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The composition of a bone can be described in terms of the mineral phase, hydroxyapatite, the organic phase, which

consists of collagen type I, noncollagenous proteins, other components and water. The relative proportions of these

various components vary with age, site, gender, disease and treatment. Any drug therapy could change the composition

of a bone. This review, however, will only address those pharmaceuticals used to treat or prevent diseases of bone:

fragility fractures in particular, and the way they can alter the composition. As bone is a heterogeneous tissue, its

composition must be discussed in terms of the chemical makeup, properties of its chemical constituents and their

distributions in the ever-changing bone matrix. Emphasis, in this review, is placed on changes in composition as

a function of age and various diseases of bone, particularly osteoporosis. It is suggested that while some of the

antiosteoporotic drugs can and do modify composition, their positive effects on bone strength may be balanced

by negative ones.
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Introduction

Bone is a heterogeneous composite material consisting,
in decreasing order, of a mineral phase, hydroxyapatite
(Ca10(PO4)6(OH)2) (analogous to geologic ‘hydroxyapatite’),1 an
organic phase (B90% type I collagen, B5% noncollagenous
proteins (NCPs), B2% lipids by weight)2 and water. Proteins in
the extracellular matrix of bone can also be divided as follows:
(a) structural proteins (collagen and fibronectin) and (b) proteins
with specialized functions, such as those that (i) regulate
collagen fibril diameter, (ii) serve as signaling molecules,
(iii) serve as growth factors, (iv) serve as enzymes and (v) have
other functions. The relative amount of each of these con-
stituents present in a given bone varies with age,3 site,4 gender,5

ethnicity6 and health status.7 The amount, proper arrangement
and characteristics of each of these components (quantity and
quality) define the properties of bone. The tendency of bones to
fracture depends on the quantity of mineralized tissue present
(size and density) often measured by clinicians as bone mineral
density or BMD8 and several other factors, grouped together as
‘bone quality’.8,9 ‘Bone quality’ factors include composition
(weight percent of each component), mineralization (organi-
zation of the mineral and its crystallite size and perfection),
collagen content and collagen crosslinks, morphology,10

microarchitecture11 and the presence of microcracks.12 Each of
these factors varies with health, disease and drug therapies.
Their distribution in the heterogeneous tissue also varies with
these perturbations. The focus of this review will be on the
composition of bone and its site-specific variation. Materials
present, their characteristics and their distribution will be
discussed here. Readers are referred to the references above
for more information on morphology, microarchitecture and the
presence of microcracks, which will not be discussed.

Bone Mineral

Hydroxyapatite is the principal component of the mineral phase
of bone. This was demonstrated more than 60 years ago using
X-ray diffraction, now viewed as the ‘gold standard’ for such
determinations.1 The quantity of mineral present in bone can be
determined by a variety of techniques13 including gravimetric
analyses (ash weight determination), analysis of calcium and
phosphate contents, spectroscopic and densitometric ana-
lyses including bone mineral density distribution (BMDD), bone
mineral density (BMD) and micro-computed tomography
(micro-CT). Such methods show that the mineral content of
bone ranges from B30%/dry weight (in the skate or ray
appendicular skeletal element, the propterygium) to 98%/dry
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weight in the stapes of the human ear. Most bones have B60–
70% mineral/dry weight, depending upon site, species and
stage of development (Figure 1).13,14

Variation in the distribution of mineral and its properties in
bone can be illustrated by a variety of imaging techniques,
discussed here, including BMDD, Raman and infrared spec-
troscopic imaging. It can also be determined by microprobe or
synchrotron radiation-induced micro-X-ray fluorescence ele-
mental analysis and mapping15 including trace elements such
as strontium, aluminum, zinc or lead. In contrast, backscattered
electron imaging in the scanning electron microscope is highly
sensitive to the average atomic number of the bone material that
is dominated by calcium. This technique is not a tool to identify
specific elements in bone. Quantitative backscattered electron
imaging is used for mapping the calcium concentrations and for
the determination of bone mineralization density distribution
(frequency distribution of Ca concentrations within the bone
sample, BMDD; Figure 2).16 Parameters obtained from BMDD
include the average and mode Ca content and the full-width at
half-maximum of the BMDD peak, which is a measure of the
heterogeneity of mineralization. Deviations from normal calcium
distributions have been reported to date in: osteomalacia,17

osteoporosis18 and idiopathic osteoporosis19 (peak shifted to
the left of normal), classical and new forms of osteogenesis
imperfecta16,20 (peak shifted to the right of normal) and
treatment with some but not all bisphosphonates examined by
this technique.18,21,22

Variation in phosphate distribution is visualized by both
Fourier transform infrared microscopic imaging (FTIRI)23 and
Raman microscopy and imaging (Raman).24,25 These types of
vibrational spectroscopic imaging describe the distribution of
any elemental pair or larger moiety that vibrates when excited by
incident light. Relevant vibrations for bone are those in
phosphate, protein and lipid groups. The precise location of the
vibrations, often given in wave numbers or reciprocal wave-
length, reflects the molecular environment in which the vibrating
ions are found. In addition, as with BMDD, the line width at half-
maximum of any of the broadened peaks indicates the het-
erogeneity (number of pixels with different values in the section

analyzed) for that particular vibration. The spatial resolution of
the FTIRI experiment, unless synchrotron radiation is used, is
B7mm. Raman spectroscopy, in contrast, has a spatial
resolution ofB1 mm. Raman spectral data is not affected by the
presence of water, making the analysis of non-dehydrated
samples, not possible for FTIRI, yet possible using Raman.
Vibrations that are strong in the infrared spectra are weak in
Raman spectra, and vice versa. These two are complimentary
techniques, providing information on both the mineral phos-
phate and the organic matrix distribution in tissues (Figures 3–
5). The data from these images can be presented as ‘chemical
photographs’ (as in Figures 3 and 5) or as numerical averages
(Figure 6). Data in Figure 6 compares the composition of
cancellous bone in patients treated with bisphosphonate fol-
lowed by 1 year of teriparatide (PTH) treatment, as determined
by Raman spectroscopy. The lower half of Figure 6 shows
baseline values as determined by FTIRI in an on-going study of
female patients with and without fragility fractures. The mean
heterogeneity for each of these parameters is also shown. An
important observation is that the fracture cases had reduced
heterogeneities relative to unfractured controls. We believe
(discussed later) that this loss of compositional heterogeneity
may allow microcrack propagation resulting in a weakened,
more brittle tissue as the microcracks spread. Whether this
change in heterogeneity is due to oversuppression or other
mechanisms is yet to be determined.

Using FTIRI spectroscopy, biopsies from patients with low-
energy (fragility) fractures were found to exhibit differences in
their mineral composition, relative to the same tissue in fracture-
free controls of similar age and sex. Using these FTIRI analyses
of 54 iliac crest biopsies from patients ranging in age from 30 to
84 years, with and without fragility fractures,26 models were
constructed to determine which FTIRI parameters were
associated with fracture. The mineral parameters significantly
associated with fracture in the constructed model were high
cortical mineral/matrix ratio (increased fracture risk) and high
cancellous crystallinity (increased fracture risk). Carbonate-to-
phosphate ratio was increased in both areas, however, not
significantly. Raman analysis performed on femoral cancellous
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bone near the fracture site of women with fractures similarly
demonstrated a higher carbonate/amide I area ratio than in
those without fractures. Iliac crest biopsies in those fractured
patients also revealed a higher carbonate/phosphate ratio in
cortical bone samples of women with fractures.27 These
compositional changes and the loss of heterogeneity reflect the
persistence of older more mature bone (increased mineral/
matrix ratio and carbonate/phosphate ratio and a lower acid
phosphate substitution) along with the absence of new bone
formation.

Changes in mineral composition also occur in other bone
diseases associated with increased fracture risk in addition to

osteoporosis. In most types of OI (or brittle bone disease), as in
osteoporosis, the mineral content (mineral/matrix ratio) is
increased.28 In osteoporosis, this increase is attributable to the
lack of osteoid associated with increased remodeling and
decreased bone formation, whereas in OI there is a lesser
amount of collagen because OI patients make an improper
collagen matrix.28 In osteomalacia, the mineral/matrix ratio is
unchanged when mineralized tissue alone is examined.29

Crystallinity (measured based on different vibrations in FTIRI
and Raman30) generally shows parallel trends. These trends,
reflecting the changes in mineral properties in different dis-
eases, are summarized in Table 1 along with other compo-
sitional parameters measured by FTIRI and Raman. Carbonate/
phosphate ratio, based on the same vibrations in both tech-
niques varies similarly. The extent of acid phosphate sub-
stitution31 varies inversely with crystallinity. For example, in
chronic kidney disease, abnormalities in phosphate transport
and clearance lead to osteoporosis and increased crystallinity
when bone turnover is high, with no significant changes
occurring when bone turnover is low.32

Bone Matrix

Protein composition of bone was classically determined
following demineralization of the tissue and isolation and
characterization of the component proteins. Collagen, pre-
dominantly type I, accounted for the majority of the matrix, but
other proteins, the so-called NCPs, accounted for B5% of the
total bone weight. The major components of the NCPs were
identified as belonging to the SIBLING (small integrin-binding
N-glycosylated), SLRP (small leucine-rich proteoglycans), GLA
protein (g-carboxyglutamic acid protein) and CCN protein (small
secreted cysteine-rich protein) families. Today, using pro-
teomics and gene expression profiling, it is known that there are
thousands of proteins in the bone matrix, some of which (based
on whole-genome analysis) have been associated with changes
in BMD, but most are yet to be identified and their functions
determined. Major structural proteins and NCPs will be
reviewed here.

Structural proteins. Collagen. The most abundant protein in
the bone matrix is type I collagen, a unique triple helical
molecule consisting of two identical amino-acid chains and one
that is different. The collagen molecules that consist of
repeating glycine–X–Y residues are often hydroxylated and
glycosylated. This gives rise to some of collagen’s unique
crosslinking ability, in turn, making the collagen lattice ideal for
its functions. These include: providing elasticity to the tissues,
stabilizing the extracellular matrix, supporting or templating
initial mineral deposition and binding other macromolecules. In
different types of OI, mutations in the collagen genes are
reflected in the inability of the OI bones to mineralize properly.
Reviewed elsewhere,28 the origin of the mineralization defect is
unknown. This defect may be in the altered structure of the
collagen itself, or in the inability of extracellular NCPs, which
regulate the mineralization process, to bind to the defective
collagen, and hence regulate mineralization.

Chemical analyses of the crosslinks in bone collagen have
demonstrated two types of crosslinks, those formed enzyma-
tically and those that occur by glycation.33 Both types of
crosslinks (enzymatic and non-enzymatic) increase with age,
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Figure 2 BMDD distribution of bone. Measurement of bone mineralization density
distribution (BMDD) using quantitative backscattered electron imaging (qBEI) in a
transiliac bone biopsy sample (left insert) from a 39-year-old women with coeliac
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with the normal reference BMDD (Ref.). In addition, the peak width of the BMDD
(CaWidth) is distinctly enlarged, indicating an enormous heterogeneity in mineralization
of the bone matrix. Examinations by histological staining techniques revealed a severe
osteomalacia combined with signs of secondary hyperparathyroidism. Description of
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mean calcium concentration of the bone area obtained by the integrated area under the
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is mineralized below the 5th percentile of the reference BMDD of normal adults, that is,
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normal adults that is above 25.30 weight percent calcium. This parameter corresponds
to bone matrix having achieved plateau level of normal mineralization. Figures courtesy
of P Roschger.
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are altered in disease (Table 2) and affect the mechanical
strength of the collagenous matrix. Enzymatic crosslinks are
believed to enhance mechanical strength, whereas the
advanced glycosylation end-products, which are elevated in
uncontrolled diabetics and in oxidative stress, make for a more
brittle bone. Distribution of total crosslinks in the bone matrix
can be visualized in FTIRI data (Figure 5). Such analyses agree

with the high-performance liquid chromatography chemical
analysis of crosslinks.34 The number of these crosslinks,
which reflect collagen maturity, is increased in osteoporotic
individuals, especially in the center of the remaining cancellous
bone. The heterogeneity of this distribution is decreased in
consequence of age, osteoporosis and treatment with
bisphosphonates.35
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Fibronectin. Fibronectin, a minor constituent of bone matrix, is
one of the first proteins produced by osteoblasts, and directs
the initial deposition of collagen fibrils.36 Continued presence of
fibronectin is also required to maintain the integrity of the
collagenous matrix.37 Studies with a variety of different con-
ditional knockout animals demonstrated that while osteoblasts
produce fibronectin, they are not responsible for the presence
of the same in the bone extracellular matrix; rather, the bone
matrix fibronectin is derived from circulating liver fibronectin.38

In primary biliary cirrhosis, the incidence of osteoporosis is
markedly elevated. This higher incidence is due to an increased
production of a fibronectin isoform that lessens osteoblastic
bone formation.39

Noncollagenous proteins. There are several families of
proteins that account for a small proportion of the extracellular
matrix, which, as reviewed elsewhere,40 serve important
functions in matrix organization, cell signaling, metabolism and
mineralization. Other than early studies showing a reduced NCP
content of osteoporotic bone,41 little has been written on how
these proteins change in expression or distribution in osteo-
porosis or other bone diseases, with or without anabolic or
antiresorptive therapies. Known changes in the expression of
NCPs in health and disease are summarized in Table 3. As

shown in Table 3, recent gene-wide association studies have
identified several NCPs that may be related to fracture risk. In
terms of actual measurement of protein content, findings to
date are that osteocalcin and osteopontin are important for
fracture resistance,42 their concentrations are reduced in older
osteonal bone43 and osteopontin may retard crack propaga-
tion.42 As a number of NCPs can and do interact with collagen
fibrils,40 they may function as ‘glue’, enhancing bone’s resis-
tance to fracture.42 Recent studies have shown compositional
differences between lamellae and interlamellar areas of cortical
bone. The interlamellar areas have lower collagen content and
increased concentration of NCPs.44 The significance of such
differences is as yet unknown. No published studies to date
have examined changes in the expression of enzymes and
signaling factors in the matrix of patients with metabolic bone
disease.

Lipids. Less than 3% of the total bone matrix is fat soluble.
Lipids are important for cell function, surrounding the cell body,
regulating the flux of ions and signaling molecules into and out
of the cell. The distribution of lipids in the matrix can be
observed from histology, based on sudanophilia, from FTIR and
Raman analysis or by nuclear magnetic resonance (NMR).45

There are no recent published studies on lipid composition

Table 1 Mineral property distribution in diseased human bone revealed by FTIRI and Raman analysis

Parameter/condition Compared with healthy age-matched similar site

Cortical Cancellous

Min/matrix CO3/P XST HPO4 Min/matrix CO3/P XST HPO4

Aging52 primates Inc Inc Inc Dec Inc Inc Inc Dec
Osteogenesis imperfecta53,54,a

Type I NC Dec Dec NA NC Dec Dec NA
Type III
Type IV
Type VII Inc NC Dec NA Inc NC Dec NA
Type VIII Inc NC Dec NA Inc NC Dec NA

Osteomalaciab NC NA NC NA NC NA NC NA
Osteoporosisc Inc NC Inc NA NC NC Inc NA
Renal osteodystrophy32,55 NC NC NC NA Dec NC NC/INC NA

Abbreviations: CO3/P, carbonate-to-phosphate ratio; Dec, decreased relative to appropriate control; HPO4, acid phosphate substitution; Inc, increased relative
to appropriate control; Min/mat, mineral-to-matrix ratio; NA, not measured; NC, unchanged relative to appropriate control. XST¼crystallinity.
aA Boskey, E Carter, CL Raggio, unpublished data, bSee Faibish et al.29 cSee Gourion-Arsiquaud et al.26,35

Table 2 Variation in collagen crosslinking in human bones with age, disease and therapy (relative to control values)

FTIRI collagen maturity Enzymatic crosslinks AGEs

Agea Increasesb Increases56 Increases in cortical bone56

Osteogenesis imperfectac Increasedb No change57 No change57

Osteomalaciac No changed ND ND
Renal osteodystrophyc No change55 Increased58 (rats) Increased58 (rats)
Osteoporosisc Increased59 Increasede Increasede

þAlendronatef No change60,61 No change (dogs)62 Decreased (dogs)62

þRisedronatef No change (dogs)61 No change (dogs)62 Decreased (dogs)62

þZoledronatef No changeb ND ND
þPTHf No changeb Increased (monkeys)63 Decreased (monkeys)63

þEstrogenf Increased64 ND ND
þRaloxifene (SERM)f No change ND Decreased

Abbreviations: AGE, advanced glycosylation end-products; FTIRI, Fourier transform infrared microscopic imaging; ND, not determined; PTH, parathyroid hormone;
SERM, selective estrogen receptor modulator.
avs Younger individuals, bA Boskey, E Carter, CL Raggio, unpublished data, cvs Age-matched control, dSee Faibish et al.29, eSee Vashishth.33, fvs Untreated osteoporotic.
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associated with fragility fractures or other bone diseases in
humans. Thirty years ago, we did analyze the lipid composition
of femoral heads from patients with avascular necrosis,
reporting increased cholesterol content.46

Water. The water content of bone may be demonstrated by
proton NMR and can be assessed quantitatively by Raman
spectroscopy47 and gravimetric methods.48 Water serves many
functions, including filling the pores, interacting with collagen
fibrils and binding tomineral crystals.49 Unfortunately, the precise
role of water in determining the mechanical competence of bone
has not been determined. Analysis of water content shows a
direct relationship between water and cortical porosity, which
occurswith aging andosteoporosis (Figure 7) and isa key feature
of renal osteodystrophy50 and its associated osteoporosis. It is
assumed, but not yet demonstrated, that decreases in porosity
caused by bisphosphonate treatment will result in a lesser water
content in both osteoporosis and renal osteodystrophy.

Composition Changes in Aging and Disease

Bone is a dynamic as well as a heterogeneous tissue; therefore,
it is not surprising to see changes in composition as a function of
age.3 The types of compositional changes that have been

reported are summarized in Table 4. These are distinct from the
changes discussed above that are associated with bone
disease, fragility fractures or treatments to prevent such

Table 3 Variation of noncollagenous bone protein concentrations in healthy and diseased human and animal bonesa

Protein Bone conc. in
osteoporosis

Bone conc. in OI
(types I–IV)

Bone conc. after
drug treatment

Albumin Reduced65 Increased ?
Alpha 2-HS Glycoprotein (fetuin) Unchanged65 Increased66 ?
Bone Gla protein (osteocalcin) Reduced67 Increased66 ?
Fibronectin ? Increased68 ?
Matrix Gla protein Reduced69 ? þALN not affected (mice)70

Large proteoglycans ? Decreased67 þZOL reduced71,72

SLRPS
Biglycan Depleted72,73 Decreased68 ?
Decorin Depleted72 No change68 ?
Osteoadherin No change74 ? ?

SIBLINGS
BSP Associated with BMD75 No change76 þALN (rats) reduced77

þPTH (mice) reduced78

þSr ranelate no effect79

DMP1 Increased (mouse)80 No change76 þCa supplement increased81

DPP ? Decreased80 ?
MEPE Reduced82,83

Associated with BMD82–84
No change76 þCa supplement decreased81

Osteopontin Reduced85 No change76 þPTH serum levels lowered86

Osteonectin Reduced (mouse)87

Associated with BMD in males88
Reduced68 þALN (rats) reduced77

Thrombospondins Associated with BMD89,90 TSP1
increased76

?

Matrix metalloproteases
MMP13 Reduced;81,84 associated with BMD82 ? þALN (rats) reduced91

ADAMTS18 Associated with BMD in Japanese women82 ? ?

Phosphatases
FAM210A Reduced;82 associated with BMD84 ? ?
Alkaline phosphatase Associated with BMD90

No change in staining (rats)91
Decreased staining91 þZOL-enhanced staining92

Tartrate-resistant acid phosphatase Increased93,94 Increased staining (mice)95 þEstrogen reduced92

Abbreviations: ADAMTS18, A Disintegrin And Metalloprotease with ThromboSpondin repeats; ‘Associations’, refer to gene expression studies; ALN, alendronate; BMD,
bone mineral density; BSP, bone sialoprotein; Conc., relative concentration; DMP1, dentin matrix protein 1; DPP, dentin phosphoprotein; ?, no data available; MEPE,
matrix extracellular phosphorylated glycoprotein; MMP13, matrix metalloproteinase 13; OI, osteogenesis imperfecta; PTH, parathyroid hormone; SIBLING, small
integrin-binding N-glycosylated; SLRPS, small leucine-rich proteoglycans; TSP1, thrombospondin-1; ZOL, zoledronate.
aSee review by Boskey and Robey40 for the function of these proteins and animal models in which the diseases mentioned are noted. Items without reference numbers
are discussed in that text.
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Figure 7 Water distribution in midshaft tibia cortical bone is demonstrated by three-
dimensional ultrashort echo-time magnetic resonance imaging. (a) A young 33-year-old
woman without osteoporosis, and (b) is a 64-year-old woman. Note the marked
increase in bone water content (BWC) shown by both the concentration images (on the
top) and their histograms (c and d, respectively, on the bottom) (reproduced from Yoder
et al.49 (Figure 5) with permission from John Wiley & Sons Ltd).
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fractures. Important is the observation that some age-
dependent changes in composition are due to alterations in cell
activity and protein expression as well as changes in the
concentration and post-translational modification40 of those
NCPs that regulate matrix composition and mineralization.
Therapies to limit the extent of bone disease are directed
against these very same cells.

Compositional changes induced by therapies for osteo-
porosis. The interesting and important observation is that
treatments for osteoporosis while decreasing fracture inci-
dence do not consistently correct the above compositional
abnormalities. Therapies currently used (Table 5), other than
supplements of calcium, vitamin D and phosphate, fall into two
classes: anabolic agents and antiresorptive agents. These
therapies all increase or maintain BMD. They each, however,
have distinct effects on compositional properties and het-
erogeneity of their distribution. The most informative of the
studies in Table 5 are those based on biopsies before and after
treatment. Not every study examined the same tissue site, dose
of drug or duration of treatment, and many did not compare the
resulting data to the same tissue site in an untreated control. The

few instances where this comparison was carried out, and the
therapy returned the parameter in question to healthy control
values are emphasized in Table 5. Where no human data exists,
animal data is included, with the caveat that this does not mean
the same alterations will occur in man. Bisphosphonates,
alendronate in particular, decreased the heterogeneity of the
tissue, rather than increasing it, as would be appropriate for a
mechanically strong tissue. Parathyroid hormone, an anabolic
agent, and strontium ranelate both increase heterogeneity,
determined by FTIRI, Raman and micro-CT measurements.
Calcitriol’s effect on bone composition has not been deter-
mined, neither were the effects of sclerostin antibodies.
Odanatacib, the cathepsin K inhibitor, has been shown to affect
composition based on BMDD measurements.

Most of the antiresorptive therapies for osteoporosis (estro-
gen, bisphosphonates, calcitonin, cathepsin K inhibitors)
increase mineral/matrix ratio, decrease crystallinity and return
other FTIR and Raman parameters to less osteoporotic values
without returning these values to normalcy. The anabolic agent
PTH and strontium-ranelate, which may have both catabolic
and anabolic properties, correct many of these FTIRI properties
and increase tissue heterogeneity. Many of the therapies lead to
retention of existing ‘older’ bone. Older bone has increased
collagen maturity and increased crystal size. Anabolic agents, in
contrast, stimulate new bone formation and the tissue acquired
has characteristics of younger bone.

Loss of material heterogeneity, in fracture mechanics, is
associated with an increase in brittleness, hence a greater risk
of fracture. The importance of heterogeneity is seen in lumber
structure and in development of stronger cements and plastics.
Bisphosphonate treatment usually results in an increase of
bone mineral density and bone volume, or in its maintenance.
Bisphosphonate treatment is often accompanied by a decrease
in heterogeneity. The reason for this event is as yet uncertain. It
may be that there is a balance in these two opposing effects.
The use of bisphosphonates results in an increase in BMD and
bone volume, hence an increase in bone stiffness and strength.
The use of bisphosphonates also causes a decrease in bone
heterogeneity, which in turn increases bone brittleness. If this

Table 4 Age-related changes in healthy bone composition (cortical and cancellous

considered together)

Bone mineral densitya and tissue mineral densityb Increase with age
Mineral to organic matrix ratioc Increase with age
Calcium-to-phosphate ratiod Increase with age
Carbonate-to-phosphate ratioc Increase with age
Crystal size and perfection (crystallinity)c,e Increase with age
Acid phosphate substitutionc Decrease with age
Matrix heterogeneityb,c Decrease with age
Total collagen crosslinks (collagen maturity)c Increase with age
Collagen enzymatic crosslinksd Increase with age
Collagen AGEsd Increase with age

Abbreviations: AGE, advanced glycation end-products; BMDDD, bone mineral
density distribution; DXA, dual photon absorptiometry; FTIRI, Fourier transform
infrared microscopic imaging; XRD, X-ray diffraction.
aDetermined by DXA, bDetermined by microcomputed tomography, cDetermined
by FTIRI, BMDD and Raman spectroscopy, dDetermined by chemical analyses,
eDetermined by XRD.

Table 5 Effects of current therapies on cancellous bone compositional properties

Ca content (BMDD) Min/mat BV/TV TbN TbS XLR XST Heterogeneity

Antiresorptives
Estrogen N96 I64 N96 N96 N96 I64 D64 NA
Calcitonin NA D97 I97 I97 D97 NA NA NA
Ibandronate NA I98 N99 N99 N99 NA I98 N,99 D98

Alendronate I18,22,100 N60 I101 N101 N101 N60 N60 D,18,60,98,100N,22,99

Odanaticib I102 I102 NA NA NA NA NA D102

Risedronate I102 D*103 NA NA NA D*103 N*103 D104

Zoledronate I103 I105,106 I21 I21 D21 NA D*105,106 D71

Anabolics
PTH D16 Da N107 N107 N107 D Da I,16,a

Antisclerostin I15 NA I15 NA NA NA NA NA

Other
SrRAN I108,109 N109,110 N111 N111 N111 N110 N111 I108

Abbreviations: BMDD, bone mineral density distribution; BV/TV, bone volume fraction; D, decreased; I, increased; Min/mat, mineral/matrix ratio; N, no change; NA, not
measured; TbN, trabecular number; TbS, trabecular separation; XLR, collagen maturity; XST, crystallinity. I, D, N and NA show changes relative to untreated osteoporotic
patients. Differences in reported values may be because of site, duration of treatment or method of analysis. Where no human data was available, other species are
shown in italics. Bold indicates treatments that were reported to normalize indicated property to that in healthy controls.
aA Boskey, E Carter, CL Raggio, unpublished data.
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balance is disturbed, as in ‘oversuppression’ of bone turnover,
failure may occur. Thus, the composition of bone in the healthy
individual must be maintained and adjusted, similar to the
structure described by Wolff’s law, so as to optimize the function
of bone.

Conclusions

This review of mineral and matrix properties in healthy and
diseased bones demonstrates that these properties show both
age- and disease-dependent changes. Bone disease and
therapies for these diseases also affect the composition of
bone. Bisphosphonates increase bone quantity but their effects
on bone quality are variable. The effects of many other agents
used in the treatment of osteoporosis are still under investi-
gation. Some bisphosphonates decrease tissue heterogeneity,
which may in turn increase brittleness. The origins of this effect
and the significance of the alteration in bone quality remain to be
determined.
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