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Calcium and phosphate are the principle ions involved in the deposition of mineral in the human body. Inhibitors of

mineralisation are essential for the prevention of ectopic mineral precipitation and deposition. In the past decade,

through in vitro, in vivo and clinical observation studies, we have come to appreciate the importance of fetuin-A (Fet-A),

a circulating glycoprotein, in preventing ectopic calcium phosphate mineralisation. Moreover, the detection of

Fet-A-containing mineral complex, termed calciprotein particles (CPPs), has provided new ways to assess an

individual’s calcific risk. The pathophysiological significance of CPPs in disease states is yet to be defined, but it

provides an exciting avenue to further our understanding of the development of ectopic mineralisation.
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Introduction

The ability of the body to form calcified tissues is crucial to the
maintenance of our structural integrity, but with mineralisation
(or calcification) restricted to tissues such as bone, cartilage,
dentin, cementum, enamel and otoconia. In bone and teeth,
collagen I, the predominant protein in the extracellular matrix,
serves as a scaffold onto which calcium (Ca), phosphate (Pi) and
other ions crystalise as mineral apatite. This mineral–protein
polymer gives rise to a unique material with excellent tensile and
compressive strength.1

The concentrations of Ca and Pi in serum are supersaturated
with respect to apatite. Therefore, one might expect that mineral
nucleation and growth would occur in all extracellular fluid
compartments, and thus the question with respect to biomi-
neralisation is how the body regulates the process of crystal
growth in bone and prevents crystal formation in extraosseous
tissues. Failure to prevent ectopic mineralisation is common in
conditions such as chronic kidney disease (CKD),2,3 chronic
inflammatory disease (CID)4 and diabetes,5 and it is also seen as
part of the ageing process.6

The body utilises a variety of mechanisms to control
mineralisation. Inorganic molecules such as magnesium and
pyrophosphate (PPi), proteins such as albumin, matrix GLA
protein (MGP), osteopontin and fetuin-A (Fet-A), and pH
modulate Ca Pi precipitation both at a tissue level and sys-
temically.7–16 This review focuses on the liver-derived glyco-
protein Fet-A (in humans known as a2-Heremans Schmid
glycoprotein) and its role as an important systemic inhibitor of
extraosseous mineralisation.17

Mineralisation from a Physicochemical Perspective

It has been a long-held view that the crystal precipitation from a
solution containing Ca and Pi follows that of the classical
nucleation theory (CNT). This theory proposes that in a
supersaturated solution random fluctuations in particle density
result in the formation of tiny crystal nucleus of the same
molecular structure as the final macroscopic crystal.18

Crystal growth from the nucleus occurs via the addition of
individual ions.

Recent studies using advanced imaging techniques such
high-resolution cryo-transmission electron microscopy and
atomic force microscopy have provided visual evidence of an
alternative pathway to crystal nucleation, termed non-CNT
(NCNT).19–22 In contrast to CNT, NCNTsuggests that stable pre-
nucleation complexes (PNC) exist in supersaturated solutions.
In the case of Ca and Pi crystallisation, the PNC is Ca tri-
phosphate (Ca(HPO4)3)4� (Figure 1), and its concentration in
solution is in an equilibrium with the concentration of Ca and Pi
ions. PNC tends to aggregate to form larger aggregates, and,
over time, these aggregates coalesce into amorphous Ca Pi
(ACP), an unstable phase without crystalline structure.22 The
transformation (or ripening) from ACP to apatite (with a Ca:Pi
ratio of 10:6) occurs with the further uptake of Ca ions
and release of hydrogen ions. The final product, apatite
(Ca10(PO4)6�(OH)2), is a thermodynamically stable crystal
structure (Figure 1).

The speed in which crystals form in a supersaturated fluid
such as the extracellular fluid depends on many factors. The
degree of supersaturation has an obvious role, but inhibitors of
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the crystal ripening process are equally important to
control physiological mineralisation and to prevent ectopic
mineralisation.

Fet-A Inhibits Ca Pi Crystal Growth

Proteins modulate crystal formation in at least two ways.
Albumin for example, reduces the supersaturation of serum by
binding free Ca ions to its acidic amino acid residues and EF-
hand-like motifs. However, this process is relatively inefficient to
prevent crystal precipitation, as evidenced by the fact that
despite its abundance, albumin accounts for only B50% of the
mineralisation inhibitory activity of serum.23 Rather than binding
to individual ions, Fet-A inhibits Ca Pi crystal growth by binding
to clusters of Ca Pi ions, acting as a barrier to further cluster
aggregation.24 The extensive computational modelling and
mutant analysis work by the Jahnen–Dechent group has
demonstrated that the b-sheet on the exposed surface of Fet-A
is crucial to its ability to bind mineral.24 This b-sheet contains
regularly spaced negatively charged acidic amino acids in a
lattice-like conformation.24 Each acidic residue on the protein
interacts with a Ca ion on the surface of a Ca Pi cluster, which
reduces the available surface area for further cluster aggre-
gation. In contrast to albumin, Fet-A circulates at around one-
hundredth the concentration of albumin in adult human
serum,25 but it is at least 10-fold more efficient in its capacity to
inhibit mineral precipitation in a supersaturated solution24

(Figure 2).

Formation of Colloidal Calciprotein Particles

Fet-A inhibits Ca Pi precipitation in two steps. First,
Fet-A binds to subnanometer-sized complexes of Ca and Pi,
forming an entity termed calciprotein monomers (CPM).26,27 If

the solution remains supersaturated despite CPM formation,
the thermodynamic drive for crystal nucleation remains and the
ACP (see earlier) mineral phase emerges. At this point, it has
been suggested that multiple Fet-A molecules, presumably
through their binding with Ca ions, ‘coat’ the exterior surfaces of
ACP to form primary calciprotein particles (CPP1).26 This Fet-A
‘shield’ appears to stabilise ACP and retards its progression to
more crystalline mineral phases. Over time, however, the
particles aggregate and develop crystalline structures to form
secondary CPPs (CPP2),28 which have the mineral signatures of
octacalcium phosphate or apatite27,29 (Figure 3).

The ability of proteins to inhibit mineral growth by binding to
Ca Pi clusters is not unique to Fet-A. Phosphorylated proteins
such as osteopontin30 and dentin matrix protein-131 are two
examples of other proteins with apatite growth inhibitory
activities in vitro, possibly via similar Ca Pi cluster binding
mechanisms. Fet-A differs from these proteins in that protein
phosphorylation is not required for its mineralisation inhibitory
activity.15,24,25 Furthermore, Fet-A appears to be the only such
protein that accumulates in calcified tissue but which is not
synthesised locally.32,33

Modulation of Skeletal Mineralisation by Fet-A

Given that at a molecular level Fet-A inhibits apatite formation
and growth, it is somewhat counterintuitive that Fet-A has also
been shown to promote collagen I matrix mineralisation in cell-
free conditions. A series of experiments by Price et al.34–36 have
shown that serum alone can mineralise collagen I matrix, and
such ability to induce matrix mineralisation is dependent on the
presence of Fet-A in serum.37,38 It is thought that Fet-A limits
mineral formation outside collagen I matrix, constraining
mineralisation to the small intrafibrillar space (0.3–0.6 nm in
width) where only small molecules such as Ca and Pi can readily

Figure 1 The pathway of hydroxyapatite formation. Adapted from Habraken et al.22 with permission. A model of hydroxyapatite formation from PNC in solution. Free ions in
solution (a) are in equilibrium with Ca triphosphate PNC (b). PNC aggregates (c), which then coalesce to become an ACP nucleus (d). With the addition of Ca ions and the loss of
hydrogen ions, ACP transforms into OCP (e) and subsequently HAP (f), the most thermodynamically favourable state.
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access. The fluid within the intrafibrillar space remains
supersaturated, but in the absence of a potent inhibitor mineral
precipitation is strongly favoured.34

In cell culture, Fet-A has been shown to inhibit osteoblast
apoptosis by preventing apatite formation. These experiments
used a serum-free ‘osteogenic’ medium containing supra-
physiological Pi concentration.15 The high Pi concentration in
culture media without the presence of inhibitors of miner-
alisation results in the formation of apatite crystals that are
cytotoxic,29,39,40 possibly by activation of inflammasome
pathways.41 Therefore, in an in vitro ‘osteogenic environment’,
Fet-A appears to promote cell survival by inhibiting apatite
formation in the extracellular fluid. Although Fet-A may prolong
survival of osteoblasts, it may also reduce osteoblast
recruitment by inhibiting key signalling pathways of osteoblast
differentiation from mesenchymal stem cells. Binkert et al. have
shown that an Fet-A can bind to transforming growth factor-b
and bone morphogenetic proteins (BMPs), cytokines crucial for
osteoblastic differentiation.42 At supraphysiological doses
(30 mM, B1.5 g l� 1), Fet-A completely inhibited osteoblast
maturation.42 In summary, these studies suggest that Fet-A may
have different effects on in vitro mineralisation depending on the
experimental conditions.

It would be hoped that an animal knockout model would help
clarify some of the discrepancies from in vitro studies. However,
Fet-A knockout models add further confusion to the inter-
pretation of the cell-free and in vitro work. Fet-A knockout mice
(Ahsg� /� ) have a normal skeletal phenotype at birth. Ahsg� /�

adult mice, however, have shortened long bones with increased

mineralisation of growth plates and cortical thickness.43,44

Bone strength and mineral content are increased in Ahsg� /� in
one study, but not in a subsequent experiment using animals
from a different genetic background.43,44 To further complicate
the picture, Fet-A heterozygotes (Ahsgþ /� ) did not exhibit an
intermediate phenotype. In fact, reduction in serum Fet-A by
two- to threefold reduced the mineralisation surface, the
mineral formation rate and increased mineralisation lag time
compared with wild-type or Ahsg� /� mice.43 A possible
explanation for the discrepancy between the cell-free
experiments and in vivo findings is that the production of
local mineralisation inhibitors such as osteopontin (OPN) is
upregulated in the absence of Fet-A, which can substitute for
Fet-A as a modulator of local mineralisation, allowing pre-
ferential crystallisation within collagen I matrix.45 Taken
together, the in vivo data suggest that bone mineralisation can
occur in the absence of Fet-A with no significant compromise to
its mechanical properties.

In clinical studies, the association of serum Fet-A con-
centration and bone mineral density (BMD) is also conflicting.
As summarised in Table 1, higher serum Fet-A has been found
to have either positive or no association with BMD, but no
inverse associations have been reported thus far. The positive
association between Fet-A and BMD is more convincingly
demonstrated in women, and recent evidence suggests that
oestrogen supplementation is associated with higher serum
Fet-A levels,46 but the direction of causality, if any, of this
relationship has yet to be demonstrated. Furthermore, in a large
prospective observation cohort of subjects465 years, baseline
plasma Fet-A was not predictive of fracture risk.47

Modulation of Ectopic Mineralisation by Fet-A

The spatial restriction of mineralisation to bone and teeth is
sometimes lost in disease processes. Ca Pi deposits are
commonly found within atherosclerotic plaques. In the elderly

Figure 2 Fet-A is a potent inhibitor of Ca Pi precipitation in solution. Fet-A, fetuin-A.
In a precipitation experiment, precipitation was instantly visible in Tris-buffered saline
containing 10 mM CaCl2 and 6 mM NaH2PO4 (a). After 120 minutes, the same solution
spiked with 1 mgml� 1 bovine fet-A remains transparent where as precipitates are
visible in albumin solutions at 1mgml� 1 and 10 mgml� 1 (b). Aliquots of the solutions
are then centrifuged at 1500g for 5 minutes at 41C, pellets are visible in all solutions
except for the fet-A containing solution (c).

Figure 3 Formation and transformation of CPPs in a supersaturated solution. CPP,
calciprotein particle; Fet-A, fetuin-A. Adapted from Pasch et al.101 with permission. In
the T50 test, a fixed amount of Ca and Pi stock solution is added to serum to
induce supersaturation (10 mM Ca2+ and 6 mM PO4

3-). Small (~60 nm), amorphous and
spherical particles (CPP1) appear immediately but are only transiently stable. After a lag
period, CPP1 transforms to larger and more crystalline particles (CPP2). T50 measures
the time taken for light scattering intensity to reach its half-maximal read out.
Calcification inhibitors delay the transformation from CPP1 to CPP2 (green box),
substrates of apatite formation and acidosis accelerates this process (red box).
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and in patients with CKD, diabetes and CID, ectopic miner-
alisation is often present in the tunica media of arteries. In
patients with calciphylaxis, mineral deposits can be found also
in the skin, fat and other soft tissues. Histological examinations
have shown that Fet-A is intimately associated ectopic Ca Pi
deposits. This is seen in calcified arterial wall,48-52 in ectopic
joint mineralisation53 and in calcified breast implant capsules.54

Fet-A is notably absent however, in uncalcified areas, even in
patients with end-stage kidney disease.48,50

Similar to osteoblast cell culture, vascular smooth muscle cell
(VSMC) culture matrix mineralisation can be induced by
supraphysiological concentrations of Ca and Pi ions.48 Under
these conditions, Fet-A has been shown to inhibit such
mineralisation in a dose-dependent manner.48,50 A reduction in
the number of calcific nidi from apoptotic bodies and inhibition
of mineral growth of matrix vesicles released from VSMC are
again thought to account for the reduction in matrix miner-
alisation under these conditions.48

The ability of Fet-A to inhibit ectopic mineralisation in vivo was
demonstrated in mouse knockout models. Ahsg� /� mice on
the calcification-prone DBA-2 genetic background resulted
in extensive ectopic mineralisation affecting virtually all
organs.17,55 Similar extensive ectopic mineralisation involving
the kidney, heart and lungs were seen in Ahsg� /� on the
calcification-resistant C57BL/6 genetic background, when
these animals were challenged with a high-Pi diet and either
vitamin D supplementation17 or with the induction of CKD
through renal ablation.56 With respect to vascular calcification,
Ahsg� /� mice crossed with atherosclerotic-prone ApoE� /�

mice developed increased aortic intimal mineralisation, but this
was only apparent in nephrectomised mice fed a high-Pi diet.45

Despite these impressive phenotypes, two features are worth
further consideration. First, Ahsg� /� mice do not display an
overt calcific phenotype unless combined or challenged with
other pro-calcific factors. This is seen in Ahsg� /� mice with a
calcification-resistant background in which no significant
ectopic mineralisation was seen in the absence of a high-Pi diet.
Although the DBA/2 Ahsg� /� mice exhibited spontaneous
ectopic calcification without exogenous stimuli, the
DBA/2 strain itself is deficient in PPi,57,58 another potent
inhibitor of mineralisation. This suggests that under physio-
logical circumstances Fet-A is not absolutely required to inhibit

extraosseous mineralisation, but its importance is evident when
mineral metabolism is perturbed or when redundant
mechanisms against ectopic mineralisation fail. The second
important observation is that vascular medial mineralisation
was not a prominent feature associated with Ahsg� /� mice,
even in those with CKD fed a high-Pi diet.17,45,56 The preference
for intimal mineralisation in Ahsg� /� mice differs from the
exclusive medial mineralisation seen in other calcification
inhibitor knockout models such as the Mgp� /� mice,59 and the
PPi-deficient ENPP� /� mice.60 The reason for these pheno-
typic differences is unclear at this stage, but it suggests
that Ahsg� /�mice may be a more suitable model to study
endothelial injury and arterial intimal mineralisation.

Association Between Fet-A and Adverse Outcomes

The use of serum Fet-A as a risk marker was first studied in a
haemodialysis cohort61 and subsequently replicated in patients
on peritoneal dialysis and on patients with CKD, hypertension,
diabetes and coronary heart disease (see Table 2 for the
respective studies and references). A reduction in serum Fet-A
may reflect decreased synthesis and consequent reduced
capacity to inhibit extraosseous mineralisation, but it may also
reflect the degree of extraosseous mineralisation owing to a
‘consumptive phenomenon’ in which Fet-A is removed from the
circulationandsequestered in areasof mineral deposition.58,62 As
summarised in Table 2, although the majority of studies suggest
an inverse association between serum Fet-A and adverse
outcomes, several studies find no relationship or even positive
associations. The discrepancies may stem from the fact that
serum Fet-A is raised in obesity and insulin resistance,63 con-
ditions that in themselves are associated with adverse outcomes.

Association Between CPPs and Adverse Outcomes

More recent data suggest that total immunoreactive serum
Fet-A may not be the most clinically relevant measurement with
respect to pathology.64,65 Circulating Fet-A may exist as free
protein measured in the circulation of normal adults with a
concentration of B0.3 mg l� 1,66 but in pathological conditions
Fet-A is also bound to circulating CPPs,25,64,66 which make up a
variable percentage of the total circulating Fet-A pool.

Table 1 Studies with reported associations between serum Fet-A and BMD

Source Cohort N Association between BMD and serum fet-A

Fink et al.47 Individuals aged 465 years 4714 No association with BMD after full multivariate adjustment.
Chailurkit et al.103 Healthy elderly women 82 High fet-A was associated with increased L2–4 BMD, but not associated with

femoral
neck BMD

Ix et al.104 Healthy individuals aged
70–79 years

508 High fet-A was associated with increased BMD across different sites in women.
No significant association was detected in men.

Kirkpantur et al.105 Haemodialysis patients 72 High fet-A was associated with increased BMD across different sites except for
lumbar vertebrae.

Fiore et al.106 Patients with established
atherosclerosis

90 No association with BMD

Wilund et al.107 Sedentary older adults 12 No association with BMD
Avila et al.108 Prevalent female dialysis patients 197 Patients with a Tscore 4�1.0 had higher fet-A compared with those with a Tscore

p�1.0.
Sari and Uslu109 Postmenopausal women 90 Positive association with lumbar and femoral BMD
Sritara et al.110 Healthy volunteers 1741 No association with BMD

Abbreviations: BMD, bone mineral density; fet-A, fetuin-A.
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Owing to the higher density and size of CPPs, Fet-A bound to
CPPs is readily detectable by differential centrifugation, or by
ultrafiltration of body fluids.25,64 Circulating CPPs in serum were
initially discovered in etidronate-treated rats with profound
hypercalcaemia (4.3 mM) and hyperphosphataemia (5.1 mM).67

A high-molecular-weight species in serum containing Fet-A,
MGP, Ca and Pi was detected by the above-mentioned
methods.67 Subsequent studies have demonstrated that a

similar high-molecular-weight species containing Fet-A
(without MGP) was present in the serum of rats with adenine-
induced renal failure68 and in the sera of patients with CKD and
CID,25,66 but it is notably undetectable in the serum of normal
adults.25,64,66 Interestingly, especially high levels of CPPs were
recorded in dialysis patients with calciphylaxis.66,69 We char-
acterised the morphology of these particles in serum of dialysis
patients as CPP2.29 Although it is conceivable that in the

Table 2 Clinical studies assessing the relationship between total serum Fet-A, vascular parameters and patient outcome (updated from Hamano et al.64)

Source Cohort N Association between adverse outcomes and total serum fet-A

Univariate association Significant
after MVA?

Kettler et al.61 HD patients 312 Low serum fet-A was associated with inflammation, cardiovascular and
all-cause mortality

No

Mehrotra et al.111 Patients with type II diabetes 88 Low serum fet-A was associated with CACS in patients with diabetic
nephropathy

Yes

Moe et al.50 Patients with ESKD 51 Low serum fet-A was associated with CACS, but not aortic calcification NP
Stenvinkel
et al.112

Incident dialysis patients 256 Low serum fet-A was associated with malnutrition, inflammation,
atherosclerosis, cardiovascular and all-cause mortality

Yes

Wang et al.113 PD patients 238 Low serum fet-A was associated with valvular calcification Yes
Honda et al. Patients with ESKD 176 Low serum fet-A was associated with mortality Yes
Hermans et al.114 Prevalent dialysis patients 131 Fet-A was inversely associated with increased APWV in univariate

analysis
No

Jung et al.115 HD patients 40 Fet-A was not associated with CACS No
Cozzolino et al.116 HD patients 115 Low fet-A was associated with increased CACS Yes
Mori et al.117 Healthy subjects 141 Higher fet-A was associated with increased carotid artery stiffness Yes
Russo et al.118 Pre-dialysis CKD patients 53 Low fet-A was associated with increased CACS NP
Hermans et al.119 HD and PD patients 987 Low fet-A was a predictor of overall mortality Yes
Ix et al.120 Patients with CAD 970 Low fet-A was associated with mitral annular calcification and with aortic

stenosis in patients with diabetes
Yes

Ix et al.121 Stages 3–4 CKD patients 822 Fet-A was not associated with all-cause or cardiovascular mortality No
Mikami et al.122 Patients with diabetic

nephropathy
85 Fet-A was not associated with CACS No

Shroff et al.123 Children on dialysis 61 Low serum fet-A was associated with higher APWV Yes
Metry et al.124 HD patients 222 Low serum fet-A was associated with mortality No
Zheng et al.125 African-American HD patients 17 Serum fet-A was inversely associated with CACS NP
Hamano et al.64 Pre-dialysis CKD patients 73 Serum fet-A was not associated with CACS NP
Lorant et al.126 Patients with type II diabetes 76 Lower serum fet-A was associated with increased prevalence of PAD in

patients
Yes

Mori et al.127 Patients undergoing coronary
angiography

92 Lower serum fet-A was associated with CAC Yes

Lim et al.128 Patients post acute myocardial
infarction

754 Lower serum fet-A was associated with poorer 1 year survival Yes

Marechal et al.129 Renal transplant recipients 277 Lower serum fet-A was associated with aortic calcification and
cardiovascular events

Yes

Pateinakis
et al.130

Haemodialysis patients 81 Lower serum fet-A was independently associated with increased APWV
but not cIMT

No

Guarneri et al.131 Patients with essential
hypertension

105 Lower serum fet-A was independently associated with increased cIMT Yes

Scialla et al.90 Incident dialysis patients 602 The lowest serum fet-A tertile was associated with a significant increase
in cardiovascular mortality risk

No

Jung et al.132 PD patients 67 Lower serum fet-A was independently associated with increased APWV Yes
Roos et al.133 Patient post acute coronary

syndrome
1049 Serum fet-A was not predictive of subsequent cardiovascular events No

Emoto et al.134 Type II diabetes without
significant renal impairment

416 Patients with calcified carotid plaques had lower serum fet-A compared
with those without calcified carotid plaques.

Yes

Rittig et al.135 Patients at an increased risk of
diabetes

315 Plasma fet-A was positively associated with cIMT. Yes

Jensen et al.136 Elderly (465 years old)
subjects

3810 Higher serum fet-A was associated with lower incident cardiovascular
disease only in non-obese individuals.

Yes

Kaess et al.137 Community cohort without pre-
existing CVD

1870 Fet-A was not associated with CACS No

Ford et al.138 Non-diabetic stage 3 and stage
4 CKD patients

73 Lower plasma fet-A predicted increase in APWV after 1 year Yes

Smith et al.65 Stage 3 and stage 4 CKD
patients

184 Total serum fet-A was not predictive of all-cause mortality No

Abbreviations: APWV, aortic pulse-wave velocity; CACS, coronary artery calcification score; CAD, coronary artery disease; cIMT, carotid intimal media thickness; CKD,
chronic kidney disease; CVD, cardiovascular diseases; ESKD, end-stage kidney disease; fet-A, fetuin-A; HD, haemodialysis; MVA, multivariate analysis; NP, not
performed; PAD, peripheral artery disease; PD, peritoneal dialysis.
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aforementioned animal models CPPs may form in the intra-
vascular space as a result of very high Ca and Pi concentrations,
patients with moderate CKD and CID often have Ca and Pi
concentrations within their respective reference intervals where
spontaneous in situ formation in serum seems improbable. The
origin of circulating CPPs remains unknown, but the fact that
bisphosphonates, parathyroid hormone, vitamin D and
osteoprotegerin are associated with serum CPPs64,70 suggests
that bone is the most likely candidate. CPP-like species have
also been detected in the spent dialysate of some patients
undergoing peritoneal dialysis.28,71

In CKD, serum CPPs are associated with coronary artery
calcification,64 increased aortic stiffness25 and is predictive of
all-cause mortality.65 The well-known cardiovascular risk factor
of inflammation becomes important here, as the independent
predictive power of CPPs is attenuated, when high-sensitivity
C-reactive protein is entered into the multivariate model.65 This
is interesting, as CPPs are also detected in patients with
inflammation but normal renal function,72 implying that
inflammation per se may be important in the formation of CPPs.

Are CPPs Pathogenic?

Although the association between circulating CPPs and dis-
eases is interesting, whether these particles are themselves
pathogenic is unclear. Existing publications suggest that the

core component of CPPs, Ca Pi nanocrystals, can be toxic
when applied to cultured cell lines.10,40,73–85 Furthermore, the
nanocrystal shape and size modulated their cytotoxic
effects.40,76–78 It is important to point out that the particles used
in these studies were synthesised in a protein-free environment,
but the CPPs, as detected in serum, are synthesised in a
protein-rich environment in vivo.25,64 Theoretically, proteins can
modulate the cytotoxicity of Ca Pi nanocrystals in at least two
ways. Proteins such as Fet-A reduce aggregation and ripening
of nanocrystals, thereby reducing their cytotoxicity. In addition
to a given protein’s physicochemical effects on crystal
formation, the intracellular uptake of proteins, compared with
unbound protein, is enhanced when proteins are bound to these
nanocrystals.86 The intracellular fate and effects of these
proteins bound to CPPs is uncertain, but it is possible that they
may exert additional effects on cells.

Murine studies have shown that cells of the reticu-
loendothelial system remove CPPs from the circulation partly
via the cell surface class A scavenger receptor.86 Macrophage
uptake studies suggest that CPP-associated Fet-A is taken up
much more readily than free Fet-A, suggesting that Fet-A is not
the ligand responsible for macrophage endocytosis.29,86 It is
possible that other proteins associated with CPPs, such as
OPN, may facilitate macrophage uptake of these particles.87,88

Regardless of the exact mechanism of cell entry, CPP-induced
proinflammatory cytokines release at high doses,29,39 although
the ‘Fet-A shell’ appears to dampen the inflammatory response
to otherwise naked Ca Pi nanocrystals. Similar results have
been replicated in VSMC culture.10 It is therefore an over-
simplication to categorise CPPs as ‘good’ or ‘bad’ particles.
In vitro and clinical data suggest that the presence of CPPs
(compared with its absence) is associated with cytotoxicity and
adverse clinical outcomes, but this is likely an effect mediated
by its mineral core. The protein components, on the other hand,
actually protect cells from harmful effects of the mineral core.

Are CPPs the Mediators of in vitro ‘Pi Toxicity’?

There is strong epidemiological evidence to suggest that high
serum Pi is associated with adverse outcomes in patients with
CKD.89–91 The importance of Pi in mediating adverse outcomes
is backed by observations that increased Pi intake induces
vascular calcification in animal models.17,56,92,93 In vitro
experiments have also suggested that increased extracellular
Pi may induce VSMC to express markers associated with
osteoblastic/chrondrocytic-like cells, possibly via the Type III
sodium-dependent Pi co-transporter (Pit-1).94 It is worth
considering that the effect ascribed to a high extracellular Pi in
in vitro studies may be partly or entirely owing to the effect of
CPPs that form in this environment, rather than free Pi ions
per se. Increased Pi concentration in cell culture medium is
often achieved by adding a small volume of a concentrated
stock Pi solution. The high Pi concentration at the point of
contact between stock Pi solution and medium may result in the
nucleation of Ca Pi mineral phases and subsequent formation of
CPPs. Indeed, CPPs can spontaneously form in cell culture
medium after prolonged incubation,95 and the addition of Pi
(and Ca) would only serve to hasten the formation of CPPs in cell
culture environments.96 This phenomenon has been experi-
mentally verified by Sage et al., reporting that the addition of Pi
resulted in nanocrystal formation with morphology similar to

Figure 4 A conceptual representation of the T50 test. CPP, calciprotein particle;
T50, lag time. Protocol adapted from Pasch et al.101. To form a precipitation mix, Ca and
Pi stock solution was added to serum of a healthy volunteer (right) and a dialysis patient
(left) and incubated at 371C. A standard flash enabled camera was used to capture the
images obtained at the given time intervals. CPP1 stage appears translucent due to a
relatively small degree of light scattering. After 255 minutes, the dialysis patient sample
becomes opaque, indicating that CPP1 has transformed into CPP2, but the sample
from the healthy volunteer remained translucent until 400 min, when it underwent a
similar change in opacity.
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CPP1. The cellular effects of ‘high Pi’ such as increased BMP-2
and OPN synthesis is primarily mediated by the effect of
nanocrystals on cells.97 Furthermore, experiments often use a
Pit-1 antagonist, phosphonoformic acid (PFA), to demonstrate
that reducing intracellular Pi uptake in response to high
extracellular Pi can reverse the cellular effects of high extra-
cellular Pi. However, PFA is also a potent inhibitor of Ca Pi
crystal formation.98 Therefore, the effect of PFA on cells could
be also mediated via its inhibition of crystal formation, rather
than via its blockade of Pit-1. In other in vitro work, increased Pi
has been shown to induce VSMC autophagy99 and endothelial
apoptosis;100 it is possible that these effects are also meditated
via the formation of CPP in vitro. Future studies are needed to
distinguish the cellular effect Pi ions from those of CPPs
generated in vitro.

Serum Calcification Propensity

In parallel to the work on the biological effects of CPPs,
understanding the mechanics of CPP formation has also paved
the way to the development of a novel test, serum calcification
propensity or the T50 test.101 Biomarkers in routine clinical
practice frequently rely on the presence and concentration of a
particular substance. Functional assays, however, are more
appropriate in some instances, and an example of this is the
prothrombin time (PT). PTassesses the time taken for a plasma
sample to clot after the addition of thromboplastin, an activator
of the extrinsic coagulation cascade. PT is therefore a functional
study assessing the cumulative effect of the various pro- and
anti-coagulants in plasma. A similar concept, based on CPP
biophysics, has been developed to determine the ability of the
serum to resist crystal apatite formation. When large amounts of
Ca and Pi are added to serum, CPP1 are formed. The lag time
between the formation of CPP1 and its transformation to CPP2
is dependent on a number of parameters (Figure 3): pH,
temperature and the concentration of Fet-A, Ca and Pi
ions.28,65,101 In a complex environment such as the extracellular
compartment, the duration is also prolonged by the presence of
other inhibitors of Ca Pi crystal growth such as PPi and
magnesium ions.65,101

The lag time (T50) is the time taken for 50% of CPP1 to
transform into CPP2, as determined by their difference in size
and ability to scatter light. Thus, T50 is analogous to PT in that it
does not give information about any single factor, but rather
reflects on the overall balance between pro- and anti-calcific
factors in serum; that is, longer lag time suggests that the serum
contains lower levels of pro-calcific factors or more anti-calcific
factors.65 The difference in light scattering from CPP1 to
CPP2 can be detected via either three-dimensional dynamic
light scattering or by nephelometry.28,101 A photographic
representation of the concept is shown in Figure 4.

The advantage of this assay is that it captures various known
(and possibly unknown) factors that modulate mineralisation.
We have shown that in a pre-dialysis CKD cohort T50 is inversely
associated with known promoters of mineralisation such as
ionised Ca and Pi, but it is positively associated with inhibitors of
mineralisation such as PPi and serum Fet-A.65 In the same
cohort, a lower baseline T50 is associated with increased aortic
pulse-wave velocity and increased inflammatory markers.
Furthermore, a lower T50 was found to predict all-cause
mortality, even after adjustment for routine clinical and

biochemical parameters.65 Similar results have recently been
replicated in renal transplant recipients.102 The T50 assay has
the potential to revolutionise the assessment of ‘calcific risk’,
but its availability is limited and not completely physiological, as
it relies on adding large amounts Ca and Pi ions to reliably
induce a highly supersaturated environment.101 It is also
important to note that unlike the serum CPPs detected in
patients with CKD and CID, the CPPs generated in the T50 assay
represent a ‘test tube’ phenomenon.

Summary and Conclusions

Through evolution, vertebrates have developed sophisticated
mechanisms to restrict physiological mineralisation to bone and
teeth. Fet-A is one of a number of overlapping factors that limit
Ca Pi mineralisation in extraosseous tissues, while permitting
physiological ossification. The study of Fet-A and its interaction
with mineral has revealed a new paradigm to understand and
assess the effect of disturbed Ca and Pi metabolism. Ectopic
mineralisation is found in many disease states, but it is
especially prevalent in those with CKD. Although the mainstay
of therapy of ectopic mineralisation is currently focused on
controlling serum Ca and Pi levels, finding ways to support
inhibitors of mineralisation may be of equal importance in the
treatment of unwanted mineralisation.
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