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Epigenetic mechanisms are able to alter gene expression, without altering DNA sequence, in a stable manner through

cell divisions. They include, among others, the methylation of DNA cytosines and microRNAs and allow the cells to adapt

to changing environmental conditions. In recent years, epigenetic association studies are providing new insights into the

pathogenesis of complex disorders including prevalent skeletal disorders. Unlike the genome, the epigenome is cell and

tissue specific and may change with age and a number of acquired factors. This poses particular difficulties for the

design and interpretation of epigenetic studies, particularly those exploring the association of genome-wide epigenetic

marks with disease phenotypes. In this report, we propose a framework to help in the critical appraisal of epigenetic

association studies. In line with previous suggestions, we focus on the questions critical to appraise the validity of the

study, to interpret the results and to assess the generalizability and relevance of the information.
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Introduction

Genetic information stored in DNA sequence provides stability
through generations to animal and vegetal species. Genetic
changes are also considered as a major driver of evolution by
improving the adaptation to the environment. However,
genetic-driven evolution is a slow process. It takes generations
and does not allow cells to adapt to fast changing environmental
conditions. On the contrary, epigenetic mechanisms include a
number of processes that permit reversible modulation of gene
expression, without altering DNA sequence, to rapidly adjust
cellular processes to constantly changing environmental
conditions.1 These can be transmitted through cell divisions
(mitosis) and, in some cases, through generations (meiosis).2–4

Among epigenetic mechanisms, the methylation of cytosines in
DNA and the microRNAs (miRNAs) have received much
attention in human studies, and they are the focus of this
article.5 Other epigenetic mechanisms include long noncoding
RNAs, post-transcriptional changes of histones and other
factors influencing chromatin conformation.6 The modifications
of histone cores influence chromatin structure by affecting
histone–histone and histone–DNA interactions (reviewed in
Tessarz and Kouzarides7). The modifications of histone tails are
considered as important mechanisms in the activation and
repression of gene transcription.

Many, but not all, cytosines followed by guanines in DNA
(the so called CG or CpG dinucleotides) are methylated.

The methylation of intergenic regions and gene bodies likely
provides stability to DNA, maintains repetitive and transposable
elements silenced and reduces spurious gene transcription
and transcriptional noise. However, the methylation of
cytosines in gene-regulatory regions is involved in the regulation
of canonical gene expression.8–10 CpG islands are CpG-rich
regions that are present in the promoters of many genes. The
classical concept was that the methylation of cytosines in
promoters’ CpG islands was associated with gene repression,
whereas the demethylation of those regions was associated
with active gene expression.11,12 However, recent studies
have delineated a more complex picture. On the one hand,
the inverse correlation between DNA methylation and gene
expression is not constant; on the other hand, the methylation of
distant regulatory regions appears to have an important role in
the modulation of gene expression.13,14

miRNAs are endogenous noncoding ribonucleic acids,
usually 21–25 nucleotides long, that modulate gene expression
at a post-transcriptional level.15 miRNAs are able to inhibit the
translation of mRNA and promote their degradation by binding
to the 30 untranslated region (30-UTR).16 Each miRNA targets
hundreds of genes and at the same time each individual gene is
targeted by multiple miRNAs. miRNAs are transcribed in the
nucleus and afterward they are exported to the cytoplasm.
Once there, they undergo a maturation process before
becoming functionally active. They can act locally in the
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cytoplasm or be secreted into exosomes and sent away to other
cells or tissues.17

There is a complex interplay between the various epigenetic
mechanisms that contribute to the regulation of gene
expression. For example, histone lysine methylation and DNA
methylation are closely related. Thus, the methylation of lysine 4
(H3K4me, Box 1) is generally associated with gene
promoters with unmethylated cytosines and active gene
transcription, as recently demonstrated in mesenchymal stem
cells.18 On the other hand, H3K9me3 marks are associated with
DNA methylation and gene repression.19 Other interactions
between epigenetic mechanisms are schematically depicted in
Figure 1. More details can be found in recent reviews.5,6,19–23

In view of the overwhelming amount of biomedical literature,
critical appraisal is an absolute need both for the researcher and
the clinician. Thus, a structured approach has been postulated
to help analyzing different types of papers such as those
concerned with therapy, diagnostic tests or, more recently,
genome-wide association studies.24–26 In this view, we propose
a similar framework to interpret the epigenetic literature—in

particular, human epigenetic association studies. We will focus
on studies about DNA methylation and miRNAs because they
are the most common so far. Following other schemas,
we will divide the appraisal into three parts: internal validity,
interpretation of the results, and external validity and relevance.
The key items to check are based on a previous report20 and are
summarized in Table 1.

Evaluating Study Validity

Subjects
It should be stressed that, unlike the genome, the epigenome
is not stable. It depends on the sex of the individual and
changes with age and the internal and external environmental
conditions.9 This poses particular difficulties for carrying out
and interpreting epigenetic studies. Therefore, a precise
description of the subjects included in the study is a critical
issue in order to assess its internal and external validity. For
example, DNA methylation changes with aging (Figure 2).
In general, there is a trend for decreased methylation with aging,

Box 1 Definitions in epigenomics

Locus: Is a specific location of a gene or other genetic mark on a chromosome. In plural it is called Loci.

Enhancers: Enhancers are cis-acting DNA located up to 1Mbps up or downstream from the start site of a given gene. They modulate the
transcription.

Promoters: DNA sequences that define where transcription of a gene has to be started and modulate it. They are commonly located upstream of
the transcription initiation site.

Untranslated regions (UTR): Regions defined in each side of a coding sequence on a strand of mRNA. These regions are not translated into
proteins. The region in the side 50 is known as 50-UTR, and in the other side it is called the 30-UTR.

Transcription factors: Transcription factors are proteins involved in the process of transcribing DNA into RNA. Hence, they regulate gene
expression.

Transcription factor-binding sites (TFBSs): Short segments of DNA where the transcription factors bind. They are common in promoter and
enhancer regions.

DNA methylation: DNA methylation is an epigenetic modification in the DNA strand, which consists in an addition of a methyl group to DNA. The
most common DNA methylation process is the incorporation of a methyl group at the 5-carbon of the Cytosine (5-methylcytosine).

Transcriptional noise: It refers to the variability of gene expression between cells of the same type. It may occur due to several factors including
transcriptional bursting of promoters, as well as spurious transcription within coding sequences. The methylation of gene bodies is associated
with reduced transcriptional noise.

CpG islands (CpGi): Short interspersed DNA sequences that deviate significantly from the average genomic pattern by being CpG rich and
predominantly nonmethylated.

CpG Island shores: Regions flanking CpG islands (up to 2000 base pairs).

Bisulfite conversion: Use of bisulfite treatment of DNA to determine its pattern of methylation. Bisulfite converts unmethylated cytosines to uracil
but leaves methylated cytosines unaffected. Thus, bisulfite treatment introduces specific changes in the DNA sequence that depend on the
methylation status of individual cytosines. Various techniques can be applied to retrieve the information on the bisulfite-converted DNA
sequence, thus inferring the methylation status of the cytosines in the original DNA (arrays, standard sequencing, next-generation sequencing,
pyrosequencing, etc.).

Reduced representation bisulfite sequencing (RRBS): Technique used to analyze the genome-wide methylation profiles on a single nucleotide
level. This technique combines restriction enzymes and bisulfite sequencing in order to enrich for the regions of the genome that have a high CpG
content, and thus reducing the number of nucleotides that need to be sequenced.

Histones: Proteins bound to the DNA that influence chromatin conformation and gene transcription.

Nucleosome: Basic functional unit of the chromatin, composed by 147 basepairs of DNA wrapped around a histone octamer that includes two
copies of histones H2A, H2B, H3 and H4.

Histone post-translational modifications: Covalent modifications of histone aminoacids by phosphorylation, methylation, acetylation,
ubiquitylation or sumoylation. The modified residues act as docking sites for other proteins that specifically recognize these changes and
form molecular complexes that influence chromatin structure and remodeling, as well as DNA repair and gene activity. They are named with
letters and numbers stating the histone itself, the single-letter aminoacid code (for example, K stands for lysine, R for arginine, H for histidine, etc. )
and position, and the type of modification. Thus, H3K4me1 stands for histone 3 with methylated lysines at position 4; H3K9me2 stands for histone
3 with dimethylated lysines at position 9.

Noncoding RNAs (ncRNA): Noncoding RNAs are functional RNA molecules that are transcribed but not translated into proteins. They are
classified as short noncoding RNAs (o200 nucleotides), including microRNAs, and long noncoding RNAS (4200 nt).

Homeo box: DNA segment characteristic for homeotic genes (Hox genes) that regulate developmental morphogenetic processes.
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but this is not a universal phenomenon throughout the genome.
In fact, the methylation signature at some CpGs has been
proposed as a method to estimate the age of an individual.27

Therefore, a clear statement of the age of the subjects included
and a proper matching between patients and controls are
needed in order to make meaningful comparisons between the
study groups. Likewise, the age of the patients needs to be
taken into consideration when the results of different studies are
compared.

Of course, the phenotype is to be clearly defined. If the study
included patients and controls, the diagnostic criteria, and
eventually the disease stage or severity, must be precisely
established and the appropriateness of controls has to be
checked. In addition, the possible influence of previous
therapies or interventions on the epigenome needs to be
considered. This does not cause any concern in genetic studies
but may have an important influence in the results of epigenetic
association studies. In fact, several drugs and hormones are
known to influence DNA methylation.28,29

In some cases, especially when the study material includes
solid tissues, practical and ethical reasons may preclude
from obtaining tissue samples from normal controls. Then,
comparing patients with different conditions may be an
alternative. As an example, Delgado-Calle et al. analyzed DNA
methylation in bone from patients with hip fractures and with hip
osteoarthritis.30 These between-disease comparisons may
produce meaningful results, but it may be difficult to know which
disorder is actually different from normal and, consequently,
which are the disease-driving changes.

Tissue
One of the convenient characteristics of genetic-association
studies is that almost any tissue or fluid can be used as the
source of DNA. However, unlike the genetic sequence,
epigenomic marks are tissue (or cell) specific.14,31 In other

Figure 1 Schematic view of the interplay between epigenetic mechanisms. The
transcription of the coding regions of the protein-coding genes originates, after a splicing
and maturation of precursors, mature mRNAs that lead the synthesis of the protein
chains on the ribosomes. DNA methyltransferases (DNMTs) are a family of enzymes
that methylate cytosines in CpG dinucleotides. The methylation/demethylation of CpGs
influences gene expression by several mechanisms including changing the binding of
transcription factors and the interaction with other enzymes that, in turn, modify histone
tails. Chemical modifications of histones (such as methylation and acetylation) influence
chromatin conformation and the binding of protein complexes needed for gene
transcription. Long noncoding RNAs (lncRNAs) may modulate the activity of DNMTs
and interact with the histone machinery. Precursors of microRNAs (miRNAs) are
transcribed and processed into mature miRNAs. These miRNAs bind to mRNAs
bearing in their 30 untranslated region sequences complementary to the miRNAs. The
binding of miRNAs to their targets mRNAs can stop protein translation or even induce
the degradation of the mRNA. Some lncRNAs may also modulate the stability of
miRNAs. These, in turn, appear to modulate the transcription of some lncRNA. Thick
arrows represent DNA-encoded RNA transcription and RNA-encoded protein
translation. Thin arrows represent direct or indirect interactions.

Table 1 Main issues to consider when appraising the validity and importance of

epigenetic association studies (based on Riancho20)

Domain Key items

Study validity 1. Subjects
K Age and sex
K Diagnostic criteria, disease stage and prior

therapy
K Appropriateness of controls

2. Tissue
K Relevance for disease pathogenesis
K Heterogeneity of cell composition

3. Technology and data analysis
K Epigenome coverage
K Precision and accuracy
K Statistical errors

Main results 1. Analysis of association with phenotype
K Single locus
K Genomic regions (promoters, enhancers, TFBSs

etc.)

2. Gene network analysis
K Molecular interaction networks
K Pathways
K Other (GSEA, miRNA families etc.)

3. Functional assays
K In silico
K In vitro
KIn vivo

Study
importance

1. Biological rationale
2. Replication in independent populations
3. Direction of effect (causality and reverse causality)
4. Practical relevance

K Biomarkers
K Disease pathogenesis
K Direct and indirect therapeutic targets

Abbreviations: GSEA, gene set enrichment analysis; miRNA, microRNA; TFBS,
transcription factor-binding site.

Figure 2 Determinants of the epigenome. The epigenome is the consequence of
the interaction between genomic variants and environmental influences, both external
and internal (within the body or even within the cell). Aging itself is associated with some
epigenomic changes including modifications of the methylation status of DNA.
Epigenomic changes induce modifications of gene expression that may lead to
disease’s development. On the other hand, the changes in cell environment induced by
the disease may modify the epigenetic marks. In addition, some epigenomic signatures
depend on the cell lineage, which determines the pattern of gene expression
characteristic of each cell type. Since the influence of these factors, other than the
genome, varies across tissues, the epigenome is tissue and cell specific.
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words, the epigenome differs across tissues. Consequently,
the consideration of the tissue analyzed is critical for data
interpretation. In many human studies, epigenomic data are
obtained by analyzing blood cells (that is, in DNA methylation
analysis) or plasma (that is, for miRNA studies). Using peripheral
blood certainly has some advantages: it can be obtained easily
and repeated sampling over time is possible. However, blood-
derived results may or may not be relevant to the disease’s
pathogenesis. For instance, blood data are likely relevant
for immune-mediated disorders. On the contrary, in studies
concerned with skeletal diseases, the DNA methylation
signatures of blood cells may not reflect the methylation pattern
of the skeletal cells, which are more directly involved in
determining skeletal homeostasis. Thus, as it was the case in
some recent studies, bone samples are preferable in principle
to study osteoporosis-related epigenetic markers, whereas
cartilage samples or synovial samples are preferable in studies
of osteoarthritis or rheumatoid arthritis.30,32–34 Nevertheless,
some intriguing similarities in the methylation of some genes in
cartilage and bone have been recently reported.35

There are very scarce data about the correlation of epigenetic
marks in blood and the skeleton, but, in view of other studies,
caution is recommended before extrapolating blood signatures
to bone signatures. Investigators exploring the correlation of
DNA methylation between blood and solid tissues found that
the dominant difference (470%) in DNA methylation across
samples depends on the source tissue,36 and o3% of CpG
sites show r240.5 between blood and solid tissues such as
brain or muscle.37,38 Therefore, the reader should not assume
that epigenetic marks in blood reflect the skeletal epigenome,
unless such a correlation is confirmed experimentally. The
minority of CpG sites showing correlated methylation across
tissues may reflect genetic influences on DNA methylation or
aging effects.38,39 When the results in blood samples are
comparable to those in bone samples, then there is an
opportunity for using blood/serum epigenomic features as
biomarkers, as it was suggested in a recent study that
explored the association of several miRNAs with osteoporotic
fractures.40

Cell heterogeneity is another source of potential bias.
For example, in some cases, the apparent differences in
epigenomic marks in blood samples may merely reflect
differences in the distribution of white blood cell subtypes
across individuals. Several algorithms have been proposed to
adjust DNA methylation data for differences in blood cell
composition.41,42 However, such kind of adjustments may be
considerably more difficult in solid tissues such as the bone,
where the cell proportions are harder to determine. Fortunately,
several mathematical strategies are emerging that allow
adjusting the results for differences in cell composition, even
in the absence of a reference epigenome.43,44 Therefore, in
general, researchers should take care in using comparable
tissue samples. If they are to draw conclusions about
disease-related epigenomic patterns, they must confirm that
the differences between groups do not merely depend on cell
distributions but indeed reflect different epigenomic signatures.
However, these concerns have not been usually addressed in
studies about skeletal epigenetics.30,32

The analysis of a single type of cells, including immortalized
cell lines and primary cell cultures (for example, primary
osteoblasts grown from bone pieces), could emerge as an

interesting alternative to avoid the problem of heterogeneity.
However, the results of those studies must be interpreted with
caution, because of the modifications of epigenetic signatures
that experience cells in culture.45 When feasible, the separation
of cell populations from tissue samples, followed by the analysis
of the epigenetic marks without the need of culturing the cells,
would be an appealing alternative.

In some studies, both target and control samples come from
the same individual (typically, in studies with cancer patients,
where the tumor tissue is compared with normal tissue of the
same subject). Some comparisons may be easier in this
situation. For example, it is easier to avoid the influence of DNA
sequence (genetics) on DNA methylation when the samples
come from the same individual.46,47 However, the issues of
tissue relevance and cell composition heterogeneity are still
pertinent.

Technology and data analysis
As in any research paper, the methodological aspects of the
study should be clearly explained. In addition, some questions
specifically apply to epigenomic studies. Genome-wide data
analyses, such as arrays and next-generation sequencing, have
a number of intricacies regarding technical aspects such as
background correction, normalization, probe design bias,
annealing and so on.48,49 Authors must describe the analysis
pipeline with detail, so that it can be assessed and eventually
reproduced. However, these issues may be difficult to appraise
fully for the non-expert reader.

Genome coverage. The degree of coverage (that is, the pro-
portion of CpGs in the genome that are actually analyzed, or the
proportion of miRNAs that are actually explored) is often the
result of a compromise between desirability and feasibility, and
it must be kept in mind when interpreting the results. The
number of CpGs in the human genome is about 25� 106. They
can be analyzed by whole-genome sequencing after bisulfite
conversion (bisulfite treatment of DNA allows distinguishing
methylated from unmethylated cytosines), but the procedure is
expensive and hardly applicable to studies with large sample
sizes. Many studies follow a candidate gene approach and
focus just on a genomic region. As a nice example, Harvey
et al.50 reported that the methylation of the eNOS promoter (an
enzyme involved in nitric oxide synthesis) in cord blood was
associated with bone mass at age 9 years. These studies have
small costs, but they miss information from the vast majority of
the genome. More recently, Reppe51 focused in the analysis of
the methylation of the SOST promoter (the gene encoding
sclerostin) and its association with BMD.

Several methods have been developed trying to reach a
compromise between coverage and cost. Methylation arrays
are a popular one. Earlier designs interrogated no more than
27 000 CpG, but they produced some useful results including
the identification of differentially methylated genes of the HOX
family in patients with osteoporosis and osteoarthritis.30

However, that technology explored just about 1/1000 of the
epigenome and consequently missed many regions potentially
involved in the pathogenesis of the diseases. Many studies of
skeletal and non-skeletal disorders have used more modern
array designs that explore the methylation status of more than
450 000 CpGs.34,35,52 The most recent arrays allow the analysis
of more than 850 000 sites, but this still represents just about 3%

Interpretation of epigenetic studies
J Riancho et al

4 MAY 2016 | www.nature.com/bonekey

http://www.nature.com/bonekey


of the potentially methylated cytosines. Reduced representa-
tion bisulfite sequencing, which explores about 5� 106

CpGs,53–55 allows a more extensive coverage, at a higher
cost. This technology has been used to elucidate the methyla-
tion signature of mesenchymal stem cells in young and elderly
individuals.56

More than 1900 human miRNAs have been well described,
but, according to recent data, the actual number may be much
higher.57 As with other transcripts, they can be measured
individually by using standard real-time quantitative PCR after
reverse transcription of the miRNAs into complementary DNA
(RT-qPCR), or in a more comprehensive way. Thus, there are
available both expression arrays and microplate-based ‘mini-
arrays’ (based on RT-qPCR) that allow for the simultaneous
measuring of several hundred miRNAs. A more extensive
coverage can be obtained by using next-generation sequen-
cing after RNA extraction, also called transcriptome analysis.
However, some general transcriptome analysis protocols that
are mainly devoted to the analysis of mRNAs may not be
adequate for analyzing miRNAs; specific methods for miRNAs
are usually needed. The concordance between different plat-
forms is far from perfect,58 which may lead to discordant results
across studies.

Precision and accuracy. The precision (that is, reproducibility) of
the measurements can be easily determined by including
several sample replicates within the same run. Between-run
precision is assessed by including some samples repeatedly in
all runs. If there is suggestion for poor inter-assay reprodu-
cibility, some normalization procedure is mandatory to adjust
for batch effects.

The accuracy of the measurements is best confirmed by
using an alternative procedure to analyze the samples. For
example, miRNA array data can be validated by using qPCR.
Methylation array data can be confirmed by using procedures
such as standard sequencing, pyrosequencing and so on.

Statistical errors. The large amount of data generated with
genome-wide analysis brings forward the issue of statistical
errors. The type I error occurs when a difference that appeared
by chance is considered to be statistically significant; it is a form
of ‘false positive’ result. It increases rapidly when many
statistical tests are performed (as is the case in genome-wide
studies), because then, just by chance, it becomes probable to
find some ‘statistically significant’ results. To avoid this problem
of type I error inflation, there is a need for some correction. The
Bonferroni’s correction is a classical method to take into
consideration the multiple tests carried out on non-correlated
markers. Thus, in epigenome-wide studies using the popular
450 K arrays, P-values’ significance thresholds between 10� 7

and 10� 6 have been suggested.59,60 However, Bonferroni’s
correction is frequently regarded as too conservative. The false
discovery rate first proposed by Benjamini61 is a popular
alternative, and, perhaps, it has the best combination of
statistical power (the ability to pinpoint as statistically significant
differences or associations that are real) and specificity (the
ability to identify as non-significant differences in the database
that do not represent real differences in the population). This
was the method for correction used in several epigenome-wide
studies in the bone field (Box 2).30,32,56

Nevertheless, any procedure increasing the statistical strin-
gency to avoid the inflation of type I error implicates increasing
the chances of type II error. This is the error occurring when true
differences or associations are not identified because they do
not appear to be ‘significant’ in the study. Thus, type II error is a
cause of false-negative results. Other factors that increase type
II error are a small effect of the epigenetic mark on the
phenotype and a small sample size. In short, the reader critically
appraising a paper showing significant results should ask
whether they are real or just the consequence of inflated type I
error, especially if the authors did not consider multiple test
issues. On the other hand, if the study does not find an
association, the reader should consider whether the power of
the study was enough to find significant differences if they
actually existed.

Understanding the Results

Single locus and region analysis
The results of association studies can be depicted at several
levels of complexity. The first step is usually to explore the
association of single loci with the phenotype. For example, if
miRNAs are being explored, then typically the expression of
individual miRNAs is measured across phenotypes.

If the study aims to explore DNA methylation, then the
association of individual CpGs with the phenotype is first
explored. Changes in the methylation of a single CpG may be
functionally relevant (for example, if they block a critical
transcription factor-binding site). However, to obtain a deeper
insight of the significance of the methylation differences within
the genomic context, other analyses are frequently carried out
after grouping or stratifying the CpGs. Thus, it is common to
explore the overall methylation of CpGs within CpG islands,
island shores, gene bodies or regulatory regions such as
promoters or enhancers. Indeed, differentially methylated
regions (DMRs) are frequently found within enhancer-like
regions, outside classic gene-centric genomic locations
(such as promoters or exons).14 For these analyses, CpGs
are grouped within a given genomic region, and an overall
methylation value for the region is obtained.

Network analysis
Most cellular activities depend not only on a single gene but also
on several interconnected genes that are activated or repressed
in a concerted way. Therefore, many epigenomic changes
involve several related loci. Thus, investigators frequently check
whether the genes showing methylation differences are con-
nected in some way (network analysis) or whether they are
overrepresented in any biochemical or cellular pathway
(pathways analysis). There are many software tools to perform
these analyses (Box 3). They can be grouped into two general
categories. In the simplest one, the researcher checks whether
there is an increased proportion of genes with differential
methylation in a given pathway (in comparison with the overall
proportion in the genome). In other words, the analysis con-
siders a pathway as a simple gene list, disregarding any
knowledge of gene or protein interactions, and compares it with
the list of differentially methylated loci in the study. More
sophisticated approaches consider the direction and the
magnitude of the differences found in the study (a procedure
often called gene set enrichment analysis) or the topological
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structure of a pathway. The relative value of each of these
methods has not been clearly established yet.62

Similarly, several bioinformatic tools permit the analysis of
miRNA families and the interaction of miRNAs with target genes
and biological pathways (Box 3).63,64

Network analysis including several layers of epigenomic and
transcriptomic signatures may help in indentifying relevant
genes and pathways, as exemplified by a recent study that
explored gene expression, miRNAs and DNA methylation in
relation to bone mineral density.65 Whichever analysis is
chosen, in general, if several genes within a given pathway show
epigenetic differences between phenotypes, they are more
likely to have an important role in determining those
phenotypes.

Functional studies
Successful epigenetic epidemiology studies may reveal dif-
ferences in DNA methylation (or miRNA expression) between
individuals with a different phenotype (such as patients and
controls). However, they rarely provide evidence for causality.
Therefore, functional studies are usually needed to validate the
biological relevance of the results. A number of approaches can
be useful to obtain mechanistic information. They may include
in silico analysis (for example, searching for relationship
between DNA methylation and gene expression in publicly
available databases), in vitro analysis (for example, exploring
the influence of overexpressing or knocking-down a miRNA in
cell cultures), or experimental in vivo models.

Assessing Study Importance

Biological rationale
Epigenetic association data are always more credible when
they fit with previous knowledge about the biology of disease.
However, genome-wide genetic and epigenetic studies have
the potential to uncover new genes involved in the mechanisms
of disease. Thus, new discoveries must not be merely dis-
regarded because there is no known biological rationale for
them. Rather, they may open new opportunities for a better
understanding of the disease or identifying novel therapeutic
targets. The relevance of finding DMRs is often based on their

correlation with changes in gene expression. However, even if a
DMR does not impact transcription and gene expression, it may
have some other yet unknown effects or serve as a marker of the
exposure (for example, maintaining a memory of exposure over
lifetime) or outcome of interest (that is, biomarker of the
disease).66

Replication
It is highly desirable confirming the study findings obtained in
the initial group of subjects (the ‘discovery’ sample) in an
independent group of individuals (the ‘replication’ sample).This
proves that the initial results were real and not merely a chance
finding. The replication in a group of individuals from a different
geographical region is also desirable in order to confirm that the
results are generalizable to different populations. However, the
absence of replication in populations from different regions
does not necessarily imply that the results were wrong.
Epigenomic marks are the consequence of the interaction of
genetic variants, nutrition and other environmental factors,
aging and stochastic variation.9,67–70 Therefore, differences in
the genetic background, environmental exposures, age and
other characteristics of the study subjects may explain why true
epigenetic differences present in one study population are not
present in other populations.

Direction of effects and causation
One of the convenient features of genetic association studies is
that the results do not depend on the time point the genetic data
are acquired. As the genome remains stable from the
conception (apart from some somatic mutations), the possibility
of reverse causation does not hold. In other words, the genome
is established first, and therefore the direction of the relationship
must go from the genome to the phenotype. However, that is
not the case with epigenetic studies, which often raise
the possibility of reverse causation. For example, if some
epigenetic differences are found between patients and controls,
the reader should ask whether the epigenetic differences are the
cause or the consequence of the disease. For example,
increased methylation of the SOST promoter has been reported
in bone samples of patients with osteoporosis.51 As sclerostin is
an antianabolic factor, this finding may be counterintuitive; yet, it
is in line with studies showing reduced SOST expression in
osteoporosis.51,71 Although the involved mechanisms are still
unclear, it has been suggested that those changes are a
compensatory response, rather than a driver of the bone loss.

Answering the question of the direction of changes may
not be important if the epigenetic marks are to be used as
biomarkers for diagnostic or prognostic purposes, but it is
certainly critical in studies about the pathogenetic mechanisms
determining the disease. The response may need longitudinal
studies such as cohorts incorporating the analysis of epigenetic
signatures in healthy individuals before the onset of disease.72

Biobanking strategies of blood and other body fluids may be
very useful in this regard. However, a similar approach may not
be feasible to study tissue samples such as bone. Functional
studies using experimental models may be needed in those
cases.

Practical relevance
Epigenetic studies may be important for a variety of reasons,
both in the short term and in the long term. The latter may not be

Box 2 Adjustment of significance thresholds

Bonferroni correction: A method to correct for the inflation of type I
error (the probability of obtaining false-positive associations) when
multiple tests are performed. It implies that between-group
differences are considered significant only when the P-values
are below an ‘adjusted threshold’. This is estimated by dividing the
usual significance threshold (P¼0.05) by the number of tests
performed. For example, if 500 000 DNA sites are analyzed in
patients and controls, only those with P-values below 10� 7

(0.05/500 000) will be considered as significantly different.

False discovery rate (FDR): Another approach to control the inflation
of type I errors in the context of multiple comparisons. It represents
the expected proportion of false-positive associations among the
associations declared as statistically significant. The FDR-based
threshold is usually set at 0.05 or 0.1, which means that a 5% or 10%
of the significant results are assumed to be spurious. These
procedures are less stringent than those based on the familywise
error rate such as Bonferroni correction. Therefore, the FDR-based
approach has greater power and also higher rates of type I errors
than Bonferroni’s approach. Consequently, FDR-set thresholds may
be specially suited for exploratory, hypothesis-generating studies.
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readily evident. However, some studies may clearly have direct
relevance for clinical practice.

Epigenetic marks may have a role as biomarkers for disease
risk, for diagnosing disease or for tailoring therapy. With those
goals in mind, the markers need to be feasible to analyze in
readily available samples such as blood, urine or tissue
biopsies. miRNAs may be particularly attractive as biomarkers
in body fluids because they are quite stable.73

The interference of epigenetic mechanisms may also be of
therapeutic interest, particularly in localized disorders. Thus,
blocking miRNAs that inhibit osteoblast differentiation or
delivering miRNAs that promote bone formation are both

actively investigated strategies to promote fracture healing and
for curing bone defects.74 As most miRNAs have widespread
effects, their use for systemic disorders is less appealing.

Epigenetic association studies may have therapeutical
importance for indirect reasons. If the studies pinpoint new
genes involved in the pathogenesis of disease, those genes
may eventually be targeted by pharmacological methods
independent of epigenetic mechanisms.
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