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Mechanisms of osteoclast-dependent bone
formation
Anna Teti
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Should we believe that osteoclasts are only involved in bone resorption? What about their contribution to bone

formation? In this article I will review evidence that bone formation can be regulated by osteoclasts. Why is this? Likely

because in the physiologic condition of bone remodeling, bone resorption and formation are balanced, and there is no

better way to control this equilibrium than through a concerted action between the two cell types. Although the influence

of osteoblasts on osteoclastic bone resorption is well documented and consolidated over time, what osteoclasts do to

regulate osteoblast activity is still matter of intense investigation. The original hypothesis that all is in the osteoblast-

seeking factors stored in the bone matrix, released and activated during bone resorption, is now being challenged by

several studies, suggesting that osteoclasts are also capable of producing ‘clastokines’ that regulate osteoblast

performance. Indeed, several of them have been demonstrated to orchestrate osteoclast–osteoblast activities.

However, we are probably still at the dawn of a new era, and future work will tell us whether any of these clastokines can

be exploited to stimulate bone formation and rebalance bone remodeling in skeletal diseases.
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Introduction

When Rodan and Martin1 drafted their pivotal hypothesis that
osteoblasts had a role in the hormonal control of bone
resorption, and Mundy2 proposed that transforming growth
factor-b (TGFb) released from bone matrix during bone
resorption recruited and activated osteoblasts, I had the fortune
to be a young emerging scientist. Those were exciting
times, with new ideas looming on the horizon of bone research.
After many years the scenario has changed, but Rodan and
Martin1 and Mundy2 were right, and their hypotheses have
been largely confirmed by experimental evidence. In this
article, I will retrace the old and recent literature, first briefly
addressing the osteoblast-to-osteoclast interactions, and then
describing in more detail what is new in the field of the reverse
situation: how osteoclasts control bone formation. Finally,
I will discuss some controversial issues arguing the biological
and clinical significance of the cross-talk between the two cell
types.

How Osteoblasts Affect Osteoclast Activity

In the 1980s, bone cell biotechnology became a potent tool to
understand deeply the cellular and molecular mechanisms of
bone remodeling and the pathways that govern the orche-
strated activities of bone cells within the so-called basic

multicellular unit.3 Before that time, there were scanty data, but
they were strong enough to allow Rodan and Martin1 to draft
one of the most exciting theories, whereby osteoblasts were the
key cells responding to osteoclast-activating hormones. They
revolutionized the field, stating that parathyroid hormone (PTH)
does not affect osteoclasts directly but through the osteoblast
lineage.1 In 1982, Silve et al.4 had investigated the distribution
and cellular localization of the PTH receptor in chick embryo
calvarial bones. By autoradiography they showed that radio-
labeled receptors were concentrated over osteoblasts and
progenitor cells. No labeling was observed in osteoclasts,
whereas the positive cells belonging to the osteoblast lineage
showed radiolabeled receptors at the cell surface and in
intracellular vesicles. PTH was already known as a pro-
osteoclastic hormone, but what Silve’s discovery4 and Rodan
and Martin’s theory1 told us was that an indirect mechanism
recruited osteoblasts to respond to PTH, presumably by the
induction of osteoclastogenic factors.5 It has to be noted,
however, that an early report showed that PTH injections in
chickens induced histologically appreciable osteoclast for-
mation within 30 min.6 This could rely on a direct effect of PTH
on osteoclast precursors,7 albeit in a peculiar context such as
that of the medullary bone of laying hens, which is subjected to
rapid resorption/deposition cycles to supply calcium for the
daily egg shell formation.
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We now know that among the PTH-induced osteoblast
factors there is receptor activator of nuclear factor-kB tran-
scription factor ligand (RANKL),8 the most potent osteoclas-
togenic cytokine, whose ratio with its decoy receptor,
osteprotegerin (OPG), is enhanced by stimulation of the PTH
receptor.9 Osteoblasts are not the only source of RANKL, and it
could be argued that in a physiologic context this coupling
activity does not make any biological sense because of the
inconsistency of the need to stimulate bone resorption while
bone formation is ongoing. However, as a matter of fact, after
discovery of this first hormone-induced osteoblast-dependent
osteoclast stimulation pathway, a plethora of other osteoblast
molecules have been identified to enhance bone resorption.10

This occurrence culminated in the biotechnological approach to
induce osteoclast differentiation in vitro by simply coculturing
osteoclast precursors with osteoblasts in the presence of
osteoblast-seeking factors such as PTH, vitamin D3 or pros-
taglandin E2 (PGE2).11 Indeed, the PTH and PGE2 pathways
were shown to converge on cAMP through their respective cell
surface receptors,12,13 whereas vitamin D3 was clarified to
induce the expression of pro-osteoclastogenic cytokines,
especially RANKL, through the activation of its cytosolic
receptor.14,15 Of note, vitamin D3 is also known to target
osteoclasts directly, although with a less clear significance
compared with osteoblasts.

Osteoblasts are great producers of pro-osteoclastogenic
cytokines, including RANKL, macrophage-colony stimulating
factor, interleukin (IL)-1b, IL-6, IL-11, leukemia inhibitory factor,
oncostatin M and others,16 altogether representing a combi-
nation of factors triggering osteoclastogenesis both in phy-
siologic and in pathologic conditions.17 Nevertheless,
osteoblasts also produce antiosteoclastogenic factors, such as
OPG, granulocyte–macrophage-colony-stimulating factor,
IL-3, IL-12 and IL-18, indicating that their pro-osteoclastogenic
function is continuously being controlled and balanced for the
sake of proper bone remodeling. Imbalance of bone remodeling
could end up with increased bone resorption over bone for-
mation, leading to bone loss diseases, or with excess bone
formation over resorption, leading to high bone mass
syndromes.18

Many of the discoveries described above have important
clinical implications, both for diagnosis (i.e. altered pro-
osteoclastogenic gene structure in Paget’s disease of bone and
osteopetrosis; cytokine imbalance in primary and secondary
osteoporosis),19 and treatment (anti-RANKL therapy in
osteoporosis and osteolytic bone metastases; targeted anti-
inflammatory therapy by monoclonal antibodies or specific
inhibitors).20 Therefore, what has been done so far in the
understanding of osteoblast-to-osteoclast communication has
been instrumental not only for the pure progress of science but
also for the benefit of patients suffering from bone diseases.

The Reverse Situation: How Osteoclasts Affect Osteoblast
Activity

In 1989 Oreffo et al.21 showed that latent TGFb is activated into
TGFb by isolated osteoclasts. Latent TGFb was known to be
stored in the bone matrix and, once activated, to potently
stimulate bone formation. On the basis of this evidence, Mundy2

proposed that TGFb could represent one of the key coupling
factors stimulating bone formation at the previous sites of bone

resorption. Indeed, the bone matrix stores a plethora of growth
factors22 that are released and activated by osteoclasts, further
contributing, along with TGFb, to the coupling of bone
resorption and formation. Among them, bone morphogenetic
proteins (BMPs), which share with TGFb the intracellular SMAD/
mitogen-activated protein kinase signaling pathway, have
important roles in bone formation and tissue repair,23 so they are
considered ground-breaking and versatile therapeutic agents in
orthopedics and dentistry.

This line of evidence has averted scientists from considering
the osteoclasts themselves as sources of secreted coupling
factors with anabolic effect on bone formation.24 Indeed, this
turned out to be the case when studies on osteopetrotic
osteoclasts evidenced that, at least in certain forms of the
disease, bone formation is not impaired, but could even be
enhanced.

Osteopetrosis is a disorder of impaired osteoclast activity or
lack of osteoclast differentiation.25 In the first case it is char-
acterized by normal osteoclast formation, which could also be
enhanced owing to the hyperparathyroidism observed in
patients.25 In the case of impairment of osteoclast differ-
entiation, there is a defect in the signaling to osteoclasto-
genesis, especially the RANKL/RANK pathway.25 In 2006, our
group observed that there was a correlation between osteoclast
and osteoblast numbers in bone biopsies of osteopetrotic
patients, whereas such a correlation was not found between
osteoblast number and serum PTH levels,24 suggesting that
osteoclast-to-osteoblast coupling was active also when bone
resorption was impaired.26 Similar observations were made by
Henriksen et al.27 and prompted the hypothesis that not only
bone resorption but also osteoclast numbers are critical to
stimulate bone formation.22 On the basis of this hypothesis,
osteoclasts were thought to secrete clastokines28 that could
work as osteoblast anabolic factors contributing to coupling
activity at the previous resorption sites.

Clastokines and Bone Formation

So far, there are several clastokines of interest (Table 1).
Surprisingly, the first osteoclast-secreted molecule to be
considered as a coupling factor is the type 5 tartrate-resistant
acid phosphatase (TRAcP) isoform that we know as a lysosomal
enzyme and osteoclast marker.29 TRAcP is thought to be
implicated in bone resorption with a mechanism that still needs

Table 1 Clastokines involved in osteoclast-dependent bone formation

Clastokine Acronym Effect
on bone
formation

References

Tartrate-resistant acid
phosphatase

TRAcP Stimulation 27–31

Sphingosine 1-phosphate S1P Stimulation 32–35
Bone morphogenetic protein 6 BMP6 Stimulation 36,37
Int/wingless 10b Wnt10b Stimulation 36,37
Sclerostin SOST Inhibition 36,37
Platelet-derived growth
factor BB

PDGF BB Inhibition 39–42

Hepatocyte growth factor HGF Stimulation 43,44
Collagen triple helix
repeat containing 1

CTHRC1 Stimulation 45,46
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full elucidation. It is converted into an ATPase by enzymatic
cleavage by trypsin or cathepsin30 and among its substrates
there is the TGFb receptor-interacting protein (TRIP-1).31 How
these events affect bone resorption and/or formation has not
yet been elucidated. Deletion of TRAcP in mice causes skeletal
deformities32 and a role in endochondral ossification of TRAcP
has therefore been proposed, whereas transgenic mice
overexpressing TRAcP, despite an expected decrease of
trabecular bone volume, display enhanced bone formation.33

In this context, in vitro evidence showed the ability of secreted
TRAcP to increase alkaline phosphatase activity in osteoblast
cultures,29 confirming the findings in transgenic mice.33

An important and well-documented secreted clastokine is the
sphingosine 1-phosphate (S1P). This is a biologically active
lysophospholipid that is implicated in the blood–bone marrow
trafficking of osteoclast precursors.34 Upon phosphorylation by
sphingosine kinase 1 (SPHK1), it promotes the recruitment of
osteoblast precursors at the site of previous resorption and
enhances the survival of mature osteoblasts.35 Mesenchymal
cells express two S1P receptors (S1PR1 and S1PR2) that
trigger the Janus kinase/signal transducers and activators of
transcription 3 and focal adhesion kinase/phosphoinositide
3-kinase (PI3K)/AKT pathways, likely to be associated with the
induction of chemotaxis. S1P also activates the RhoA GTPase,
but this pathway does not seem to contribute to cell migration.36

Therefore, S1P is certainly to be considered an important
osteoclast-secreted mediator of bone formation with a strong
coupling role on the two cell types. Unfortunately, so far there is
no translational impact of this observation as Heilmann et al.37

showed that the treatment of mice receiving an osteotomy of
the femur with the S1P analog FTY720 did not improve fracture
healing over vehicle-treated mice. Furthermore, the biological
effects of S1P on bone remodeling is likely to be the result of a
combination of events in which the osteoclast precursors are
also involved. In fact, S1PR1 and S1PR2 are expressed by
osteoclast precursors as well but their functions seem to
counteract each other. S1PR1 appears to direct positive
chemotaxis of osteoclast precursors toward S1P, whereas
S1PR2 mediates their S1P chemorepulsion.38 It is believed that
this reciprocal S1P-dependent regulation of chemotaxis could
induce a fine tuning of bone remodeling by affecting the
positioning of bone cells in the correct localization.

Along with S1P, BMP6 and Wnt10b (wingless 10b), two
important enhancers of bone formation, have been found to be
released by osteoclasts.39 The anabolic role of BMP6 and
Wnt10b are well known and clearly documented,40 but what is
new in recent work is that they are part of the osteoclast-
secreted ‘tool kit’. Interestingly, osteoclast Wnt10b, but not S1P
and BMP6, is induced by TGFb and the ability of osteoclasts to
promote bone formation in response to TGFb is blocked by the
Wnt10b inhibitor DKK-1.40 TGFb-dependent induction of
Wnt10b in osteoclasts is mediated by the SMAD2/3 signaling
while independent of the AKT/MEK (mitogen-activated protein
kinase\ERK kinase) pathways. These observations potentiate
the coupling role of TGFb that is now believed to act on
osteoblast precursors both directly and through the release of
Wnt10b by osteoclasts. Osteoclasts have also been demon-
strated to secrete sclerostin, another antagonist of the Wnt
pathway that inhibits osteoblast activity.41 Interestingly,
sclerostin secretion by osteoclasts from aged mice was found
to be higher than that of osteoclasts from young mice,

concomitant with a diminished ability of aged osteoclasts to
stimulate mineralization.42 Taken together, these observations
support the hypothesis of a full implication of the Wnt signaling
and their inhibitors in the fine control of osteoclast-to-osteo-
blast cross-talk.

Another study has explored the role of the BMP receptor 1
(BMPR1)43 in the coupling between bone resorption and bone
formation. Genetic manipulation has demonstrated that con-
ditional deletion of this receptor in mature osteoclasts, using a
Ctsk/Cre mouse model, results in an increase of bone
formation. These data suggest that the BMPR1 signal-trans-
duction pathway may be implicated in the negative regulation of
osteoclast-induced bone formation, underlying the need of
balanced stimulation/inhibition cycles of osteoblast activity to
generate a dynamic and controlled cross-talk between the two
cell types.

A new factor found to be implicated in osteoclast-induced
regulation of bone formation is platelet-derived growth factor-
BB (PDGF-BB), which exhibits complex activities on the
osteoblast lineage. It stimulates the in vitro growth of osteoblast
precursors, consequently inhibiting osteoblast differentia-
tion.44,45 At the end of a resorption cycle, osteoclasts die by
apoptosis and at this stage it is believed that the PDGF-BB anti-
osteoblastic signal is removed, thus allowing bone formation to
be implemented.46 Another study has demonstrated that
mature osteoclasts in which PDGF-BB expression is down-
regulated by small interfering RNA areprevented from attracting
osteoblasts, whereas downregulation of PDGF-BB in osteo-
blasts reduces their ability to respond to chemotactic factors
produced by osteoclasts.47 Taken together, these diverse
observations suggest that PDGF-BB have a multifaceted role in
the coupling of bone resorption with bone formation and further
work is still necessary to fully elucidate the cascade of events in
which PDGF-BB is implicated.

Another osteoclast-secreted factor claimed to represent an
inducer of bone formation is the hepatocyte growth factor
(HGF), found several years ago to be expressed and secreted by
osteoclasts and to enhance proliferation of cells of the
osteoblast lineage.48 HGF signals human osteoblasts through
the PI3K, AKT, c-Src and AP-1 pathways, leading to the
induction of osteopontin, a SIBLING extracellular matrix protein
family member. These events are mediated by the HGF
canonical c-Met receptor, whose inhibition blocks all these
signal-transduction pathways and subsequently reduces
osteopontin production.49

The last osteoclast-secreted factor found to enhance bone
formation is collagen triple helix repeat containing 1
(CTHRC1),50 a glycoprotein associated with the Wnt family
signaling.51 CTHRC1 is a downstream target of BMP2,
expressed in bone in vivo. Cthrc1-deleted mice have a low bone
mass and low bone formation. In contrast, Cthrc1 transgenic
mice show high bone mass and high bone formation.52

CTHRC1 was found to enhance chemotaxis and osteoblast
differentiation51 as well as matrix mineralization, along with an
increased expression of osteoblast-specific genes, such as
alkaline phosphatase, collagen 1a1 and osteocalcin, and an
accelerated osteoblast proliferation.53 CTHRC1 was observed
to be secreted by mature osteoclasts, especially when actively
resorbing dentin. It is strongly induced by hydroxyapatite with
a mechanism triggered by high extracellular calcium and, to
a lesser extent, by phosphate. In vivo, it is stimulated by
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treatment with RANKL, which, after a phase of bone resorption,
promotes a recovery phase of bone formation. Such a recovery
phase is not observed in Cthrc1-null mice, suggesting
that CTHRC1 is relevant for the osteoclast-to-osteoblast
coupling. Targeted deletion of Cthrc1 in mice totally suppresses
CTHRC1 expression in the bone tissue. In contrast, there
is no consequence upon deletion of Cthrc1 in osteoblasts,
suggesting that osteoblasts are the target of CTHRC1 produced
by osteoclasts but are not themselves involved in the synthesis
of the cytokine. Cthrc1 expression in bone is blunted by
aging and by antiresorptive therapy with alendronate, implying
that bone resorption is critical for the CTHRC1-induced
control of bone formation. Taken together, these observations
support a role of CTHRC1 in the context of the cross-talk
between osteoclasts and osteoblasts within the bone
multicellular unit.

Bidirectional Cell-to-Cell Signals

Another means for osteoclasts to communicate with osteo-
blasts and enhance bone formation is through the cell-to-cell
contact caused by the interaction of the Eph receptor/ligand
pathways.46 Osteoclasts express the EphrinB2 ligand, whereas
osteoblast precursors display the Eph4 receptor.54 Although
they are considered ligand and receptor, respectively, the
underlying mechanism is known to induce bidirectional signals.
The intracellular pathway associated with the ligand EphrinB2
causes the downregulation in osteoclasts of important tran-
scription factors (c-Fos and NFATc1), which ends up with a
suppression of osteoclast formation. At the same time, the
intracellular pathway associated to the Eph4 receptor in
preosteoblasts induces a reduction of RhoA and an
enhancement of osteoblast differentiation.54 According to the
Authors’ theory, this bidirectional signaling could smooth
the progress from the resorption and the formation phase in the
bone remodeling cycle.46 The EphrinB2/Eph4 bidirectional
signal seems to be counterbalanced by the EphrinA2/EphA2
pathway that regulates bone remodeling in the initiation
phase.55 EphrinA2 and EphA2 are both expressed by the
osteoclast lineage enhancing differentiation, whereas EphA2
expressed by osteoblasts precursors generate anti-
osteoblastogenic signals suppressing bone formation.55

Bidirectional signals are also associated with the sema-
phorins/plexins pathways.28,55 These pathways, initially iden-
tified as critical mechanisms of axon guidance, turned out to
regulate many other cellular and tissue functions. In the bone,
semaphorin 3A, produced by the osteoblast lineage, has been
found to repress bone resorption while increasing bone for-
mation.56 The antiosteoclast effect is due to the interaction of
semaphorin 3A with the membrane protein neuropilin-1, which
blocks RANKL-induced osteoclast differentiation, inhibiting
RhoA and the immunoreceptor tyrosine-based activation motif
(ITAM) signaling. In contrast, in osteoblasts this pathway acti-
vates the Wnt/b-catenin signal. The activity of semaphorin 3A is
mediated by binding of the semaphorin 3A/neuropilin-1 complex
to the transmembrane protein plexin-A, which in osteoclasts
prevents the complex to bind the ITAM-associated immune
receptors, whereas in osteoblasts it recruits FARP2, inducing the
Rac-GTP/b-catenin signal. Interestingly, in osteoclasts sema-
phorins 6C and 6D antagonize semaphorin 3A by recruiting
plexin-A and preventing its binding to neuropilin-1.56

Is the Osteoclast–Osteoblast Cross-Talk Always Required?

The concerted action of osteoclasts and osteoblasts is well
documented in many ways, and experimental evidence clearly
supports the existence of molecular mechanisms involved in
their cross-talk. However, there are situations in which the two
cells types are not so keen to cooperate and this occurs in both
physiologic and pathologic conditions. For instance, during
modeling, a process that ensures harmonic accrual and correct
shaping of the bones in growing subjects, and that decline
with age, bone resorption and formation are uncoupled,57

implying that in this context bone resorption is not essential for
bone formation. Furthermore, when osteoclasts are reduced by
denosumab or are pathologically absent due to RANK or
RANKL gene mutations58,59 bone formation still occurs. These
observations suggest that while osteoclasts are able to
generate anabolic signals that enhance osteoblast activity,
especially at the bone remodeling sites, at least modeling-
based bone formation appears independent of osteoclasts.
Clinical evidence shows that osteoblast anabolic therapy with
teraparatide combined with the anti-RANKL antibody, deno-
sumab, has additive effects on bone mineral density of
osteoporotic patients, although denosumab markedly reduces
osteoclast numbers.60 Pierroz et al.61 confirmed that PTH
exerts its osteoblast anabolic effect even in mice treated with
denosumab, or in RANKL-deficient mice that present with no
osteoclast at all. Finally, it has been demonstrated that fracture
healing is potentiated when the antiresorptive agent zole-
dronate is administered in combination with BMP-7. In fact, in
osteotomized rats subjected to autograft, the callus volume
was doubled in BMP-7-treated animals compared with con-
trols, but it resulted fourfold higher when BMP-7 was admi-
nistered in combination with zoledronate, also resulting in an
improved strength compared with BMP-7 alone.62 These data
indicate that there is no need of osteoclast bone resorption to
stimulate bone formation in fracture repair. It is clear though that
osteoblasts do not universally require stimulatory osteoclast-
derived signals to perform bone formation, but probably there
are narrow and specific conditions in which osteoclasts and
osteoblasts rely on coregulatory pathways to accomplish their
functions. Therefore, the questions remain (i) whether the
cooperation between the two cell types, so well demonstrated
in experimental conditions, has any relevant biological and/or
clinical significance, and (ii) how osteoclasts and osteoblasts
discriminate remodeling versus modeling, working as a team or
independently of each other, respectively. Further work is
therefore necessary to clarify these fundamental aspects of
bone biology and understand whether we are dealing with a
pathophysiologically relevant phenomenon.

Conclusions

The basic multicellular unit governing bone remodeling could be
envisioned as a band that plays a complex music with rhythms
and sonorities that alternate at specific times and sites. In order
for the process to be conducted in a coordinated manner, cells
interact via cross-talk and exchange of signals and information.
Osteoclast and osteoblast lineages do so using a variety of
mechanisms that orchestrate their activities in both directions.
Although osteoblasts were long known to regulate osteoclast
activity mainly by paracrine and cell-to-cell signals, osteoclasts
were initially thought to be inert. New technologies and in-depth
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observations have first led to the identification of factors stored
in the bone matrix that, liberated in the microenvironment and
activated either enzymatically or by low pH, operated as
chemotactic, proliferating or differentiating factors (Figure 1).
Later on, it became clear that bone resorption was not the only
osteoclast activity capable of stimulating bone formation, and
clastokines were identified as paracrine anabolic inducers of
osteoblasts (Figure 1). Most interestingly, bidirectional cell-to-
cell contacts and paracrine signals have recently been
described to cause simultaneous and opposite regulation of
osteoclast–osteoblast activities in different phases of the bone
remodeling cycle (Figure 1). It is very interesting to note that the
osteoclast/osteoblast regulation is subjected to a tight balance
between stimulations and inhibitions, leading to fine tuning of
cellular activities that ensures the maintenance of a physiologic
bone mass, especially in adulthood. Disruption of this balance
causes bone diseases, with a prevalence of bone resorption
over formation in osteopenic syndromes and of bone formation
over resorption in high bone mass syndromes. What we should
expect in the future from the improvement of the knowledge on
the mechanisms whereby bone cells talk to each other is the
discovery of agents that could be used for safe and efficient
therapies to rebalance bone remodeling. The recent discovery
that osteocytes too largely contribute to the regulation of bone
remodeling on one hand makes the field even more complex
and hardly decipherable, but on the other hand extends the
possibilities that at least a few anabolic signals could be
exploited for ground-breaking therapies in bone diseases.
Without this prospective, the experimental evidence accu-
mulated thus far on the cross-talk between osteoclasts and
osteoblasts could remain a pure scientific exercise without any
solid translational impact.
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