
BoneKEy-Osteovision. 2007 February;4(2):30-48 
http://www.bonekey-ibms.org/cgi/content/full/ibmske;4/2/30 
DOI: 10.1138/20060247 
 

  
30 

 
Copyright 2007 International Bone and Mineral Society 

PERSPECTIVES 
 
Pubertal Timing, Peak Bone Mass and Fragility Fracture Risk 
 
Jean-Philippe Bonjour and Thierry Chevalley 
Service of Bone Diseases, WHO Collaborating Center for Osteoporosis 
Prevention, Department of Rehabilitation and Geriatrics, Geneva University 
Hospital, Geneva, Switzerland 
 
 
Abstract 
  
     Late pubertal timing is associated with relatively low peak bone mass (PBM) and increased risk of fragility 
fracture in adulthood. Several observations suggest that the relationship between pubertal timing and PBM 
cannot be explained solely by variation in the duration of sex hormone exposure. In delayed or late puberty, 
reduced bone mass gain can be observed before the onset of sexual maturation. In the general population, 
both pubertal timing and PBM, with its strength components, are traits characterized by large variance and 
Gaussian distribution. Both variables are under the strong influence of heritable factors and can be 
moderately affected by common environmental determinants. It is suggested that pubertal timing, PBM and 
consecutive osteoporosis risk later in life may be part of a common programming in which both genetic 
factors and in utero influences are important determinants. Both variables probably arise from the additive 
influences of multiple genes. The identification of allelic variants of candidate genes that are associated with 
both pubertal timing and bone mass acquisition during growth may enhance our understanding of the 
mechanisms that determine the risk of osteoporosis and also disorders of human reproduction. Finally, 
fractures experienced by healthy children during growth can be associated with late pubertal timing and low 
bone mass observed both before and after puberty. This also suggests that common programming links the 
determinants of sexual maturation and bone development. BoneKEy-Osteovision. 2007 February;4(2):30-
48. 
©2007 International Bone and Mineral Society 
 
 
 
The relationship between pubertal timing 
and the risk of osteoporosis during adult life 
has been documented primarily in female 
subjects. In postmenopausal women, later 
age at menarche was associated with lower 
areal bone mineral density (aBMD) in the 
spine, radius and proximal femur (1-4). It 
was also associated with higher risk of hip 
(5;6), vertebral (7) and forearm fractures (8). 
In premenopausal women, early menarche 
is associated with higher aBMD (9-11). 
 
These retrospective epidemiological surveys 
in premenopausal women provide indirect 
evidence that the association between 
menarcheal age and osteoporosis risk may 
be related to the influence of pubertal timing 
on the attainment of peak bone mass 
(PBM). This association is usually 

considered as the expression of more 
precocious, and thereby longer, exposure to 
estrogen (12-14). Although this explanation 
appears to be quite attractive, there is no 
unequivocal evidence demonstrating that 
sex hormone exposure is the essential 
causal factor accounting for the association 
between pubertal timing, PBM and the risk 
of osteoporosis later in life. The steady 
decrease in menarcheal age observed in 
several regions of the world (see below) has 
been shown to be associated with a gradual 
increase in the onset of regular cycling in 
women born between 1925 and 1950 (15). 
Therefore, the estimate of exposure to 
ovarian hormones should take into account 
not only menarcheal age but also the time 
interval until menstrual periods become 
regular. In women aged 19-26 years, not 
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only menarcheal age but also a higher 
number of lifetime menstrual cycles were 
significantly associated with increased 
lumbar spine aBMD (14). Nevertheless, in 
this cross-sectional study, among several 
menstrual characteristics, age at menarche 
was found to be the most significant variable 
associated with vertebral PBM (14). 
Furthermore, circumstantial evidence 
suggests that for the same reduced lifetime 
exposure to estrogen, fracture risk at the 
proximal femur, spine and forearm would be 
greater with late menarche than with earlier 
menopause (8;16;17).      
 
In considering the characteristics of bone 
development in relation to both the timing 
and duration of pubertal maturation, several 
questions suggest that the mechanisms 
involved might be more complex than a 
simple dependence upon years of estrogen 
exposure. These questions include: 
 

• How might early timing of puberty 
per se lead to greater PBM?   

 
• Would the duration of accelerated 

bone mass gain during sexual 
maturation be shorter when pubertal 
timing occurs at a relatively later 
age? 

 
• Furthermore, assuming the same 

duration, would the integrated gain 
be less with late pubertal timing 
because of reduced velocity of bone 
accrual during the period of pubertal 
maturation?  

 
• Finally, what explains the finding 

that in subjects with late menarcheal 
age, the additional bone mass 
accumulated before puberty is not 
an asset in overall bone mass gain 
during growth, as was proposed to 
explain, at least in part, the greater 
PBM in male subjects than in female 
subjects?   

 
Clear answers to these questions will 
require precise prospective monitoring of 

yearly bone mass gain from prepuberty to 
PBM in a large cohort of female subjects. 
Likewise in males, since it has been 
reported recently, as described below, that 
late pubertal timing is a negative 
independent predictor of total body and 
radius aBMD as measured in young men at 
18-20 years of age (18). Such prospective 
studies will better define the characteristics 
of bone development in relation to pubertal 
timing in both healthy female and male 
subjects. Nevertheless, at this stage, it 
appears timely to review our knowledge 
regarding the modalities and determinants of 
pubertal development, and when 
appropriate, to relate them to features of 
bone acquisition. This analysis will examine 
whether these two growth developmental 
events, essential for the achievement of 
optimal bone health at the beginning of adult 
life, could be part of a biological system 
responsive to common genetic and 
environmental determinants. 
 
Clinical Markers of Pubertal Timing  
 
Pubertal timing is much easier to determine 
in females than in males (19). Indeed, the 
first menstruation represents a relatively 
precise milestone of sexual development. 
Furthermore, it remains a memorable event 
for most subjects. The occurrence of first 
menstruation is a relatively late marker of 
pubertal maturation (20). It remains a 
reliable milestone of the onset of puberty 
since menarcheal age is highly correlated 
with thelarcheal age, the time of first 
appearance of breast bud development (21). 
Prospective assessment in follow-up studies 
covering the period of pubertal maturation is 
considered quite accurate (19). In 
prospective investigations, girls have no 
difficulty remembering to within about a 
month their first menses, as documented in 
several bone development-related studies 
(22-25). Surveys based on personal history 
recall are less accurate, often no better than 
to within about a year, particularly in late 
postmenopausal women (19). Therefore, an 
absence of significant evidence of a 
relationship between the timing of menarche 
fractures in elderly cohorts has to be taken 
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with great caution because of less accurate 
memory. Nevertheless, as mentioned 
above, several studies in premenopausal 
and postmenopausal women over the last 
two decades have provided consistent 
results on the relationship between 
menarcheal age and either aBMD or fragility 
fracture risk (1-14). 
 
In males, pubertal maturation is more 
difficult to time in retrospective surveys, 
since changes in penis and testicle size are 
a much less overt and recordable event than 
breast development and the onset of 
menstruation. A relatively reliable surrogate 
in males is the age at which the peak of 
standing height velocity is attained. This 
information can be obtained retrospectively 
in communities with organized public health 
systems that register growth variables 
during childhood and adolescence (18). 
  
Physiologically, there are large variations in 
the onset of pubertal maturation which 
ranges from 8 to 12 and from 9 to 13 years 
of age in girls and boys, respectively (20). In 
many affluent populations, the coefficient of 
variation (CV) is around 10%. It may be 
even larger in developing countries (19). 
The large scatter in pubertal timing in 
healthy subjects with affluent living 
conditions suggests that this physiological 
variable is under the rather powerful control 
of factors other than environmental 
determinants. This is reminiscent of the 
large scatter in PBM and the relatively 
modest role of postnatal environmental 
factors.  
 
Molecular Aspects of Pubertal Maturation 
 
The onset of pubertal maturation results 
from the awakening of a complex 
neuroendocrine machinery, and the primary 
mechanism is still not clearly understood 
(19). In girls, the early expression of pubertal 
maturation (Tanner stage 2) is related to the 
triggering of the hypothalamic-pituitary-
ovarian axis and therefore can be 
interpreted as the first clinical sign of 
estrogen action (19). In boys, an increase in 
testicular and penis size is the early 

expression of sexual maturation. In addition 
to the activation of the hypothalamic-
pituitary-gonadal axis, the growth hormone-
insulin-like growth factor (IGF) axis is also 
implicated in the onset of puberty (20;26). 
 
Environmental and metabolic factors are 
critical regulators of the hypothalamic-
pituitary-gonadal (HPG) axis and the timing 
of puberty, but their influence appears to be 
outweighed by a strong genetically 
controlled process (27). The hypothalamic 
secretion of gonadotropin-releasing 
hormone (GnRH) is a key hormonal event of 
puberty. Several single defects in genes 
involved in GnRH production and action 
have been identified through the study of 
patients with hypogonadotopic 
hypogonadism, a disorder resulting in a 
failure to undergo sexual maturation (28). A 
recently discovered ligand-receptor system, 
namely kisspeptins and the G protein-
coupled receptor-54 (GPR54), appears to be 
a major driver of GnRH secretion and 
thereby important in eliciting pubertal 
development (28-32). Loss-of-function 
mutations of the GRP54 gene were found in 
patients suffering from hypogonadotopic 
hypogonadism. Increased expression of 
KiSS-1, the gene encoding kisspeptins, and 
GPR54 are detected in the hypothalamus 
during development. Administration of 
kisspeptin is sufficient to induce precocious 
activation of the gonodotropic axis in 
immature rodents and monkeys (28-32). 
Hypothalamic kisspeptin-expressing 
neurons are essential for the integration of 
peripheral inputs, including gonadal steroids 
and nutritional signals, that control GnRH 
and gonodotropin secretion. Whether 
variants in genes encoding components of 
the KiSS-GPR54-GnRH system might be 
involved in pubertal timing in healthy human 
subjects is not known.  
 
Hereditable Determinants of Pubertal 
Timing 
 
By the mid-1930s, mean differences in 
menarcheal age between identical twins, 
non-identical twins, sisters and unrelated 
women had already been found to be 2.2, 
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12.0, 12.9 and 18.6 months, respectively 
(33). This early observation strongly 
suggested that hereditable factors play a 
major role in the determination of 
menarcheal age. The importance of genetics 
was further documented in several 
subsequent studies showing a much greater 
correlation between monozygotic (MZ) than 
dizygotic (DZ) twin pairs (34-37). For 
example, in a Finnish study including 1283 
twin pairs, the MZ and DZ correlations of 
age at menarche were 0.75 and 0.31, 
respectively (37). From mathematical 
analysis that included the contribution of 
body mass index to pubertal onset, 74% and 
26% of the variance in the age of menarche 
was attributed to genetic and environmental 
factors, respectively (37). The genetic 
regulation of pubertal timing is further 
supported by significant correlations 
between the ages at which mothers and 
daughters experience their first 
menstruation, as recorded in various 
communities (38-42).  
 
The Role of Sex Hormones and IGF-1 on 
Bone Development During Puberty 
 
Among endocrine factors, both sex 
hormones (43-45) and the growth hormone- 
IGF-1 (GH-IGF-1) system (46;47) exert a 
specific impact on bone and play an 
important role, particularly during the phase 
of pubertal maturation. Furthermore, these 
two hormonal systems interact to stimulate 
the longitudinal and cross-sectional growth 
of the skeleton. 
 
Sex Hormones  
 
The development of bone mineral mass 
during the whole growth period, including 
pubertal maturation, is due essentially to an 
increase in bone size, with a very small 
change in the unit amount of mineralized 
tissue within the bone envelope 
(44;45;48;49). In other words, the volumetric 
bone mineral density (vBMD) remains 
virtually constant from birth to the end of the 
growth period. Similarly, once pubertal 
maturation is achieved, the gender 
difference in bone mass results essentially 

from a greater bone size in male subjects 
(44;45;48;49). In boys, the onset of puberty 
occurs later than in girls and the period of 
accelerated bone growth lasts four years, as 
compared to three years in girls (50). These 
two characteristics probably account to a 
large extent for the gender difference in 
mean PBM observed in healthy young 
adults. 
 
Androgen receptors have been localized in 
growth plate chondrocytes in humans during 
pubertal maturation (51;52). However, there 
is no evidence that androgens stimulate 
longitudinal bone growth by a direct action 
on the skeleton. At adult age, patients 
affected by the androgen insensitivity 
syndrome, who have an XY genotype and a 
markedly female phenotype, are taller than 
the average standing height of the 
corresponding female population (53). In 
contrast, it is well-documented that 
estrogens play an essential role in 
longitudinal bone growth. Estrogens exert 
biphasic effects, accelerating bone growth at 
the beginning of puberty and playing a key 
role in the closing of growth plates in both 
genders (43-45). During pubertal maturation, 
cross-sectional analysis of appendicular 
bone, at least in the upper limb, reveals 
distinct gender dimorphisms. In female 
subjects, bone mineral mass increases more 
by endosteal than periosteal accrual (54). In 
male subjects, the opposite structural 
modifications are observed, with a greater 
increase in periosteal than endosteal 
deposition, resulting in an increment in both 
external and internal perimeters of the 
cortex (54). At the end of pubertal 
maturation, the cortical thickness is greater 
in male than in female subjects. In vertebral 
bodies, the gender structural dimorphism is 
mainly expressed in the frontal axis, which is 
10-15% larger in males than in females (55). 
These morphological differences in the 
geometry and mineral mass distribution of 
both axial and appendicular bones confer 
the greater mechanical resistance to loading 
of the male skeleton. They explain to a large 
extent the greater risk of osteoporotic 
fractures for women than for men during 
adult life. The increased deposition of bone 
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mineral at the level of the endosteal surface 
during puberty in female subjects may 
represent, according to a teleological 
explanation, a biological adaptation allowing 
the rapid mobilization of bone mineral in 
response to increased need during 
pregnancy and lactation. Experimental 
evidence indicates that alterations in 
maternal estrogen levels during pregnancy 
can not only influence the early phases of 
fetal bone tissue development, but can also 
exert long-term imprinting effects on bone 
cellular activity and eventually on adult 
skeletal mass (56). 
  
The Growth Hormone-Insulin-Like Growth 
Factor-1 System 
 
From birth to the end of adolescence, the 
GH-IGF-1 system is essential for the 
harmonious development of the skeleton 
(57). During puberty, the plasma level of 
IGF-1 transiently rises according to a pattern 
similar to the curve of the gain in bone mass 
and size (48). IGF-1 positively influences the 
growth of the skeletal pieces in both length 
and width. IGF-1 exerts a direct action on 
growth plate chondrocytes as well as on 
osteogenic cells responsible for building 
both cortical and trabecular bone tissue 
constituents (57). This activity is also 
expressed by parallel changes in the 
circulating biochemical markers of bone 
formation, osteocalcin and alkaline 
phosphatase. In addition, IGF-1 exerts an 
important impact on renal endocrine and 
transport functions that are essential for 
bone mineral economy. IGF-1 receptors are 
localized in renal tubular cells. They are 
connected to both the production machinery 
of the hormonal form of vitamin D, namely 
1,25-dihydroxyvitamin D (1,25(OH)2D) (58; 
59) and to the transport system of inorganic 
phosphate (Pi) (60) localized in the luminal 
membrane of tubular cells. By enhancing the 
production and circulating level of 
1,25(OH)2D (61), IGF-1 indirectly stimulates 
the intestinal absorption of Ca and Pi. 
Coupled to the stimulation of the tubular 
capacity to reabsorb Pi (61), the 
extracellular Ca-Pi product is increased by 
IGF-1, which through this dual renal action 

favors bone matrix mineralization. 
Furthermore, at the bone level, IGF-1 
directly enhances the osteoblastic formation 
of the extracellular matrix (62). In growth 
plate chondrocytes as well as in their 
plasma membrane derived extracellular 
matrix vesicles are equipped with a 
phosphate transport system that plays a key 
role in the process of primary calcification 
and thereby in bone development (63-65). 
This Pi transport system is also present in 
other osteogenic cells (66) and is regulated 
by IGF-1 (67).  
 
The hepatic production of IGF-1, which is 
the main source of circulating IGF-1, is 
influenced not only by GH, but also by other 
factors, particularly by amino acids from 
dietary proteins. During pubertal maturation, 
there is an interaction between sex steroids 
and the GH-IGF-1 system. The modalities of 
this interaction remain to be delineated in 
humans. In animal studies, relatively low 
concentrations of estrogens stimulate the 
hepatic production of IGF-1, whereas large 
concentrations exert an inhibitory effect (45). 
Androgens act mainly at the pituitary level, 
but only after being converted into estrogens 
by the enzymatic activity of aromatase (45). 
 
The Relationship Between Pubertal 
Timing and Bone Development 
 
As mentioned above, the duration of sex 
hormone exposure is considered as the 
causal factor accounting for the variability of 
PBM in relation to pubertal timing. This 
attractive hypothesis is challenged by some 
intriguing observations suggesting that the 
mechanism may be much more complex. As 
an alternative or complementary possibility, 
a common genetic program could control 
pubertal timing and bone mineral mass 
development. This program would also 
modulate the response to environmental 
factors so that, for instance, the effects of 
some nutrients may affect both pubertal 
timing and bone mineral mass development.  
 
“Delayed puberty” is one situation that may 
provide some insight into this putative 
common programming. Delayed puberty or 
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adolescence is defined as the failure to 
exhibit a manifest sign of sexual maturation 
in a subject who has attained the upper 
normal limit of chronological age for the 
onset of puberty, i.e., more than 2.0-2.5 
standard deviations above the mean age for 
the population (19;26;27). Clinically it means 
an absence of any breast development in a 
girl at 13 years of age or an absence of 
increase in testicular volume in a boy at 14 
years (26). The causes of delayed 
adolescence have been classified as 
permanent or temporary disorders. As 
described above, the permanent disorders 
can be due to either hypothalamo-pituitary 
or gonadal failure (19;26;27). Among the 
temporary disorders, some can be explained 
by the presence of chronic systemic 
diseases, hormonal disturbances such as 
hyposecretion of thyroid hormones or growth 
hormone, or hypercortisolism (19;26;27). 
Nutritional disorders, psychological stress, 
and intensive physical activity may also 
cause a temporary delay in the onset of 
puberty (19;26;27). Training for competitive 
sports can combine nutritional, 
psychological and physical stresses that 
may explain delayed pubertal timing 
observed in young female elite gymnasts, 
for example (68). In athletes involved in 
rhythmic gymnastics, menarcheal age was 
found to be positively correlated to training 
intensity and negatively to body fat (69). 
Nevertheless, late pubertal timing due to 
intensive physical exercise or other 
temporary stressful or pathological 
conditions may have no consequence on 
PBM. Indeed, the delay in bone mass 
acquisition can be followed by a normal 
development pattern in relation to bone age 
progression. Furthermore, the positive 
mechanical impact on bone accrual may 
compensate (70) or even over-compensate 
(71) for any negative influence that may 
result from delayed pubertal maturation.  
 
“Constitutional Delay of Growth and 
Puberty” (CDGP) is a condition considered 
as an extreme form of the physiological 
variation in the onset of pubertal timing. 
CDGP is mainly observed in male subjects 
(19;26;27). A family history of delayed 

pubertal development is recorded in these 
patients, as indicated by late menarcheal 
age of the mother or sisters, or a retarded 
growth spurt in the father (26). Associated 
with this delay in sexual maturation are 
delays in linear growth and bone mass 
acquisition. Whereas the delay in sexual 
maturation is transient, a deficit in bone 
mineral mass persists in adulthood. In a 
cohort of men (mean age 26 and then 28 
years) with a history of CDGP, osteopenia 
was found at several skeletal sites, including 
the spine, radius and femoral neck (72;73). 
The deficit in aBMD could not be ascribed to 
the reduction in bone size and it was not 
associated with abnormal bone turnover 
(73). The fact that a deficit in bone mass is 
observed before the onset of sexual 
maturation and remains once PBM is 
achieved suggests that the delay in pubertal 
timing per se in CDGP is not the unique 
causal factor of adult osteopenia. Indeed, 
bone age delay is a characteristic trait of 
CDGP at the time of initial evaluation, i.e., 
before the onset of pubertal maturation 
(74;75). During growth, there is a tight 
correlation between bone age as classically 
assessed by X-ray of the hand or wrist and 
aBMD/BMC as measured by the DXA 
technique (76). Hence, it may be deduced 
that in CDGP the deficit in bone mineral 
mass gain occurs well before the onset of 
puberty (77). Accordingly, in CDGP 
subjects, low PBM or young adult 
osteopenia (72;73) would be poorly related 
to the late onset of pubertal maturation. The 
mass of bone accumulated during the 
peripubertal and postpubertal periods would 
be proportional to that gained during 
prepubertal years. In other words, the CDGP 
subjects would keep their low prepubertal 
SD score (Z-score) or percentile after the 
onset of pubertal maturation thru the 
attainment of peak bone mass. Without any 
substantial change in environmental factors, 
bone mass, like body height, tends to track. 
We observed in female subjects a high 
degree of correlation between the SD score 
of several bone variables, including radial, 
spinal and femoral aBMD or BMC as 
longitudinally assessed from prepuberty to 
postmenarche on six occasions. 
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Furthermore, bone variables and, as 
expected, body height were significantly 
correlated between prepubertal daughters 
and their mothers (78). These results 
strongly indicate that tracking lasts during 
the entire period of bone growth. These 
findings, together with the family history of 
CDGP, may imply that the bone deficit 
would be present at birth in subjects with 
this disorder. Note that in CDGP, final 
standing height is not increased but either 
normal or slightly lower than normal (26;27). 
Likewise, despite differences in bone 
structural components, we did not find any 
significant association between physiological 
variations in pubertal timing and either final 
standing height or body weight, as observed 
in a cohort of female subjects prospectively 
followed from prepuberty to postmenarche 
(25). Therefore, the interesting hypothesis 
(24) that the greater fracture risk associated 
with late menarche would be related to 
significant differences in body habitus does 
not appear to be supported by several 
observations made in either CDGP or 
healthy subjects.  
 
The Effect of Luteinizing Hormone-
Releasing Hormone Agonist on Pubertal 
Timing and Peak Bone Mass 
 
Treatment with luteinizing hormone-
releasing hormone (LHRH) agonist for 3.5 
years in adolescents with very short stature 
and normally-timed puberty increased adult 
height but was associated with a significant 
decrease in lumbar spine aBMD (79). 
Pubertal development was slowed in LHRH 
agonist-treated subjects as compared to the 
placebo group (79). This study supports a 
detrimental effect of delayed pubertal timing 
per se on PBM. Nevertheless, the use of 
LHRH agonists at midpuberty (subjects at 
baseline were at Tanner stage 3) may exert 
additional negative effects on bone mineral 
mass accrual rather than merely decelerate 
the rate of pubertal maturation. Indeed, as 
compared to pretreatment, the 
administration of LHRH agonist significantly 
decreased LH and FSH, as well as estradiol 
in girls and testosterone in boys (79). 
Therefore, these important alterations 

induced at mid-puberty may have 
jeopardized PBM attainment in these 
adolescents with low predicted adult height 
but normally-timed puberty before the 
beginning of LHRH therapy. In any case, the 
main conclusion of the authors (79) that 
LHRH agonist treatment cannot be routinely 
recommended to augment height in 
adolescents with normally-timed puberty 
because of its adverse influence on 
vertebral bone density is fully warranted.      
 
A Similar Role of Heredity on Pubertal 
Timing and Peak Bone Mass 
 
As mentioned above, both pubertal timing 
and bone mass are controlled by strong 
genetic determinants. In twin models, 
heredity accounts for about 75% of the 
variance of either menarcheal age (33;37) or 
PBM (80). Whether the trajectory or tempo 
of bone mass accumulation and the timing 
of puberty onset are determined by shared 
genetic factors, and/or established in utero 
as part of a common fetal programming, is 
not known.  
 
Among candidate genes that influence both 
functions, those modulating the circulating 
levels and actions of sex steroids might be 
considered. Polymorphisms of the estrogen 
receptor alpha and beta genes are 
associated with both age of menarche (81; 
82) and bone mineral density and/or fracture 
risk in women (83;84). Some anthropometric 
measurements at birth are associated with 
age at menarche (85;86), and also with 
bone size or hip fracture risk, in adulthood 
(87;88). These observations suggest that 
pubertal timing, PBM and consecutive 
osteoporosis risk later in life may be part of 
a common programming in which both 
genetic factors and in utero influences are 
important determinants.  
 
The Influence of Nutrition on Pubertal 
Timing and Bone Mass Acquisition 
 
The possible role of nutrition on pubertal 
timing has been extensively reviewed, 
particularly in relation to the migration of 
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children from underprivileged to wealthier 
countries (19). Poor nutrition and low body 
fat, or an altered ratio of lean mass to body 
fat, seem to delay the adolescent spurt and 
retard the onset of menarche (89). Poor 
nutrition during growth, including an 
inadequate supply of energy and proteins, 
can severely impair bone development (90). 
Low bone mass was observed in women 
who underwent nutritional deprivation during 
childhood as documented in Japan, where 
an unprecedented food shortage, including 
low protein and calcium intakes, was 
experienced from 1943 to 1945 (91). In 
many countries across the five continents, a 
secular trend for an earlier onset of 
menarche has been reported over the past 
120 years. Very consistent reports have 
been published from North (92;93) and 
South America (94), Africa (95;96), Asia 
(97;98), Australia (99) and Europe 
(100;101). Menarche has been occurring 
earlier at an average of 3 or 4 months per 
decade (102). Although both the increase in 
standing height and the reduction in 
menarcheal age have decelerated in some 
populations, those trends are continuing in 
others (103). The secular trend in  
menarcheal age has been ascribed to 
changes in environmental conditions, 
particularly to better health, and to 
modifications in socio-economic status or 
nutrition (93;104;105). The influence of 
nutrition is suggested in a study indicating a 
secular trend of an earlier onset of 
menarche with increasing obesity (106). 
Whether there is a direct causal relationship 
between increasing obesity and earlier 
menarcheal age remains uncertain (19;107). 
A direct relationship between body weight, 
particularly body fat, and pubertal timing was 
suggested many years ago (108). A 
significant relationship with fat mass was 
confirmed in some but not all subsequent 
studies (19). The role of body fat cannot be 
separated from factors related to short-term 
metabolic energy availability to which the 
neuroendocrine system that controls 
reproductive functions is sensitive (109). In 
physiological conditions, the relationship 
between nutritional status and pubertal 
timing is weak, suggesting that this 

relationship is indirect and outweighed by 
other factors (19). Among those are some 
common genetic factors that may influence 
both body mass components and 
menarcheal age (37). Peptide factors such 
as leptin and ghrelin have been implicated in 
initiating puberty (19;110-116) and in 
affecting bone metabolism (117-120). The 
role of these “nutrition-related” peptides, if 
any, in the physiological relationship 
between pubertal timing and bone accrual 
remains to be established.   
 
A couple of observations suggested that 
calcium may play a role in coupling pubertal 
timing to bone accrual (25;121). We 
observed an association between calcium 
supplementation given to prepubertal girls 
(122) and the onset of pubertal maturation 
(23;25). Whether a substantial amount of 
calcium given at an age very close to the 
onset of puberty could influence the 
hypothalamic-pituitary-gonadal axis, by a 
leptin-dependent or -independent (121) 
pathway(s), and thereby accelerate the 
occurrence of menarche remains an open 
question. 
 
The Relationship Between Pubertal 
Timing and Fracture During Bone Mass 
Acquisition 
 
Fractures constitute 10 to 25% of all 
pediatric trauma. Large epidemiological 
studies have found a high incidence of 
fracture, with 27-40% of girls and 42-51% of 
boys sustaining at least one fracture during 
growth (123-125). The highest incidence of 
fracture is observed in the forearm 
(126;127). It has been hypothesized that the 
high incidence of fractures in childhood 
could result from a transient deficit in bone 
mass relative to longitudinal growth (48). 
Indeed, the peak incidence of fractures in 
girls occurs between 11-12 years of age and 
in boys between 13-14 years of age 
(123;125). This period corresponds to the 
age of peak height velocity (PHV) in both 
genders and precedes by nearly one year 
the time of peak BMC velocity (128-130). 
The transient fragility hypothesis does not 
exclude another possibility that would be 
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related to a more permanent bone mass 
deficit in children and adolescents who 
experience fractures, not only during but 
also before and after pubertal maturation. 
Several arguments would favor this second 
possibility. A first fracture is associated with 
an increased risk of multiple fractures during 
growth (126;127). Moreover, children 
experiencing their first fracture before 4 
years of age are at greater risk of fractures 
that occur before 13 years of age (131). 
Early and more recent reports have 
documented lower BMD or BMC at several 
sites of the skeleton among children with 
fractures compared to controls (132-135). In 
a follow-up study, it was observed that girls 
who have sustained a distal forearm fracture 
maintain their lower BMC at most sites for at 
least 4 years (136). Taken together with the 
notion of bone mass "tracking" during 
growth (78), these data suggested that 
fractures in childhood might be associated 
with a decrease in PBM. In order to provide 
more support to this possibility, a cohort of 
125 girls from 7.9 to 16.4 years of age was 
prospectively evaluated for fractures (137) in 
relation to BMC at the spine, radius, hip and 
femur diaphysis, as measured by DXA. Fifty-
eight fractures occurred in 42 girls, with 48% 
of all fractures affecting the forearm and 
wrist. Before and during early puberty 
(Tanner stages 1 and 2), only BMC at the 
radius diaphysis was significantly lower in 
the fracture compared to the no fracture 
group. As these girls reached pubertal 
maturity (Tanner stage 5, mean age ± SD, 
16.4 ± 0.5 yrs), BMC at the ultra distal 
radius, trochanter and lumbar spine were all 
significantly lower in girls with fractures 
(137). Compared to girls without fractures, 
the fracture group had significantly 
decreased BMC gain throughout puberty at 
lumbar spine (-8.0%), ultra distal radius (-
12.0%), and trochanter (-8.4%), without 
differences in height and weight gain. 
Moreover, BMC was highly correlated 
between prepuberty and pubertal maturity 
(R=0.54-0.81) and between mature 
daughters and their mothers (R=0.32-0.46) 
at most skeletal sites (137). Thus, girls with 
fractures have decreased bone mass gain, 
particularly at sites containing predominantly 

trabecular bone. Taken together with the 
evidence of tracking throughout puberty and 
heritability for bone mineral mass, these 
observations suggest that fractures in 
childhood and adolescence may be markers 
for low PBM and persistent bone fragility in 
adulthood. Whether healthy girls who 
fracture and present reduced bone mass 
gain from prepuberty to the end of sexual 
maturation would also experience relatively 
late pubertal timing remains to be analyzed. 
As discussed below, a very recent study in 
healthy boys suggests that this may well be 
the case.   
    
Evidence for a Relationship Between 
Pubertal Timing and Fracture Risk in 
Growing Males 
 
A very interesting report presents data 
favoring a relationship between pubertal 
timing, BMD determined at 18.9 (± 0.6 SD) 
years of age, and the prevalence of previous 
fractures, in boys (18). In 642 subjects 
belonging to the population-based 
Gothenburg Osteoporosis and Obesity 
Determinants (GOOD) study, pubertal timing 
was estimated as the age at PHV during 
puberty using detailed growth and weight 
charts from birth until 19 years of age. PHV 
should be reached within two years after 
pubertal onset. The average age at PHV 
was 13.6 years, ranging from 10.9 to 16.9 
years. The corresponding pubertal onset 
would theoretically range from about 8.9 to 
14.9 years. Age at PHV was found to be an 
independent negative predictor of several 
bone variables, including total body and 
radial aBMD as determined by DXA, as well 
as cortical thickness and cortical and 
trabecular vBMD as assessed by peripheral 
QCT at both the radial and tibial metaphysis 
(18). These results obtained in young 
healthy adult men by the Gothenburg team 
(18) fit quite well with data obtained in 
female subjects (25) indicating that late 
pubertal timing (mean age 14 vs. 12 years), 
within the normal range, is associated with 
reduced PBM. In addition, the study by 
Kindblom et al. (18) found an association 
between PHV and fracture incidence during 
growth. The total number of subjects with at 
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least one previous fracture was 175 
(27.3%), and 71 (11.1%) of these 
experienced upper limb fractures. Odds ratio 
(OR) calculation revealed that age at PHV 
was associated with all previous fractures 
(1.19, 95%CI: 1.00-1.42, p<0.05) and upper 
limb fractures (1.39, 95%CI: 1.08-1.79, 
p<0.01). Thus, a one-year increment in PHV 
increased by 40% the risk of upper limb 
fracture occurring during growth. This 
association with previous fractures was no 
longer significant after adjustment for radial 
aBMD, taking into account that reduction of 
this bone strength estimate was also 
correlated with PHV increment. The authors 
are aware that bone development may not 
be fully completed in males at a mean age 
of 18.9 years, particularly at the level of the 
radius (138). In 16.4 year-old healthy 
females, while femoral neck aBMD was not 
lower than the mean value of young adults 
used as the T-score in a clinical setting of 
osteoporosis diagnosis, a substantial deficit 
was still observed in aBMD at the radial 
metaphysis level, even in those with early 
menarche (25). Therefore, firm conclusions 
on the association between late PHV, low 
radial aBMD, and increased upper limb 
fractures during childhood and adolescence 
will still require DXA measurement once 
PBM is actually attained at those skeletal 
sites. As mentioned above, there is 
evidence that late pubertal timing could be 
associated with a bone mineral mass 
trajectory running, already before the onset 
of sex maturation, in the lower part of the 
normal distribution. In the GOOD study, the 
information on fracture was collected by 
questionnaires and restricted to the 
prevalence of previous fractures (18). Age at 
fracture was not recorded and therefore this 
report does not provide information as to the 
prevalence of fractures occurring before and 
during the PHV period. Hopefully this 
information might be retrospectively 
collected, since a broken bone as 
experienced during childhood and 
adolescence often remains, at least for the 
parents, a memorable event. 
 
 
 

Conclusions 
 
Late pubertal timing is associated with 
relatively low PBM and increased risk of 
fragility fracture in adulthood. Several 
observations suggest that the relationship 
between pubertal timing and PBM is more 
complex than can be explained by variation 
in the duration of sex hormone exposure. In 
delayed or late puberty, reduced bone mass 
gain can be observed before the onset of 
sexual maturation. In the general population, 
both pubertal timing and PBM, with its 
strength components, are traits 
characterized by large variance and 
Gaussian distribution. Both variables are 
under the strong influence of heritable 
factors and can be moderately affected by 
common environmental determinants. It is 
suggested that pubertal timing, PBM and 
consecutive osteoporosis risk later in life 
may be part of a common programming in 
which both genetic factors and in utero 
influences are important determinants. Both 
variables probably arise from the additive 
influences of multiple genes. The 
identification of allelic variants of candidate 
genes that are associated with both pubertal 
timing and bone mass acquisition during 
growth may enhance our understanding of 
the mechanisms that determine the risk of 
osteoporosis in relation to disorders of 
human reproduction.  
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