted30

![Figure 7. Lactones having substituents at the C5-position](image)

However, the reaction of lactone 65, which has \(p\)-methoxybenzyl groups, with aryl metals failed to provide the desired adduct: Formation of \(\alpha,\beta\)-unsaturated lactone was observed, presumably due to steric hindrance between the substituents at the C5-position and bulky aryl anions. The reaction of lactone 66, which has a dimethylacetonide moiety of which at least one carbonyl face would be accessible to nucleophiles, also gave only an elimination product. The reaction of lactone 67, which has a cyclic carbonate moiety, with an aryllithium afforded the desired 1,2-adduct with no elimination side-product; however, the method for preparing lactone 67 was not simple.

Successful synthesis of ertugliflozin (8) by an approach involving lactones was attained by use of trimethylsilylgluconolactone 14. The synthetic route for 8 with 14 is illustrated in Scheme 10.30 Bromine-lithium exchange of aryl bromide 1311 with \(n\)-hexyllithium, and subsequent 1,2-addition to trimethylsilylgluconolactone 14 and treatment with MsOH in MeOH affords \(O\)-methyl lactol 68 in 71% isolated yield after recrystallization. Persilylation of 68 with TMSCl/imidazole, and then selective monodesylilation at the C6-position by use of aqueous pyridinium \(p\)-toluenesulfonate successfully affords 69. After the hydroxymethyl group at the C6-position is oxidized by SO\textsubscript{3}-pyridine complex with triethylamine and DMSO (Parikh–Doering method),31 the obtained aldehyde 70 is converted into pentaol 71 by an aldol–crossed-Cannizzaro reaction with formaldehyde in 38% yield from 68 after recrystallization (telescope process). Formation of a bicyclic ketal moiety is accomplished by treatment with SilicaBond tosic acid (Si-TsOH) in CH\textsubscript{2}Cl\textsubscript{2}. Subsequently, treatment with L-pyroglutamic acid (L-PGA) affords ertugliflozin (8)-L-PGA cocrystal in 96% yield.
(8) Bexagliflozin

Synthesis of bexagliflozin (9) using this strategy is illustrated in Scheme 11. Ethoxybenzene derivative 13, which is prepared according to a method described in the literature, is subjected to de-ethylation by use of boron tribromide to afford phenol 72. Reaction with bromoethanol gives ether-alcohol 73, and the hydroxy group is converted into the corresponding tosylate 74 with tosyl chloride. Substitution of the tosylate with cyclopropyl alcohol with sodium hydride as a base affords aryl bromide 75.

Bromine-lithium exchange of 75 followed by 1,2-addition to trimethylsilylgluconolactone 14, etherification with MeOH, and reduction by use of Et3SiH with AlCl3 affords bexagliflozin (9).

Scheme 11. Synthesis of bexagliflozin (9) via gluconolactone
3.1.2. Other sugar electrophiles with aryl metal compounds

3.1.2.1. Glycosyl bromide

Some of the C-aryl glucosides mentioned above have also been synthesized effectively by use of sugar electrophiles other than lactones. Glycosyl bromide protected as pivaloyl ester 76, which is a stable crystalline substrate, has proven to be a useful sugar electrophile with which to synthesize dapagliflozin (2), canagliflozin (3), and ipragliflozin (4). As illustrated in Scheme 12, the reaction of 76 with organozinc compounds prepared from aromatic halides proceeds with β-selectivity to form C-aryl glucoside 78. The selectivity is explained by attack of a nucleophile to a bicyclic intermediate 77 (anchimeric assistance). O-Peracetyl glycosyl bromide 79 is also used in the synthesis of canagliflozin (3).

[Diagram of the reaction]

Scheme 12. Mechanism for β-selectivity via anomic oxonium ion

(1) Canagliflozin

(1-1) Synthesis by use of glycosyl bromide pivaloyl ester

The synthesis of canagliflozin (3) by this method is illustrated in Scheme 13. Organozinc compound 82 is prepared from aryl iodide 80 by a sequential lithiation–transmetalation process as follows. Aryl iodide 80 is lithiated by n-BuLi in toluene-dibutyl ether at −40 °C to give aryllithium 81, and then the resulting mixture is treated with zinc bromide/lithium bromide (ZnBr₂·LiBr) complex to provide organozinc compound 82. The reaction of 82 with bromo-sugar 76 at 95 °C affords C-aryl glucoside 83 in 75% yield, hydrolysis of which affords canagliflozin (3) in 94% yield.
The synthesis of canagliflozin (3) has been also accomplished by the reaction of glycosyl bromide 79. Iron-catalyzed cross coupling of 79 with organozinc compound 82, which is prepared from aryl iodide 80 with iPrMgCl·LiCl complex and dibromo(N,N,N′,N′-tetramethylethylene)diamine)zinc [ZnBr₂(tmeda)], is used for construction of the carbon-carbon bond between the aryl moiety and the sugar electrophile (Scheme 14).³⁵ The reaction of 79 with 82 in the presence of catalytic amounts of iron(II) chloride/bidentate phosphine ligand complex in THF at room temperature for 36 h affords the coupling product 84 in 61% yield. The stereoselectivity (α/β) is 60:40. The β-anomer is separated by column chromatography, and subsequent deprotection by use of tin oxide catalyst affords canagliflozin (3) in 95% yield.³⁶

Scheme 13. Synthesis of canagliflozin (3) via bromo-sugar

Scheme 14. Synthesis of canagliflozin (3) via bromo-sugar with iron catalyst
(2) Dapagliflozin

Dapagliflozin (2) has been synthesized in a manner similar to the synthesis of canagliflozin (3) by use of bromo-sugar 76 (Scheme 15). The bromine-magnesium exchange reaction of aryl bromide 13 with lithium dibutyl(hexyl)magensate (Hex(Bu)2MgLi) followed by magnesium-zinc exchange with ZnBr2·LiBr complex affords the desired organozinc compound. Subsequently, coupling with 76 at 95 °C is carried out to give the C-aryl glucoside 85 in 75% isolated yield. Hydrolysis of 85 with sodium methoxide in MeOH at room temperature affords dapagliflozin (2) in 95% yield.

\[
\begin{align*}
\text{Scheme 15. Synthesis of dapagliflozin (2) via bromo-sugar}
\end{align*}
\]

3.1.2.2. Anhydro-sugars

Canagliflozin (3) has been synthesized by β-selective arylation of commercially available unprotected 1,6-anhydroglucose 88 with organoaluminum reagent 87, which is prepared from the corresponding aryl halide 18 by bromine-lithium exchange followed by trans-metallation (Scheme 16).

\[
\begin{align*}
\text{Scheme 16. Synthesis of canagliflozin (3) via anhydroglucose}
\end{align*}
\]
Before arylation, 1,6-anhydroglucose 88 is pretreated with 3 equivalents of diisobutylaluminum hydride in anisole as a solvent having superior solubilizing ability. Subsequently, the resulting mixture together with 2 equivalents of arylaluminum chloride 87 is heated in toluene/Bu₂O at 140 °C for 20 h to give a mixture of canagliflozin (3) and unreacted 88 (61% and 33% respectively; determined by high performance liquid chromatography (HPLC) using an internal standard. Purification by column chromatography affords canagliflozin (3) in 50% isolated yield.

To understand the stereoselectivity of this reaction, arylation of 2,4-di-O-protected 1,6-anhydroglucose 89 was carried out. A reaction mechanism for the arylation of 89 was proposed as described in Scheme 17. ³⁸ Aluminum complex 91a could be formed by coordination of the C6-O ether linkage of 90, which would be generated by treatment of 89 with trimethylaluminum, to the organoaluminum reagent (ClAlAr₂) as an arylating reagent. Ring opening of 91a would produce oxocarbenium ion 91b. Delivery of the aryl group to the α-face of the oxocarbenium ion 91b would be unfavorable owing to steric hindrance. Favorable β-face attack led to 2,4-di-O-protected canagliflozin (93) in 75% isolated yield. This compound was converted into canagliflozin (3) by desilylation using tetrabutylammonium fluoride in THF.

3.1.3. Sugar electrophile with aryl boronate ester

Ipragliflozin (4) has been synthesized by Ni-catalyzed Suzuki–Miyaura cross-coupling of easily synthesized α-oxo-vinylsulfone 96 with aryl boronate ester 97 (Scheme 18). ³⁹ Vinylsulfone 96 is prepared by β-elimination of glycosyl sulfone,⁴⁰ which is synthesized from D-glucose (94) via 1-phenylthio-glycopyranoside (95) according to a method described in the literature.⁴¹ Arylboronic acid pinacol ester 97 is prepared from aryl halide 21 by use of a combination of bis(pinacolato)diborane and 1,1’-bis(diphenylphosphino)ferrocene-palladium chloride with potassium acetate (71% after chromatography), according to a procedure described in the literature with slight modification.⁴²
Cross-coupling between sulfone 96 and boronate 97 is attained by use of 10 mol% bis(1,5-cyclooctadiene)nickel(0) and 20 mol% tricyclohexylphosphonium tetrafluoroborate as catalysts to afford C-aryl glycal 98 in 88% yield after chromatographic purification. Hydroboration/oxidation of 98 followed by deprotection and then chromatographic purification affords ipragliflozin (4) in 49% yield over three steps.

Scheme 18. Synthesis of ipragliflozin (4) via α-oxo-vinylsulfone

3.2. AMIDES WITH ARYL ORGANOMETALLIC COMPOUNDS

(1) Ertugliflozin

(1-1) Synthesis by use of Weinreb amide with aryllithium

Ertugliflozin (8), the structure of which contains a dioxo-bicyclo[3,2,1]octane ring, has been synthesized by way of arylation of a Weinreb amide with aryllithium generated by lithium-bromine exchange of aryl bromide (Scheme 19).

Weinreb amide 103 is prepared starting from d-glucose (94). D-Glucose (94) is converted into an intermediate 99 according to a method described in the literature (54% for 4 steps). Subsequently, oxidation under Swern conditions followed by a one-pot aldol–Cannizzaro sequence affords a tetrahydropyran having germinal hydroxymethyl groups 100. After protection of these hydroxymethyl groups as p-methoxybenzyl (PMB) ethers, the allyl group is removed with PdCl₂ to afford lactol 101 which is then oxidized to lactone 102. Finally, treatment with N,O-dimethylhydroxylamine hydrochloride in the presence of trimethylaluminum provides the desired Weinreb amide 103.

The reaction of amide 103 with aryllithium (see Section 3.1.1.(7)) in THF produces cyclic lactol 105 as a diastereomeric mixture via the initial condensation product 104. The epimerization at C-4 is rationalized via the formation of an enol or an enol ether intermediate. Removal of p-methoxybenzyl groups by
trifluoroacetic acid (TFA) followed by stereoselective intramolecular cyclization gives bicyclic compound 106 as an epimeric mixture. Removal of benzyl groups by hydrogenolysis (over palladium black with formic acid) gives a mixture of epimers at C-4, HPLC separation of which affords the desired ertugliflozin (8).

Scheme 19. Synthesis of ertugliflozin (8) via Weinreb amide

(1-2) Synthesis by use of methylpiperazine amide with aryllithium

The synthetic route of ertugliflozin (8) presented above is the first-generation synthesis, designed for preparation on a small scale and which requires HPLC separation for isolation of ertugliflozin (8). An alternative practical synthesis has been developed for scale-up. As illustrated in Scheme 20,45 O-benzylgluconolactone 22 is converted to methylpiperazine amide 107 by treatment with methylpiperazine. This amide contains a basic nitrogen which enables salt formation. Oxidation of the secondary hydroxy group of 107 is carried out by the Parikh–Doering method (DMSO, pyridine-SO$_3$ complex) to afford ketoamide 108. Hydroxymethylation of 108 is attained by 1,2-addition of a Grignard reagent to the ketonic carbonyl group of 108. Either of two kinds of Grignard reagents is used.
Scheme 20. Synthesis of ertugliflozin (8) via methylpiperazine amide
In the first method, the Grignard reagent is derived from chloromethylsiloxane 109, and 1,2-addition of this Grignard reagent to ketoamide 108 at -20°C gives adduct 110 as a diastereomeric mixture (3:2, both isomers lead to a single product at a later stage). Adduct 110 is subjected to Tamao–Fleming oxidation (potassium fluoride, hydrogen peroxide) to give diol 111. The second method involves a Grignard reagent prepared from iodomethyl pivalate 112 by iodine–magnesium exchange with 3PrMgCl. 1,2-Addition of this reagent to ketoamide 108 at -78°C affords the desired adduct 113 as a diastereomeric mixture (95:5), and subsequent treatment with sodium methoxide affords diol 111. These two nucleophilic hydroxymethylation methods perform in comparable yield (approx. 75% from ketoamide 108). The hydroxy groups of 111 are converted to dimethylacetonide, and then salt 114 is formed by adding oxalic acid for effective purging of process-related impurities. This crystalline 114 is converted to the free base, and then condensed with an aryl anion that is prepared by bromine-lithium exchange of bromobenzhydryl ether 116. Ether 116 is provided by the reaction of 5-bromo-2-chlorobenzaldehyde 115 with 4-ethoxyphenylmagnesium bromide followed by treatment with benzyl alcohol in the presence of H$_2$SO$_4$. Only mono-addition to amide 114 takes place to afford 117, and no detectable epimerization is observed. Subsequent treatment of the crude solution of 117 with Et$_3$SiH in the presence of TFA gives cyclized products as a mixture of two diastereomers of 118. Hydrogenolysis of 118 under acidic conditions affords ertugliflozin (8) as the only detectable product (>75% overall yield for the three-step sequence).

For purification, crude ertugliflozin (8) is transformed to the corresponding tetraacetate 119 by treatment with acetic anhydride and pyridine, which is then crystallized from 3PrOH to obtain pure tetraacetate 119 in 55%–60% yield from amide 114. Removal of acetyl groups by sodium methoxide in MeOH gives a crude solution of 8, treatment of which with L-pyroglutamic acid (L-PGA) affords cocrystal (8·L-PGA) in 85%–90% yield from tetraacetate 119.

(2) Sotagliflozin

(2-1) Synthesis by use of morpholine amide with aryllithium

Sotagliflozin (10) is a dual inhibitor of SGLT2 and SGLT1. This compound has been synthesized (11 steps) via amide intermediate 122 starting from L-glucose (94) as illustrated in Scheme 21.46

L-Glucose (94) is converted to bis-acetonide, and then selective deprotection gives triol 120 in 90% yield. Cleavage of the vicinal diol by use of sodium periodate affords an aldehyde, which is oxidized with bromine in MeOH to afford methyl ester 121 in 58% yield. Amidation is carried out by use of morpholine with a catalytic amount of n-BuLi to give amide 122.

Condensation of 122 with aryllithium 123 (see Section 3.2.(2)-(2-2)) affords ketone 124 in 80% yield. Ketone 124 is converted into tetraacetate 126 by the same method as the first synthetic route (see
Section 3.3.(2); synthesis via aldehyde intermediate. Thiolation of 126 with thiourea catalyzed by trimethylsilyl triflate followed by treatment with methyl iodide in the presence of Hünig base affords methyl sulfide-triacetate 127 in 85% yield. Alcoholysis with sodium methoxide furnishes sotagliflozin (10) in 95% yield.

Scheme 21. Synthesis of sotagliflozin (10) via amide starting from L-glucose

(2-2) **Synthesis by use of morpholine amide with arylmagnesium chloride**

The synthesis of sotagliflozin (10) described above is more concise (overall yield: approx. 30% overall) than by way of 1,2-addition to an aldehyde (the first synthesis of sotagliflozin, approx. 12% overall yield; see Section 3.3.(2)). However, there are some drawbacks such as the use of expensive starting materials/reagents (L-glucose, sodium periodate) and hazardous reagents (Br₂) as well as the fact that the hydroxy group of amide 122 consumes a valuable aryllithium. Therefore, a third synthesis has been developed, as shown in Scheme 22. This synthetic route focuses on the use of crystalline intermediates. L-Xylose (128) is converted to bis-acetonide 129 by use of environmentally benign MgSO₄ together with a catalytic amount of H₂SO₄. The treatment of 129 with aqueous H₃PO₄ leads to the selective deprotection of the six-membered ring to afford mono-acetonide 130 under controlled pH, reaction temperature, and time. For selective oxidation of the primary alcohol, the use of a combination of trichloroisocyanuric acid and catalytic 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) gives rise to a clean reaction (see the first synthesis of sotagliflozin; Section 3.3.(2)); however, removal of the cyanuric acid is difficult. On the other hand, oxidation by a combination of sodium chlorite, sodium hypochlorite, and catalytic TEMPO proceeds
effectively to afford the desired carboxylic acid. Because the acetonide moiety is sensitive to acidic conditions, morpholine is added to the crude carboxylic acid and the morpholine salt of carboxylic acid 131 is then isolated as a crystal in 75% yield from L-xylose. Amidation is carried out by use of 20 mol% boric acid in toluene under azeotropic conditions to afford amide 132 as a crystal in 90% yield; this procedure is preferable from the viewpoint of cost and availability on scale, although 3,5-bis(trifluoromethyl)phenylboronic acid is known to be a more efficient catalyst.

Scheme 22. Synthesis of sotagliflozin (10) via amide starting from L-xylose

Iodobiarylmethane 135 as the coupling partner for amide 132 is prepared from chloroiodebenzoic acid 133 according to the chemistry of its bromide analogue. Friedel–Crafts acylation of 133 with phenetole in CH₂Cl₂ gives biarylketone 134 in 85% isolated yield; a low moisture level in the reaction mixture (100 ppm in CH₂Cl₂) is critical to obtain high regioselectivity (approx. 100:1). Reduction of ketone 134 is attained
by treatment with Et₃SiH in the presence of BF₃·OEt₂ to give iodobiarylmethane **135** in 89% yield. Alternatively, for cost reduction, reduction by a combination of sodium borohydride (NaBH₄) and AlCl₃ has also been developed, which affords the desired iodide **135** as a crystal in up to 95% yield. Iodide **135** is converted into arylmagnesium chloride by treatment with ’PrMgCl at −10 °C, and then a condensation reaction with amide **132**, the hydroxy group of which had been deprotonated by tert-butylmagnesium chloride in advance, is carried out at −20 °C to −10 °C to afford ketone **124** as a crystal in 90% yield. EtOH is a more effective solvent than MeOH with respect to the stereoselectivity of reduction of the carbonyl group of **124** (dr 97:3 at −10 °C, for reactions in EtOH; see Sections 3.2.(2)-(2-1) and 3.3.(2)). Treatment of alcohol **125** with a catalytic amount of aqueous HCl (0.2 equivalent) in aqueous MeCN leads to deprotection and ring expansion to give tetraol **136** as an anomeric mixture (1:1). Slow addition of acetic anhydride to the anomic mixture in the presence of triethylamine in MeCN at 35 °C furnishes (9R)-tetraacetate **126** as a crystalline product (dr 96:4, 80% isolated yield from ketone **124**). Although thiolation catalyzed by expensive trimethylsilyl triflate has been reported previously (see, Section 3.2(2)-(2-1)), thiolation of **126** is achieved more cost-effectively by use of thiourea in the presence of BF₃·OEt₂. As depicted in Scheme 23, thiolation would proceed stereoselectively via oxonium ion **137** stabilized by the neighboring acetate group to give urea-adduct **138**. Thus, the reaction of **138** with Hüning base and methyl iodide in MeOH affords methyl sulfide **127** as a crystal in 94% isolated yield (dr 1000:1). Deprotection is accomplished by a catalytic amount of sodium methoxide in MeOH to afford sotagliflozin (10) in 97% yield.

Scheme 23. Stereoselective thiolation
3.3. ALDEHYDE WITH ANIONIC SPECIES

(1) Ertugliflozin

(1-1) Synthesis by use of aldehyde with aryl dithiane anion

Ertugliflozin (8) has been synthesized via 1,2-adduct 144 obtained from the reaction of crystalline aryl dithiane 141 with aldehyde 143 (Scheme 24).

As illustrated in Scheme 24, aryl dithiane 141 is prepared from 2-chloro-5-methylbenzoic acid 140 according to a method described in the literature (6–8 steps).

After lithiation of 141 with n-BuLi, diastereoselective addition to 143 is achieved at low temperature to give a single diastereomer 144 (Si face adduct). This selectivity is explained by the Cram chelate model

After desilylation of 144 with tetrabutylammonium fluoride to produce 145, construction of a tetra-substituted carbon center on the tetrahydrofuran ring is accomplished by treating 145 with formaldehyde in the presence of K₂CO₃ in MeOH-H₂O to give lactol 146 in 26% yield over three steps.

The yield is improved by a telescoping process: When the reactions in these three steps are carried out without isolating the

Scheme 24. Synthesis of ertugliflozin (8) via aldehyde by use of dithiane
intermediates, lactol 146 is obtained in 40% yield (95% purity). Reduction of lactol 146 with NaBH₄ in MeOH gives linear tetraol 147 in 33% yield. Deprotection of the acetal-protected diol groups of 147 and subsequent thermodynamically controlled cyclization via intermediate 148 takes place cleanly by treatment with TFA/H₂O under air to afford ertugliflozin (8) as a single isomer in 77% yield. The modest isolated yield of 147 (33%) is due to the partial decomposition of the borate complex during workup with aqueous NH₄Cl. However, because deprotection/cyclization conditions are suitable for hydrolysis of the strong borate complex, a telescoping process improves the overall yield of 8 from 146 (65%).

(1-2) Synthesis by use of aldehyde with lithium enolate

Ertugliflozin (8) has been also synthesized by the reaction of an aldehyde with a lithium enolate generated from the deprotonation of an aryl methyl ketone. 55

As illustrated in Scheme 25, aldehyde 155 is synthesized via reduction/oxidation of an L-erythrose derivative starting from L-arabinose (149). L-Arabinose is converted into protected hydroxymethyl L-erythrose 150 in 60% yield, which is then treated with NaBH₄ to afford diol 151 in 81% yield. In order to selectively oxidize the hydroxymethyl group at the C5-position, mono-protection of the diol group is

Scheme 25. Synthesis of ertugliflozin (8) via aldehyde by use of lithium enolate
carried out through three steps: Firstly, diol 151 is treated with pivaloyl chloride for protection of the less hindered hydroxy group; next, the other hydroxy group is silylated by using tert-butyldimethylsilyl chloride (TBSCI); finally, hydrolysis with KOH affords the alcohol 154 in 67% yield. Aldehyde 155 is obtained by oxidation of 154 with pyridinium dichromate (PDC) in 98% yield.

Aldol condensation of aldehyde 155 and aromatic methyl ketone 156 (prepared from aryl bromide 13, see Section 3.1.1.(1)) with lithium diisopropylamide (LDA) as a base affords enone 157 in 58% yield. Dihydroxylation by use of osmium tetraoxide/N-methylmorpholine N-oxide affords a diastereomeric mixture (the ratio of the desired isomer to the undesired isomer is 1:2). Separation by column chromatography gives the desired isomer 158 in 30% yield, which upon deprotection with trifluoroacetic acid affords ertugliflozin (8) in 85% yield.

(2) Sotagliflozin

The first synthesis of sotagliflozin (10) was attained starting from L-xylose as illustrated in Scheme 26.

![Scheme 26. Synthesis of sotagliflozin (10) via aldehyde](image-url)
In this synthesis, the hydroxyl groups of L-xylose are first protected as bis-acetonide, and then converted to monoacetonide 130 by selective deprotection of the six-membered acetonide. Reprotection of the primary and secondary alcohols in 130 respectively with benzylic chloride and TBSCI followed by the removal of the benzylic group by sodium methoxide gives monoalcohol 159. Oxidation by a combination of TEMPO and trichloroisocyanuric acid (TCCA) affords aldehyde 160. 1,2-Addition of aryllithium 123 (see Section 3.2(2)-(2-2)) under cryogenic conditions affords benzyl alcohol 161 with low diastereoselectivity, and therefore oxidation of the hydroxy group of 161 is carried out by use of manganese dioxide after removal of the silyl group to give ketone 124. Diastereoselective reduction of ketone 124 is attained by the Luche method to afford diol 125 (dr: 9/1). Acidic treatment of 125 leads to the removal of the acetonide together with ring expansion to afford tetraol 136 as an anomeric mixture (1:1). These anomers are converted to tetraacetate 126, which is then treated with hydrobromic acid/acetic acid and sodium thiomethoxide successively to afford triacetate 127. Deprotection by treatment with ammonia in MeOH furnishes sotagliflozin (10).

3.4. [4+2]CYCLOADDITION-OXIDATION

Tofogliflozin (7) has been synthesized in various ways, as mentioned in Section 3.1.1.(6). In those cases, nucleophilic aryl metal compounds generated by halogen-metal exchange reactions are utilized to construct a C-glucosidic bond, and a dihydroisobenzofuran moiety is formed by cyclization under acidic conditions. Recently, the intramolecular [4+2]cycloaddition of dienone-ynene under aerobic conditions has proven to be powerful tool for the synthesis of 7. This new methodology demonstrates that synthesis of 7 can be attained under noncryogenic conditions. The synthesis of 7 via intramolecular [4+2]cycloaddition is depicted in Scheme 27. Protection of the hydroxy groups of gluconolactone is carried out by use of pivaloyl chloride to give pivaloyl ester 162. 1,2-Addition of lithium trimethylsilylacetylide in the presence of tetramethylethylenediamine in toluene followed by acetylation of the resulting alkoxide by acetic anhydride affords acetate 163 in 64% yield (after recrystallization). Treatment with KF gives alkyne 164 in 80% yield. Dienylmethyl alcohol 169 is prepared from commercially available 4-pentyn-1-ol (165). Protection of the hydroxy group of 165 followed by acylation of the terminal alkyne by use of a palladium-copper catalyst ((Ph3P)2PdCl2, CuI) affords alkyne 167. Treatment of 167 with triphenylphosphine and phenol affords diene 168 along with phenol adduct 170 as a side-product. When 2,6-dimethylphenol is used as a bulkier and less nucleophilic phenol, formation of the phenol adduct is suppressed, and diene 168 is obtained as a single geometric isomer (E,E-configuration). Deprotection is carried out under acidic conditions to furnish the desired dienylmethyl alcohol 169 (76% yield over four steps: telescoping process).
Glucosylation of acetate 164 with dienylmethyl alcohol 169 is attained by treatment with BF₃·OEt₂ in MeCN at 0 °C to afford dienone-yne compound 171 as a key intermediate.⁶² When a toluene solution of 171 is warmed at 80 °C under aerobic conditions, [4+2]cycloaddition products 172a and 172b are generated as an anomeric mixture (ca. 60:40). Isomerization at the anomeric position is carried out by treatment with BF₃·OEt₂ in toluene to give the desired spiroketal 172a having suitable stereochemistry.

Scheme 27. Synthesis of tofogliflozin (7) via [4+2]cycloaddition
These reactions are achieved by a telescoping process (three steps: 52% yield after recrystallization). Reduction of the carbonyl group of 172a to methylene is performed by hydrogenolysis by use of 20% Pd(OH)$_2$ on activated charcoal/H$_2$ to afford pivalate 173a in 68% yield (after crystallization). Finally, hydrolysis with LiOH affords tofogliflozin (7) in 60% yield (after recrystallization).

4. CONCLUSION

This review has described the various methods of synthesis of the C-aryl glucosides SGLT2 inhibitors that had been approved up to 2019. All contain structural features in common that can be illustrated as the general molecule shown in Figure 2. The synthetic strategies employed for the construction of the carbon backbone of these inhibitors can be classified into four types (Figure 4): (1) the reaction of sugar electrophiles with aryl metal compounds, (2) the condensation of amides with organometallic compounds, (3) the 1,2-addition of lithium carbanions or enolates to aldehydes, and (4) the [4+2]cycloaddition of yne-dienone compounds. The synthetic routes presented here have been collected from both drug discovery chemistry and industrial process chemistry. These synthetic methods should provide an abundance of useful knowledge, not only with respect to the preparation of C-aryl glucosides but also with respect to the formation of carbon-carbon and carbon-heteroatom bonds with high stereochemical control.

ACKNOWLEDGEMENTS

We thank Dr. Masao Tsukazaki for his suggestions during the preparation of the manuscript. Thanks are also due to Mr. Robert Freeman and Editing Services at Chugai Pharmaceutical Co., Ltd. for their assistance with English usage.

REFERENCES

19. Other synthesis of this aryl bromide: see, reference 10c.

Masatoshi Murakata received his Ph.D. degree in 1991 from the University of Tokyo under the supervision of Professor Kenji Koga. He joined Faculty of Pharmaceutical Sciences, Tokyo University of Science as an assistant professor from 1991 to 2001. He was a principal scientist at the Fuji Gotemba Research Laboratories and Pharmaceutical Technology Div., Chugai Pharmaceutical Co., Ltd. from 2002 to 2021. He also amassed experience as a researcher at the Odawara Research Center and the Nihongi Plant, Nippon Soda Co., Ltd. from 1984 to 1988. He was awarded the Synthetic Organic Chemistry Award, Japan in 2015, and the Japanese Society for Process Chemistry Award in 2018. His research interests are a unique asymmetric reaction—especially an enantioselective radical reaction, development for new synthetic routes and an efficient process chemistry.
Masahiro Nagase received his Master’s degree in 1998 from Tohoku University under supervision of Professor Kunio Ogasawara. Since he joined Chugai Pharmaceutical Co., Ltd. in 1998, he has been working on chemical process research and development for new drug candidates, during which he received Ph.D. degree in 2016 from the University of Tokyo under the supervision of Professor Motomu Kanai. His research interests are focused on constructions of efficient chemical process for complicated active pharmaceutical ingredients—especially acceleration of process research and development by using HTE and computational chemistry.