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Abstract 
 
     Bisphosphonates provide clear anti-fracture efficacy by suppressing bone turnover. The effects of 
turnover suppression extend beyond slowing the rate of bone loss to changing the properties of the bone 
matrix. The goal of this review is to summarize the effects of bisphosphonates on material-level properties of 
bone, including tissue mineralization, microdamage, and the organic matrix (e.g., collagen cross-linking). 
The mechanical implication of these changes is also addressed. Because of a reduction in turnover that 
increases the mean tissue age, bisphosphonates increase the mean degree and homogeneity of 
mineralization, the accumulation of microdamage, and the degree of both enzymatic and non-enzymatic 
collagen cross-linking. These changes combine to reduce the energy absorption capacity (material-level 
toughness) without altering the material-level strength or modulus of the tissue. The implication of these 
material-level changes remains unclear, as the reduced rate of bone loss, together with the improvement in 
bone mineral density and the maintenance of trabecular architecture, appears sufficient to reduce fracture 
risk. Continued study of the changes in material-level properties with bisphosphonate treatment is 
warranted. With treatment duration now extending into its second decade in some patients, it remains 
possible that over time the changes in material-level properties could override the structural-level benefits. 
BoneKEy-Osteovision. 2007 February;4(2):49-60. 
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What Are “Material Properties” of Bone? 
 
The biomechanical properties of bone exist 
at two hierarchical levels (Fig. 1). Structural-
level biomechanical properties, such as 
ultimate load, stiffness, and energy 
absorption to fracture, describe the bone as 
a composite unit. These properties are 
determined by factors such as bone mass, 
geometry/architecture, and the 
biomechanical properties of the material (1). 
Material-level biomechanical properties, 
such as ultimate stress, modulus, and 
toughness, describe the biomechanical 
properties of the tissue, independent of 
mass or geometry. The biomechanical 
properties of the material are determined by 
factors including, but not limited to, the 

degree and heterogeneity of mineralization, 
the level of microdamage, and collagen 
content and cross-linking. A change in one 
or more of these variables, as occurs with 
bisphosphonate treatment, can alter the 
material-level biomechanical properties, 
affecting structural biomechanical properties 
and presumably fracture risk (Fig. 2) (2). 
 
Clinical trials in post-menopausal 
osteoporotic women have consistently 
shown reductions in both vertebral and non-
vertebral fracture with various 
bisphosphonates (for review see (3;4)). 
These reductions are assumed to be related 
to an increase in the structural 
biomechanical properties of the bone, e.g., 
the bones are ‘stronger’. Indeed, animal 
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Figure 1. Hierarchical nature of bone biomechanical properties. Structural-level biomechanical 
properties are determined by a combination of factors including bone mass, 
geometry/architecture, and the biomechanical properties of the bone tissue (material properties). 
Material-level biomechanical properties are determined by factors such as mineralization (both 
degree and heterogeneity), the level of microdamage accumulation, and the organic matrix (e.g., 
collagen cross-linking).  
 
experiments have consistently shown 
increased whole bone strength and stiffness 
with bisphosphonate treatment (5-11). 
Bisphosphonates likely enhance structural-
level biomechanical properties through a 
combination of changes in bone mass, 
geometry/architecture, and material-level 
biomechanical properties. By suppressing 
bone turnover, bisphosphonates reduce the 
rate of bone loss, thereby maintaining bone 
mass relative to untreated controls (12;13). 
Bone geometry and architecture are 
improved with bisphosphonates through 
reductions in cortical bone porosity (14) and 
maintenance of trabecular number, 
thickness, and connectivity (12;13;15). The 
effects of bisphosphonates on the material-
level biomechanical properties, and more 
specifically the components that determine 
them, are less prominent in the literature. 
The goal of this Perspective is to highlight 
what is known concerning the effect of 
bisphosphonates on material-level 
properties of bone. Specifically, we will 

summarize the effects of bisphosphonate 
treatment on three key material properties of  
bone: mineralization, microdamage, and the 
organic matrix, and describe how these 
changes affect the material-level 
biomechanical properties.  
 
Mineralization: More Is Not Necessarily 
Better 
 
By reducing bone turnover, 
bisphosphonates significantly alter the 
mineralization profile of bone, increasing the 
average tissue mineralization (often termed 
mean degree of mineralization (16)) and 
reducing the heterogeneity of mineralization 
across the mineralized bone matrix. These 
changes occur because of reduced 
formation of new basic multicellular units 
(BMUs), which transiently lowers 
mineralization levels because new BMUs 
are undermineralized, relative to mature 
BMUs. A reduction in new BMU formation 
also increases the lifespan of existing 
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Figure 2. Summary of changes to both structural- and material-level biomechanical properties 
with bisphosphonate treatment. Structural properties are defined in terms of strength (the highest 
load the bone can withstand), stiffness (the linear slope of the load/displacement curve), and 
energy absorption to fracture (the energy under the curve). Analogous properties can be defined 
for material-level properties using a stress/strain curve (corrected for differences in bone mass 
and geometry). 
 
BMUs, allowing more of the bone to become 
fully mineralized, although it does not lead to 
greater mineralization per unit of collagen, or 
to “hypermineralization”. Using quantitative 
backscatter electronic imaging (qBSE), 
Boivin et al. (17) and Roschger et al. (14) 
have documented significantly higher 
average tissue mineralization and 
mineralization homogeneity in both cortical 
and trabecular bone of the iliac crest from 
alendronate-treated patients after 2-3 years, 
compared to untreated patients. Borah et al. 
(18), using microCT to assess biopsies from 
patients at baseline and after 3 and 5 years 
on risedronate, showed an increase in 
average tissue mineralization, and a 
reduction in the ratio of low/high 
mineralization (an indication of increased 
mineralization homogeneity) by three years 
of treatment. There was no significant 
difference in average mineralization or 
homogeneity values between years 3 and 5 
of risedronate treatment, suggesting 
mineralization changes may be maximized 
early in treatment (19). 

 
Animal studies have provided results 
consistent with data from humans. 
Increased ash fraction, a more global 
measure of tissue mineralization, has been 
reported following bisphosphonate treatment 
in numerous dog studies (5;6;8-11;20). 
Using qBSE, Roschger et al. (21) 
documented an increase in both mean 
degree of mineralization and mineralization 
homogeneity following 1 year of alendronate 
treatment in minipigs, while Mashiba et al. 
(22) found an increased mean degree of 
mineralization in dog rib following 3 years of 
treatment with incadronate. Although 
increased mineralization was not found 
using qBSE in ribs from dogs treated with 
alendronate or risedronate for 1 year, using 
density centrifugation, Burr et al. found a 
significantly greater percentage of bone with 
higher levels of mineralization in these same 
bones (23). 
 
An unresolved question is whether 
bisphosphonates alter the process of 
mineralization. Specifically, it is unclear 
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whether bisphosphonates alter either the 
rate of mineralization, or the eventual 
degree of mineralization, of a specific BMU. 
One or both of these changes would be 
expected to have a significant effect on the 
biomechanical properties at the tissue level. 
Some insight can be gained from a study by 
Burr et al. (23), in which levels of 
mineralization were assessed in newly 
formed bone (determined by fluorochrome 
labeling in the tissue) using Fourier 
transformed infrared microspectroscopy. 
This study showed that the 
phosphate/protein ratio, a measure of 
mineralization, was significantly lower in 
newly deposited bone (< 1 month old) of 
bisphosphonate-treated animals compared 
to controls. As the phosphate/protein ratio 
was similar in bone that was ~5 months old, 
it appears that the time-course of 
mineralization is acutely altered but that the 
final level of mineralization of a newly 
deposited piece of bone is at least 
equivalent to that of untreated bone. No data 
exist on whether the eventual level of 
mineralization that a particular BMU 
achieves is increased with bisphosphonate 
treatment. 
 
The effects of altered mineralization on 
biomechanical properties are well-
established (24-30). Increased 
mineralization is positively correlated to 
strength and stiffness, and inversely related 
to energy absorption (toughness) (30). This 
is true both at the whole bone (structural-) 
and material-level. Consistent with these 
expected changes, bones from animals 
treated with bisphosphonates have been 
shown to have increased strength and 
stiffness, and reduced toughness 
(5;6;10;31). These changes in toughness 
have been shown to be closely predicted by 
the changes in mineralization (32). 
Interestingly, these animal studies showing 
increased mineralization did not document 
increased material strength (ultimate stress) 
or modulus, changes that would be 
expected to occur. The most plausible 
explanation for this finding is that the 
positive changes induced by increased 

mineralization are offset by other material-
level changes that result from 
bisphosphonate treatment, including 
increases in microdamage accumulation 
(33).  
  
Microdamage: More Is Not Necessarily 
Worse 
 
Bisphosphonate treatment results in a 
significant accumulation of microdamage. To 
date, six papers have reported 
microdamage levels in animals treated with 
bisphosphonates (5;6;9-11;34). These 
studies have used various bisphosphonates 
(alendronate, risedronate, incadronate), at 
doses ranging from 0.5 to 6x the dose used 
for treatment of post-menopausal 
osteoporosis, and with treatment durations 
lasting from 1 to 3 years. Significantly higher 
levels of microdamage have been 
consistently noted in the trabecular bone of 
the lumbar vertebra and cortical bone of the 
rib with bisphosphonate treatment (Fig. 3). 
Although increased levels of microdamage 
have also been noted in the ilium, thoracic 
spinous process, and femoral neck, these 
sites appear to be less prone to significant 
microdamage accumulation (< 2-fold relative 
to untreated bone) (5;6;9-11;34). While 
these experiments have all been conducted 
using a beagle dog model, recent data from 
iliac crest biopsies of treatment-naive and 
bisphosphonate-treated women similarly 
show increased microdamage with 
bisphosphonates (35). 
 
The mechanism of bisphosphonate-induced 
microdamage accumulation has not been 
established, although conventional wisdom 
suggests it is due to a combination of 
increased microdamage formation and 
reduced microdamage removal. 
Bisphosphonates suppress turnover, 
reducing both targeted and stochastic 
remodeling (36), thereby allowing 
microdamage to persist for a greater period 
of time compared to non-treated bone. A 
large suppression of turnover is not 
necessary to induce a significant 
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Figure 3. Summary of results from beagle dog studies examining changes in microdamage 
accumulation with bisphosphonate treatment. Data are expressed as –fold change in crack 
surface density (Cr.S.Dn.) of the treated group relative to vehicle-treated animals within the same 
study. Results are divided by site of analysis, and within a particular tissue each bar represents 
the results from a specific group of treated animals. The bisphosphonate (R, risedronate; A, 
alendronate; I, incadronate), as well as the dose (in mg/kg/day), are represented on the x-axis 
below each bar. The citation corresponding to each experiment is noted within the bar. (*) 
denotes that the level of microdamage was significantly higher than in vehicle-treated animals in 
a particular study (p < 0.05). The photomicrograph shows a typical linear microcrack in the 
trabecular bone of a beagle dog vertebra (stained with basic fuchsin and viewed under 
fluorescent light). 
 
accumulation of microdamage. Suppression 
of trabecular bone activation frequency in 
the vertebra by just ~40% is associated with 
a 3x increase in microdamage compared to 

untreated controls (9). Similarly, a wide-
range of microdamage accumulation (from 
3x to 5x higher compared to untreated 
controls) occurs in treatment groups having 
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similar degrees of remodeling suppression 
(9). So, while there is a significant inverse 
relationship between remodeling 
suppression and microdamage 
accumulation (6;9;10), there is more to the 
story than a suppression of microdamage 
removal. One explanation is that 
bisphosphonates also likely alter 
microdamage formation. Factors such as 
increased mineralization and increased 
tissue homogeneity, both of which occur 
with bisphosphonate treatment, are known 
to be permissive to the formation and growth 
of microdamage (37-39). Data concerning 
changes in damage formation and/or 
propagation with bisphosphonate-treatment 
are limited but are consistent with the 
hypothesis of increased microdamage 
formation (40). 
 
The main controversy concerning 
bisphosphonates and microdamage arises 
with respect to the biomechanical 
implications. In the majority of studies that 
have documented increased microdamage 
with bisphosphonate treatment, a 
concomitant decrease in bone toughness 
has also been quantified (5;6;9;10). 
However, a cause/effect relationship 
between these two parameters has not been 
documented. It is generally accepted that 
microdamage reduces material-level 
biomechanical properties, including strength, 
modulus, and toughness (41-46). The 
difficulty in teasing out the contribution of 
microdamage to these deteriorations in 
biomechanical properties is that the 
concomitant changes to mineralization (as 
outlined above) and organic matrix (see 
below) occur with bisphosphonates. 
Although not definitive, a recent study 
assessing microdamage and biomechanical 
properties in dog vertebra suggests that 
microdamage accumulation may not be the 
predominant reason for reduced toughness 
(9). In this study, there was minimal 
congruence between changes in 
microdamage accumulation and material-
level toughness in vertebra from several 
groups of bisphosphonate-treated dogs (9). 
Although these data do not eliminate the 
possibility of a direct cause/effect 
connection, they suggest factors other than 
microdamage contribute significantly to the 

material-level biomechanical changes 
associated with bisphosphonate treatment. 
Whereas mineralization likely plays some 
role in these material-level biomechanical 
changes, emerging data suggest the non-
mineral component of bone, the organic 
matrix, may also contribute.  
 
Organic Matrix: Looking Beyond The 
Mineral in Bone 
 
There are limited data concerning 
bisphosphonate effects on the organic 
component of bone, yet the data that do 
exist suggest the changes are significant. 
Early studies by Guenther et al. (47) showed 
significant increases in divalent enzymatic 
cross-linking of the collagen matrix of rat 
tibia following treatment with a 
bisphosphonate. These changes were 
associated with decreased digestibility of the 
tissue, suggesting a more stable collagen 
matrix (47). We (48) and others (49) have 
recently documented changes in both 
enzymatic and non-enzymatic cross-linking 
of the organic matrix in bisphosphonate-
treated animals. Following one year of 
treatment with a wide range of 
bisphosphonate doses, the ratio of 
pyridinoline to deoxypyridinoline (PYD/DPD, 
an index of trivalent enzymatic cross-linking) 
in the trabecular bone of lumbar vertebrae 
was significantly increased compared to 
vehicle-treated animals. The level of 
pentosidine, an advanced glycation end-
product (AGE) that forms non-enzymatically 
mediated collagen cross-links, was 
significantly increased in the trabecular bone 
of bisphosphonate-treated animals 
compared to controls (48). In these same 
animals, the level of AGEs in cortical bone 
of the tibia was also increased with 
bisphosphonates (50). In a separate 
experiment, levels of pentosidine were found 
to be increased in the ribs of dogs following 
3 years of treatment with incadronate (49). 
 
The increasing interest in changes in the 
organic matrix with bisphosphonate 
treatment is due to the known contributions 
of the organic matrix to a bone’s fracture 
resistance (51;52). Specifically, the organic 
matrix constitutes the principal toughening 
mechanism in bone, and therefore plays a 
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substantial role in determining properties of 
energy absorption/toughness (53). This is 
because collagen properties are the main 
determinants of the post-yield properties of 
bone (51;54;55). Changes in the organic 
matrix may have some effect on tissue 
strength and stiffness (56;57), although 
these properties are determined 
predominantly by the mineral fraction. 
 
While changes in the amount, structure, and 
organization of collagen can alter tissue 
biomechanical properties, the key 
component appears to be the extent of 
collagen cross-linking. Collagen cross-
linking occurs via either enzymatically-
mediated or non-enzymatically mediated 
processes. The enzymatic process, 
mediated by lysyl oxidase, results in the 
trivalent collagen cross-links PYD and DPD. 
The ratio of PYD/DPD has been shown to 
be positively associated with strength and 
stiffness in bone (58-62), but appears to 
have a minimal effect on toughness 
(53;57;63;64). Non-enzymatic collagen 
cross-linking (e.g., AGEs such as 
pentosidine) occurs via spontaneous 
condensation of arginine, lysine and free 
sugars (65;66). Cross-links formed through 
non-enzymatic processes make the tissue 
more brittle (67-69). Increased pentosidine 
concentration in bone has been shown to 
reduce the amount of post-yield deformation 
(53;70;71) and work to fracture (72). 
Consistent with these known effects of 
increased cross-linking, our dog studies, 
which showed increased enzymatic cross-
linking and AGE accumulation in both the 
vertebrae and tibiae, also showed 
decreased toughness in both tissues 
(9;48;50). There was a significant inverse, 
non-linear relationship between levels of 
AGEs and post-yield work to fracture in the 
cortical bone (50). While this does not show 
a cause/effect relationship between collagen 
cross-linking and mechanical properties, it 
provides intriguing data supporting the 
hypothesis that changes in the organic 
matrix play a significant role in altering 
material-level biomechanical properties with 
bisphosphonate treatment. 
 
 
 

Conclusions 
 
By reducing turnover, bisphosphonates 
result in significant changes to three key 
material properties of bone, increasing the 
mean degree and homogeneity of 
mineralization, the accumulation of 
microdamage, and the degree of collagen 
cross-linking. Each of these changes in the 
bone material has a significant effect on 
material-level biomechanical properties, 
independent of changes in bone mass, 
although their specific individual contribution 
is difficult to assess experimentally. By all 
accounts, it appears that changes to 
mineralization and collagen cross-linking, 
which tend to increase material-level 
strength and stiffness, are offset by the 
increased microdamage (which tends to 
lower both). This results in minimal change 
to material-level strength (ultimate stress) 
and stiffness (modulus). Conversely, 
changes to all three parameters, 
mineralization, microdamage, and cross-
linking, likely contribute to reducing energy 
absorption capacity at the material level 
(toughness) (Fig. 2). 
 
What remains unclear is the importance of 
these changes in material-level 
biomechanical properties, given the 
dramatic changes in bone mass and 
geometry/architecture that occur with 
bisphosphonates. To date, it appears these 
macro-level changes drive the anti-fracture 
efficacy of bisphosphonates, and can 
adequately compensate for diminutions in 
material properties (Fig. 2). However, as 
treatment duration extends into its second 
decade for some patients, continued study 
of the changes in material-level properties 
with bisphosphonates is warranted. Over 
time, the changes in material-level 
properties could potentially override the 
structural-level benefits of bisphosphonates. 
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