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Lessons on skeletal cell plasticity from studying
jawbone regeneration in zebrafish
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Three major mesenchymal cell types have important roles in determining the shapes of vertebrate animals:

bone-producing osteoblasts, cartilage-producing chondrocytes, and fat-producing adipocytes. Although often

considered discrete cell types, accumulating evidence is revealing mesenchymal cells of intermediate identities

and interconversion of cell types. Such plasticity is particularly evident during adult skeletal repair. In this Review,

we highlight recent work in zebrafish showing a role for hybrid cartilage–bone cells in large-scale regeneration of the

adult jawbone, as well as their origins in the periosteum. An emerging theme is that the unique mechanical and signaling

environment of the adult wound causes skeletal cell differentiation to diverge from the discrete lineages seen during

development, which may aid in rapid and extensive regeneration of bone.
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Introduction

Three structural cell types are characterized by their production
of matrix of varying degrees of stiffness: soft (fat, adipocytes),
hard (cartilage, chondrocytes) and hardest (bone, osteoblasts).
These cells arise from mesenchyme derived from either
mesoderm or a specialized population of ectoderm called the
cranial neural crest. In vitro, mesenchymal cells isolated from
diverse parts of the animal can generate all three lineages under
the right inductive conditions. However, the in vivo correlates of
these ‘mesenchymal stem cells’ are now being appreciated as a
complex group of cell populations with varying degrees of
potency.1,2 For example, recently identified ‘skeletal stem cells’
in mouse generate chondrocytes and osteoblasts but not
adipocytes,3,4 yet other mesenchymal progenitors marked by
Col2a1� , Sox9� , or Aggrecan-based Cre lines in mice
generate all three lineages.5

The traditional view is that naı̈ve multi-potent or bi-potent
mesenchymal progenitors are induced to follow discrete
lineages (Figure 1). In the case of osteoblasts, this includes
upregulation of the Runx2 and then Sp7 transcription factors,
followed by production of matrix genes such as Col1a1 and
Spp1 that act as a substrate for mineralization, as well as
endocrine factors such as Bglap.6 For chondrocytes, Sox family
members (Sox5/6 and Sox9/10) induce a distinct cohort
of matrix proteins, such as Col2a1 and Aggrecan. In the
growth plate, chondrocytes later express other proteins (for
example, Col10a1 and Mmp13) associated with hypertrophy.7

Adipocytes prominently express PPAR-g and the important
lipid-associated protein Perilipin.8,9 However, accumulating
evidence suggests that such molecular distinctions can be
blurred. In mice, chick and zebrafish, common precursors for
osteoblasts and chondrocytes, called ‘osteochondropro-
genitors’, express both Runx2 and Sox9 factors.10–12 In the
chick calvaria, osteoblasts express Sox9 and Col2a1 mRNA
weakly, although the proteins for both genes are not detected.13

Similarly, osteoblasts for intramembranous bones in zebrafish
express high levels of col10a1 and low levels of col2a1a.11,14

Reciprocally, developmental chondrocytes in zebrafish display
weak expression of col1a2 and an sp7 transgene.15 Altogether,
these findings suggest that osteochondroprogenitors
concurrently express chondrocyte and osteoblast programs
(albeit at weak levels), with further differentiation into a specific
lineage resulting in repression of the non-adopted lineage(s).
Consistent with this view, lineage tracing in mice with
conditional Sox9� , Col2a1� or Aggrecan-based Cre trans-
genes results in labeling of not only chondrocytes but also
osteoblasts, bone marrow stromal cells, and in some cases
adipocytes.5

Even after differentiation along discrete lineages,
mesenchymal cell types are often observed to exhibit gene
expression in common with other derivatives. During cartilage
differentiation, forexample, mesenchymal progenitors first form
condensations and then transition through proliferative and
hypertrophic chondrocyte states. However, hypertrophic
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chondrocytes weakly express many genes in common with
osteoblasts, including Runx2, Sp7 and Spp1, and undergo
extensive mineralization (that is, calcification)7 (Figure 1). The
requirement for Runx2 in the mineralization of both bone and
hypertrophic chondrocytes suggests a common genetic
program for mineralization in both cell types, despite the matrix
of hypertrophic chondrocytes being relatively poor in Col1a1.16

Similarly, hypertrophic chondrocytes express PPAR-g in
common with adipocytes, with loss of PPAR-g in chondrocytes
resulting in decreased bone growth.17 An open question is
whether the expression in hypertrophic chondrocytes of genes
more commonly associated with bone and fat represents
retained potential of these gene programs from a multi-potent
mesenchymal progenitor, versus reinitiation during later phases
of chondrocyte differentiation.

There are also examples of mesenchymal cell types that
cannot be easily classified into one of the canonical lineages.
One such prominent mixed skeletal tissue is chondroid bone,
which is characterized by cells of chondrocyte morphology
embedded in mineralized matrix18–21 (Figure 1). Although a rare

cell type developmentally, chondroid bone has been described
in vertebrates from fish to mammals and can be found in diverse
locations as the baculum of the rodent and bat penis22,23 and
the mandibular condyle of the jaw,24,25 as well as during fracture
repair.26–29 Chondroid bone is avascular and may arise in
part due to mechanical strain, as with secondary cartilage.19

Consistent with a mixed osteoblast/chondrocyte identity,
chondroid bone cells simultaneously produce cartilage-
associated proteins (Col2a1 and Col10a1) and bone-
associated proteins (Col1a1 and Bglap).30 Given that
osteoblasts have been postulated to have evolved from
chondrocytes,31 it may be that chondrocytes and osteoblasts
represent two ends of a spectrum, with intermediate cell types
such as chondroid bone in the middle.32 Indeed, others have
described at least eight classes of cartilage in teleost fishes
based on cell morphology and the abundance and type of
skeletal matrix,33,34 as well as both cellular and acellular bone.35

Further, chondrocytes in the pinna of the mammalian ear have
been found to have lipid droplets reminiscent of fat tissue,
suggestive of cells intermediate between chondrocytes and

Figure 1 Plasticity in mesenchymal lineages. Mesenchymal progenitors give rise to osteocytes, chondrocytes and adipocytes, as well as a mixed cartilage–bone cell type called
chondroid bone. Osteoblasts and chondrocytes are thought to originate from a common osteochondroprogenitor that expresses both Sox9 and Runx2. Although some hypertrophic
chondrocytes undergo apoptosis, others may transdifferentiate into osteoblasts and/or osteocytes. Studies of regenerating fin rays in zebrafish have shown that post-mitotic
osteoblasts can dedifferentiate into proliferative pre-osteoblasts. During jaw regeneration in zebrafish, osteoblasts and/or pre-osteoblasts may transdifferentiate into a chondroid
bone cell type expressing markers of both osteoblasts and chondrocytes.
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adipocytes (termed lipochondrocytes).36 Clearly, the repertoire
of mesenchymal cells is much more complex than the three cell
types typically diagrammed.

In addition to mesenchymal cell types of mixed identity, there
is growing evidence that differentiated cells may be able to
change their identities. Since at least the 1970s, it has been
recognized that cultured chondrocytes can turn into osteo-
blasts.37–39 This observation had led to the suggestion that
hypertrophic chondrocytes in the mammalian growth plate may
change into osteoblasts as the cartilage template is converted
into bone.40–42 This idea was then largely supplanted by
the notion that most hypertrophic chondrocytes undergo
apoptosis, with a new source of osteoblasts generating the
majority of bone.43 However, modern lineage-tracing studies
have begun to revisit the idea of chondrocyte to osteoblast
transdifferentiation during growth plate development. Using a
conditional Cre transgene driven by Col10a1 regulatory
elements, two groups have shown that hypertrophic
chondrocytes give rise to long-lived Col1a1aþ osteoblasts and
Sclerostinþ osteocytes, mostly in primary spongiosa and
trabecular bone but occasionally also in the bone collar.44,45

One concern of these experiments is whether the Cre lines used
are entirely specific for hypertrophic chondrocytes, especially
given expression of col10a1 in intramembranous osteoblasts of
zebrafish.14 However, similar results have been obtained using
an Aggrecan-based Cre.45,46 If such transdifferentiation is true,
an interesting question is how the large hypertrophic
chondrocytes change their morphology into the more slender
osteoblasts. Possibilities include only the smaller hypertrophic
chondrocytes near the bone collar (that is, ‘borderline
chondrocytes’) transdifferentiating into osteoblasts,40,43 or
reductive cell divisions generating a smaller osteoblast
and a larger apoptotic cell.47,48 Chondrocytes might also
dedifferentiate and then redifferentiate into osteoblasts,
or adopt an osteoblast-like gene expression profile while
maintaining a chondrocyte-like morphology, a process termed
‘metaplasia’.19

A common assumption is that the skeletal differentiation
programs active during development are re-employed during
adult skeletal repair. In most mammalian fractures, especially
when the broken bone is not rigidly stabilized, an early response
is the formation of a bridging cartilage callus.49 Col10a1-based
lineage-tracing studies in mice have shown that hypertrophic
chondrocytes within the repair callus contribute to long-lived
osteoblasts and osteocytes within the healed bone, suggesting
that a similar transdifferentiation process occurs during fracture
repair as during growth plate development.45 However,
other studies have found cells of chondrocyte morphology
embedded in mineralized matrix and expressing mature
osteoblast genes such as Bglap, which suggests that cells in the
repair callus retain aspects of chondrocyte identity while
producing bone matrix. This suggests that repair chondrocytes
may be more similar to those in chondroid bone, rather than to
hypertrophic chondrocytes of the growth plate that lose their
chondrocyte identity before transdifferentiating into osteocytes.50

A Hybrid Cartilage–Bone Cell Type Drives Zebrafish
Jawbone Regeneration

A recent study in zebrafish provides more evidence that the
cartilage-like cells during bone repair are similar to the mixed

identity cells of chondroid bone.51 Previous work in amphibians
and zebrafish had shown that distal amputation of the adult
lower jaw is followed by robust regeneration, with the lower
jawbone repairing through a cartilage intermediate21,52–54

(Figure 2). As the lower jaw forms largely by intramembranous
ossification (that is, absence of a cartilage intermediate, with the
exception of the mandibular condyle near the jaw joint and the
distal tips at the midline), involvement of a cartilage intermediate
during repair shows a prominent difference from lower
jawbone development. During zebrafish jawbone repair, cells of
chondrocyte morphology concurrently produce cartilage-
associated proteins such as Sox9a and Col2a1a and bone-
associated proteins such as Runx2b and Col1a1a.51 These
mixed identity cells also extensively mineralize (Figure 2e),
which is unusual given that developmental bones in zebrafish
are largely perichondral and not endochondral (that is, shell-like
as opposed to displaying internal mineralization as in
mammals). The expression of col1a1a before col10a1 is also
markedly different from what occurs during mammalian
endochondral ossification, in which Col10a1-positive
hypertrophic chondrocytes lose cartilage identity before
transitioning into Col1a1-positive osteoblasts.44,45 Although
repair cells in the zebrafish jaw eventually stop producing
Col2a1a as they turn into mature Bglap-positive osteoblasts,51

this process reflects mixed cartilage–bone cells progressing
into pure bone cells, rather than initial cartilage cells trans-
differentiating into bone cells as suggested for mammalian
growth plates.

An interesting question is why zebrafish and likely other
vertebrates utilize chondroid bone for adult repair. As opposed
to intramembranous bone formation that occurs in close
association with blood vessels,43 the avascular nature of
chondroid bone may allow it to thrive in the hypoxic
environment of an adult wound.19 Chondroid bone cells have
also been observed to be highly proliferative, for example,
driving the rapid seasonal growth of the jaw in male Atlantic
salmon.55 This rapid growth potential may aid in filling large
gaps in bone, with direct mineralization of the cartilage
template, as opposed to secondary replacement by new
bone-forming cells, accelerating structural recovery of the
damaged body part. Further investigation is needed to
determine the extent to which chondroid bone is also involved in
mammalian bone repair.

Dedifferentiation of Osteoblasts During Zebrafish Bone
Regeneration

The source of hybrid cartilage–bone cells for zebrafish lower
jawbone regeneration appears to be the periosteum and/or
osteoblasts lining the bone.51 Bone remodeling involves the
concerted removal of bone by osteoclasts and the addition of
new bone by osteoblasts. The periosteum is a dense connective
tissue layer on the outside of bone that is an important source of
osteoblasts for this process.5 Upon jawbone resection in
zebrafish, the remaining periosteum next to the cut ends
undergoes a rapid proliferative expansion to fill in the missing
piece of bone.51 Although definitive lineage-tracing analysis has
not been performed, this observation suggests that the
cartilage-like callus derives from periosteal cells or nearby early
osteoblasts. In mice, lineage-tracing studies using a conditional
Prrx1-CreER line, as well as older periosteal grafting
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experiments, similarly indicate the periosteum as a source of
the cartilage callus during fracture repair.56

In the zebrafish fin and skull, bone regeneration generally
occurs in the absence of a cartilage intermediate (but see a
study in medaka showing transient cartilage during fracture
repair in the fin57). It has been shown that mature osteoblasts
dedifferentiate in response to injury in the fins and calvaria,
which is accompanied by cell morphology changes, loss of
mature osteoblast markers (for example, sp7 and bglap), and
upregulation of pre-osteoblast genes (for example, runx2b)58,59

(Figure 3). These dedifferentiated cells then proliferate and
redifferentiate into new osteoblasts that regenerate bone.
However, fin bone can still regenerate even if pre-existing
osteoblasts are genetically ablated before injury, suggesting
another source of new osteoblasts, such as pre-existing
progenitors in the periosteum.60 During jawbone regeneration,
a similar upregulation of runx2b is seen in sp7- cells that give rise
to the hybrid cartilage–bone cells.51 As the majority of bone-
lining cells are sp7:GFPþ and Runx2:GFP� before jaw
resection, one possibility is that a similar dedifferentiation of
osteoblasts occurs during jawbone regeneration, with the
difference that these cells then generate cartilage-like tissue.
Alternatively, or in parallel, rare Runx2:GFPþ periosteal cells
may also undergo proliferative expansion in response to injury
to generate hybrid cartilage–bone cells. In the future, it will be
interesting to determine whether mammalian bone healing also
involves the dedifferentiation of mature osteoblasts. Indeed,
this theme of dedifferentiation in response to injury is
becoming increasingly common, for example, cardiomyocyte

dedifferentiation drives heart regeneration in both zebrafish and
neonatal mice.61–63

Regeneration-Specific Role of Ihh Signaling in Cartilage
Callus Formation

An intriguing question is why periosteal cells and/or dediffer-
entiated osteoblasts generate intramembranous bone in certain
contexts (for example, calvarial repair and zebrafish fin
regeneration) and a cartilage callus in others (for example,
mammalian fracture repair and zebrafish jawbone regenera-
tion). Mechanical forces seem to have an important role as rigid
stabilization of fractures prevents cartilage callus formation.49

In mice, BMP2 is sufficient to induce periosteal cells to adopt a
chondrogenic fate.64 The vasculature also likely has a role in
cartilage-dependent repair, particularly in the conversion of the
cartilage callus to bone.43,65 Recently, a study of zebrafish
jawbone regeneration uncovered a role for Hedgehog signaling
in induction of the cartilage callus. Zebrafish lacking indian
hedgehog a (ihha) make very little cartilage callus in response to
jaw resection, which correlates with a decreased ability to
regenerate the missing jawbone.51 Ihha appears to control the
differentiation of progenitors into repair chondrocytes, as the
proliferation of both the progenitors and the few repair
chondrocytes that did form were normal. As the developmental
role of Ihh signaling is to promote the proliferation and not the
specification of growth plate chondrocytes in mammals,66 the
role of Ihh in the differentiation of regenerative chondrocytes is a
distinct function of adult bone repair. A fruitful line of

Figure 2 Large-scale bone regeneration in the zebrafish jaw employs a hybrid cartilage–bone tissue. (a–c) Adult zebrafish heads are stained with Alizarin Red and Alcian Blue to
show bone and cartilage, respectively. Arrows show the lower jawbone in uninjured controls (a), loss of part of the jawbone immediately after resection (b), and regeneration of the
jawbone one month later (c). (d) Bone mCT of the dissected lower jaw shows regeneration of the jawbone (arrow). (e) Jawbone regeneration in a col2a1aBAC:GFP transgenic
zebrafish shows that repair chondrocytes (green) bridging the wound produce extensive Alizarinþ bone matrix (red) one month following resection.
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investigation will be to understand how mechanosensation and
Ihh signaling are integrated to shift the periosteal cells involved
in bone homeostasis towards making cartilage-like tissue
during repair.

In addition to its role in inducing the cartilage callus during
jawbone repair, there is also evidence from developmental
studies that Ihh signaling helps to determine the extent of
osteoblast gene expression within skeletal cells. In mice, loss of
Ihh results in decreased osteoblast differentiation within the
periosteum.6 Further, work in zebrafish has shown that Ihha is
required for transient and weak expression of osteoblast genes
in developmental chondrocytes.15 Conversely elevation of Hh
activity by loss of the inhibitory co-receptors patched1 and
patched2 or by treatment with the Hh agonist purmorphamine
transformed chondrocytes into osteoblast-like cells. However,
this low level of osteoblast gene expression in normal devel-
opmental chondrocytes seems different from the chondroid
bone seen during adult repair, as other groups have failed to
observe mineralization of developmental chondrocytes in either
normal or patched mutant zebrafish.51,67 Nonetheless, it is
tempting to speculate that elevated Ihh signaling during jaw-
bone regeneration could also contribute to the high-level
osteoblast gene expression observed in the cartilage callus. As
several studies have shown a role for Hh signaling in mammalian
fracture repair, it will be interesting to investigate whether these
effects are through induction of the cartilage callus, promotion
of osteoblast-like character in the callus, and/or some other
mechanism.68–70

Conclusion

It is becoming increasingly apparent that there are myriad
flavors of chondrocytes, osteoblasts, and adipocytes. These
cell types can display distinct properties (for example, elastic
versus hyaline cartilage), occupy intermediate states between
cell types (for example, chondroid bone), transdifferentiate
between cell types, and dedifferentiate into progenitors. It will
be important to determine how cell types become locked into a
particular identity, and how these identities can be overridden in
developmental contexts (for example, transdifferentiation
of growth plate chondrocytes into osteoblasts) and repair
contexts (for example, dedifferentiation of osteoblasts). It must
also be acknowledged that the very different environments and
cellular histories of embryonic development and adult repair
will result in skeletal cells occupying distinct spaces in the
continuum of cartilage to bone, which may underlie differences
in building versus rebuilding the skeleton. By learning how
skeletal cell identity and plasticity is controlled in the animal, we
will be better able to repair skeletal injuries with long-lasting
cells of the right type.
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Figure 3 Distinct models of bone homeostasis and regeneration. During bone homeostasis, progenitors and early osteoblasts in the periosteum (yellow) give rise to new
osteoblasts to replace bone matrix (red) degraded by osteoclasts (not shown). In the amputated fin or injured skull of zebrafish, intramembranous regeneration can involve
dedifferentiation of osteoblasts, proliferation and redifferentiation directly into new osteoblasts. In the resected zebrafish jaw, chondroid bone regeneration involves production of a
mixed cartilage–bone cell type from bone-lining cells, with these cells producing first cartilage matrix (blue) and then mineralized matrix (red). In both types of regeneration, gradual
remodeling restores normal bone architecture. Intramembranous and chondroid bone repair processes can also co-exist during bone healing.
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