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Abstract 
 
     In vertebrates, the skeleton has pivotal roles in mobility, locomotion, calcium homeostasis, hematopoiesis 
and protection. Therefore, irreversible skeletal defects often incur considerable morbidity. Tissue 
engineering has drawn attention as a promising strategy for the treatment of irreversible tissue defects.  
There are three pillars important for tissue engineering: cell sources, signaling factors, and scaffolds. Since 
the late 1990s, substantial progress has been made in tissue engineering of bone and cartilage along with 
advances in stem cell biology, bone and cartilage biology, and materials science. In particular, autologous 
cell implantation combined with biodegradable scaffolds have been extensively researched. This 
Perspective aims to review recent advances and major obstacles currently faced by the field of tissue 
engineering of bone and cartilage. It includes discussion of each pillar of tissue engineering, with a focus on 
several preclinical and clinical studies that are milestones in this field, and suggests future perspectives and 
directions. IBMS BoneKEy. 2009 November;6(11):405-419. 
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Introduction 
 
The skeleton provides mechanical support 
to soft tissues and provides levers for 
muscle action, and its ability to articulate in 
various opposing directions is fundamental 
to mobility and locomotion. It also has 
important roles in maintaining blood calcium 
levels, supporting hematopoiesis and 
housing the brain and the spinal cord (1). 
Consequently, skeletal defects often incur 
considerable morbidity. Conventional 
medical strategies focus on removing 
causes of diseases and, when it comes to 
the repair of tissue defects elicited by the 
diseases, mostly rely on natural healing 
abilities of tissues, failing to cure irreversible 
tissue defects. In bone and cartilage, 
irreversible tissue defects are caused by 
aging, trauma, disease, tumors, and 
developmental abnormalities. In particular, 
osteoporosis and osteoarthritis are notable 
in terms of their frequency, morbidity, 
mortality, and medical costs. Osteoporosis is 
a skeletal disease characterized by 
decreased bone strength predisposing 

individuals to an increased risk of fracture. It 
occurs in women, the elderly, the 
immunocompromised, and patients with 
arthritis, autoimmune diseases, and HIV (2). 
Osteoarthritis is a chronic degenerative joint 
disorder induced by accumulated 
mechanical stress, accompanying articular 
cartilage destruction and osteophyte 
formation, and the disease is a major cause 
of disability in the elderly (3). As the baby 
boomer generation ages and as lifespan 
increases, osteoporosis and osteoarthritis 
are now reaching epidemic proportions. 
 
Bone grafts and prosthetic implant devices 
are current strategies to repair irreversible 
bone defects. Those strategies achieve 
bone repair by eliciting two distinct activities: 
osteoconductivity and osteoinductivity. The 
former is an activity that facilitates bone 
growth on an implant’s surface through the 
migration of preosteoblasts and osteoblasts 
from an intact bone. The latter is an activity 
that newly induces osteogenesis through the 
recruitment of immature cells and their 
differentiation to osteoblasts. Autograft is 
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superior to the other techniques in function 
and engraftment because it uses bone 
tissue derived from the same individual 
containing live cells and growth factors. 
Autograft has both osteoconductivity and 
osteoinductivity, and is speedily fused and 
integrated to the bone of the implantation 
site. However, because this process 
requires highly invasive bone collection 
surgery from healthy sites, donor site 
morbidity often occurs, limiting the quantity 
of autograft (4). Although allograft is usually 
collected from cadavers and thus is free 
from the invasiveness to the recipient and 
less restricted in quantity, it runs a biological 
risk of contamination by pathogens as well 
as an ethical risk associated with illegal 
body trading (5). In addition, because 
allograft is usually heat-treated and kept 
frozen in order to reduce immunological 
reactions, no live cells are present, and 
growth factors are inactivated to some 
extent. Therefore, it has a lower activity of 
bone repair than autograft. 
 
Compared to bone defects, the treatment of 
cartilage defects is more challenging. 
Several strategies have been reported: 
autografts of periosteum and perichondrium, 
cartilage transplantation, and mechanical 
penetration of subchondral bone for bone 
marrow entry into the defect site. However, 
these approaches fail to provide 
reproducible results or complete repair of 
the defects (6). In addition, common to the 
procedures for both bone and cartilage 
defects, grafts must be manually carved to 
fit to deformities during surgery. This 
process is often time-consuming and 
laborious and is associated with low 
precision (7). In short, grafts have 
shortcomings concerning both quantity 
(availability of suitable graft material) and 
quality (donor site problems, graft rejection 
and disease transmission). Prosthetic 
implants overcome some problems 
associated with grafts, but have 
shortcomings concerning biocompatibility, 
function, and longevity.  
 
Bone and cartilage regenerative medicine, 
by using the technique of tissue engineering, 
attempts to provide solutions to such 
problems. There are three components 
important for tissue engineering: cell 

sources, signaling factors, and scaffolds 
(Fig. 1). To bring tissue engineering into 
reality, it is crucial to sufficiently advance 
and combine the three pillars (8). It is also 
important to justify and optimize the use of 
each pillar. This Perspective reviews current 
research on tissue engineering of bone and 
cartilage, focusing on important advances as 
well as major obstacles in the field. We also 
highlight important translational studies and 
discuss future perspectives.   
 
Cell Sources for Bone and Cartilage 
Tissue Engineering 
 
In bone tissue engineering, autologous cell 
transplantation of mesenchymal stromal 
cells (MSCs) derived from bone marrow 
(bone marrow MSCs) has been widely used 
in combination with various biodegradable 
scaffolds. It has been reported that, when 
infused into children with osteogenesis 
imperfecta, bone marrow MSCs induce new 
lamellar bone formation and an increase in 
total body mineral content with an increased 
number of osteoblasts (9;10). The use of 
bone marrow in the treatment of non- or 
delayed union has been described in several 
clinical studies (11). An uncontrolled study 
has described the successful use of 
autologous MSCs in three patients with 
large bone defects, in combination with 
porous ceramic scaffolds (12).   
 
Regarding cartilage repair, the implantation 
of autologous MSCs into human knees for 
the treatment of cartilage defects has been 
reported (13;14), with several studies 
describing that MSCs isolated from 
synovium (synovial MSCs) showed higher 
chondrogenic capacity than MSCs isolated 
from other tissues. An in vitro study 
indicated that human synovial MSCs had 
higher capacity to differentiate into 
chondrocytes than MSCs derived from any 
other tissues including bone marrow, 
periosteum, muscle, and adipose tissue 
(15). In a rat cartilage defect model, synovial 
MSCs were shown to induce cartilage repair 
more potently than muscle- or adipose 
tissue-derived ones (16). Moreover, it has 
been reported that synovial MSCs expanded 
more in vitro than bone marrow MSCs in 
autologous human serum (17). These data 
suggest that synovial MSCs may be a more 
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Fig. 1. Schema of the three pillars of tissue engineering. To bring tissue engineering into reality, it is crucial 
to sufficiently advance and combine the three. Currently, there is increasing recognition of the importance of 
cell culture methods, vascularization of scaffolds and drug delivery of signaling molecules. 
 
potent cell source for cartilage repair than 
bone marrow MSCs. However, bone marrow 
can be harvested more easily than 
synovium, which is why bone marrow MSCs 
have been used more widely (18). The 
United States National Institutes of Health 
website, www.ClinicalTrials.gov, reports that 
several clinical trials are ongoing to evaluate 
the safety and/or efficacy of autologous 
MSC transplants in bone and cartilage 
defects.   
 
However, MSCs still have substantial 
technical limitations both in terms of quantity 
and differentiation capacity. From 10 ml of 
bone marrow fluid or adipose tissue, only 
103 to 106 cells can be isolated (19;20). To 
treat clinical bone defects, ~109 cells may 
be required (19), but it is difficult to expand 
MSCs by several rounds of passages 
without affecting their differentiation capacity 
(21). 
 
On the other hand, embryonic stem (ES) 
cells proliferate practically indefinitely and 
possess totipotency (an ability to give rise to 
all cell types of the embryo) (22). The cells, 

isolated from the inner cell mass of 
blastocysts, were initially established from 
mouse embryos in the 1980s and later from 
human embryos. In vitro and in vivo studies 
have shown that ES cells can differentiate 
into osteoblasts and chondrocytes under 
certain conditions (23-25). However, four 
major problems remain to be solved: low 
efficiency of differentiation protocols, 
teratoma formation by residual 
undifferentiated cells, immunological 
reactions, and ethical issues accompanying 
the use of human embryos. 
 
Induced pluripotent stem (iPS) cells may 
solve the immunological and ethical 
problems of ES cells to some extent, but the 
problems of low differentiation efficiency and 
teratoma still remain. Although the 
successful differentiation of iPS cells into 
osteoblasts has been reported (26), it is still 
necessary to avoid contamination of any 
undifferentiated cells for clinical use, which 
will be quite a tough hurdle. On the other 
hand, studies on the generation of iPS cells 
shed light on how adult non-stem cells can 
be reprogrammed. An interesting recent 
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finding is that the modulation of chromatin 
structure is important for reprogramming 
(27). Cells change their transcriptional 
program dramatically according to their 
behavior, and in this process, epigenetic 
regulation has an important role. In fact, 
overcoming epigenetic barriers that are 
involved in the silencing of reprogramming-
related genes – histone deacetylation, 
histone methylation and DNA methylation – 
was shown to improve the efficiency of 
transcription factor-induced reprogramming 
(28-30). In the future, we may be able to 
enhance the efficiency of osteogenic and 
chondrogenic differentiation as well as 
reprogramming by modulating epigenetic 
regulation. 
 
One solution to overcome problems 
associated with the use of stem cells is to 
utilize abundant autologous adult cells such 
as skin fibroblasts. We and others have 
examined whether skin fibroblasts could be 
a cell source for bone and cartilage 
regeneration. Using animal models, other 
investigators have described in vivo bone 
regeneration using dermal fibroblasts that 
were transduced with adenoviruses 
expressing bone morphogenetic protein 
(BMP)-7 and BMP-2, respectively (31;32). 
We have shown the efficacy of optimized 
osteogenic signals for in vivo bone 
regeneration using mouse dermal fibroblasts 
(33) and the induction of chondrocyte 
markers in human skin fibroblasts in vitro 
(34). 
 
Osteogenic Signaling Factors 
 
Substantial progress has been made 
towards a basic understanding of major 
osteogenic signaling molecules and genes 
such as BMPs, Hedgehogs (Hhs), Runx2, 
Wnts, and insulin-like growth factors (IGFs) 
(35-39). Among those molecules, the 
application of recombinant human (rh) BMP-
2 and BMP-7 has been intensively studied 
for the treatment of fracture repair of the 
tibia and spine fusion (11). A randomized, 
prospective, multi-institution study of the 
treatment of tibial non-unions using rhBMP-7, 
also known as osteogenic protein (OP)-1, 
has been reported (40). Clinical outcomes of 
rhBMP-7 treatment are comparable to those 
of autologous bone graft with no adverse 

events, leading the study's authors to 
conclude that rhBMP-7 is a safe and 
effective alternative to the bone graft. A  
prospective, randomized, controlled, single-
blind study to evaluate the safety and the 
efficacy of rhBMP-2 in the treatment of open 
tibial fractures has also been reported (41). 
Patients receiving standard care 
(intramedullary nail fixation and standard 
soft tissue management) were compared to 
patients receiving standard care and rhBMP-
2 implants (0.75 mg/mL or 1.5 mg/mL 
rhBMP-2 with absorbable collagen sponges). 
The 1.5 mg/mL rhBMP-2 group had a 
reduction in the risk of failure, significantly 
fewer invasive interventions, significantly 
faster fracture-healing, and fewer infections 
than did the control patients. Regarding the 
use of BMPs in spine fusion, the use of 
rhBMP-2 in posterolateral lumbar spine 
fusion (42) and rhBMP-7 in noninstrumented 
posterolateral spinal fusions (43) has been 
evaluated and successful results have been 
obtained. There are other promising results 
on the efficacy of BMPs in clinical settings, 
and recently, the use of BMPs in clinical 
applications was reviewed (11). However, a 
large amount of BMP is required for 
successful outcomes and BMP-containing 
devices fail in a certain percentage of cases, 
raising concerns over costs and safety (44-
46). The reasons for this may be related to a 
lack of controlled and sustained BMP 
delivery, its short biological half-life, and the 
inability of its presentation to mimic the 
biological condition (47). 
 
Preclinical studies also suggest that Runx2 
is useful for bone regeneration if it is applied 
to stem cells, osteoblast lineage cells, or cell 
populations containing either kind (48-51). In 
the above studies, the possibility was not 
excluded that other signaling molecules, 
including their combination with BMP, might 
exert a stronger effect on bone regeneration 
because neither BMP nor Runx2 was 
selected through comprehensive screening. 
In addition, although most of these individual 
molecules are endogenously expressed in 
various tissues, the region where 
osteogenesis occurs is restricted. Based on 
these data, we have hypothesized that 
individual factors are not potent enough and 
that ideal signaling may be achieved by a 
new factor or combination of factors. 
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Through screening cDNA libraries and the 
combination of known osteogenic signaling 
pathways (BMP, Hh, Runx2, Wnt, and IGF-
1), we previously identified BMP signaling 
and Runx2 as a potent combination for 
osteogenic differentiation. Rapid bone 
regeneration was induced by transplantation 
of a monolayer sheet of fibroblasts 
transduced with the combination (33). 
 
The use of small chemical compounds is 
another strategy to induce osteogenic 
differentiation by activating osteogenic 
signaling pathways. Despite recent 
successes with drugs inhibiting bone 
resorption, there are a limited number of 
reports on such anabolic agents that 
effectively increase bone formation. Statins 
(52), isoflavone derivatives (53;54), and 
TAK-778 (55) were reported to stimulate 
osteogenic differentiation, but their 
osteogenic activity was shown only in 
specific cell types including osteoblastic 
cells and stem cells. We have identified a 
couple of osteogenic small compounds 
including 4-(4-
methoxyphenyl)pyrido[4’,3’:4,5]thieno[2,3-
b]pyridine-2-carboxamide (TH) (56), icariin 
isolated from the herb Epimedium 
pubescens (57), and an isoflavone 
derivative, glabrisoflavone (58). 
 
Chondrogenic Signaling Factors 
 
A number of factors have been shown to be 
vital for chondrogenesis. These factors 
include the sex-determining region Y-type 
high mobility group box (SOX) family of 
transcription factors (59), IGF-1 (60), 
fibroblast growth factor 2 (FGF-2) (61), Hhs 
(62), BMP-2 (63), transforming growth 
factor- β (TGF-β) (64), and Wnts (62). 
 
The use of three factors, TGF-β3, BMP-6 
and IGF-1, in pellet cultures of human bone 
marrow cells for chondrogenic induction has 
been reported (65). TGF-β1 was shown in 
vivo to induce the differentiation of MSCs to 
form ectopic cartilage and to repair a full-
thickness cartilage defect by improving 
chondrocyte integration into the endogenous 
tissue (66). Regarding FGFs, FGF18 
stimulated repair of damaged cartilage (67), 
and it has been reported that the 
implantation of a fibrin sealant incorporating 

FGF-2 successfully induced healing of the 
surface with hyaline cartilage and 
concomitant repair of the subchondral bone 
in cartilage defects in rabbits’ knees (68). 
The efficacy of IGF-1 on cartilage repair was 
also shown in a horse cartilage defect model 
encompassing sub-chondral bone. IGF-1 
was able to induce migration of 
chondrocytes, and the combination of IGF-1 
and chondrocytes improved the consistency 
of the repair tissue (69). 
 
We previously identified the combination of 
SOX5, SOX6, and SOX9 (the SOX trio) as a 
potent one for the induction of permanent 
cartilage (34). The SOX trio successfully 
induced chondrocyte differentiation in all cell 
types tested, including ES cells, MSCs, and 
human skin fibroblasts, and the induction 
occurred regardless of the culture system 
used. Contrary to conventional 
chondrogenic techniques, the SOX trio 
suppressed hypertrophic and osteogenic 
differentiation at the same time. 
 
For the clinical application of autologous 
chondrocytes to cartilage regeneration, 
investigators have optimized the 
combination of growth factors to expand 
human chondrocytes and to re-differentiate 
de-differentiated chondrocytes in culture 
(70;71). They have concluded that the 
combination of FGF-2 with insulin or IGF-I 
may be useful for promotion of chondrocyte 
proliferation. Regarding redifferentiation, the 
combination of BMP-2, insulin, and 
triiodothyronine (T3) was found to be the 
most effective one causing redifferentiation 
of the dedifferentiated cells after repeated 
passaging. 
 
Scaffolds for Bone Tissue Engineering 
 
Primarily three biomaterials (metals, 
polymers, and ceramics) have been used in 
bone tissue engineering. Titanium is a 
traditional inert biomaterial for implants and 
is characterized by a minimal immune 
response, which is the biggest advantage of 
this material. Some studies have shown that 
titanium fiber meshes or titanium with zinc-
containing hydroxyapatite enhance the 
osteogenic activity or the proliferation of 
seeded cells (72-74). However, the difficulty 
in performing histological analyses is a 
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serious drawback in further investigating the 
biological activity of this material (75).  
 
Biodegradable synthetic polymers applied to 
bone tissue engineering include poly(lactic 
acid) (PLA), poly(glycolic acid) (PGA), poly(-
caprolactone), and poly(lactic-coglycolide) 
(PLGA) copolymers (76-84). Although 
Poly(ε-caprolactone) carries biocompatibility 
and processability, it is less suitable for long- 
term applications because of its high 
hydrophobicity and low degradability in vivo 
(85). Cellular adhesion to PLGA is 
significantly higher than on PLA surfaces. 
PLGA was shown to support osteoblasts’ 
proliferation and their differentiation, which 
was demonstrated by high alkaline 
phosphatase activity and deposition of a 
mineralized matrix (86;87). PLGA has also 
been utilized for encapsulation and release 
of several growth factors including TGF-β, 
BMPs, IGFs, VEGF, and NGF (88). Several 
approaches have been followed including 
the use of variable-sized PLGA 
microspheres with growth factors and 
subsequent embedding of them in other 
polymer matrices with variable degradation 
rates (88). PLGA/hydroxyapatite and 
PLGA/calcium phosphate hybrids (89;90) 
have also been utilized for bone tissue 
engineering. In addition, the development of 
PLA-p-dioxanone-PGA as a carrier of 
rhBMP-2 has been reported (91).  
 
Among natural polymers, bovine type I 
collagen has been used as a promising 
biomaterial. Several type I collagen-based 
materials are commercially available 
including CollapatII® (Biomet Inc.), Healos® 
(Depoy Spine Inc.), Collagraft® (Nuecoll 
Inc., Zimmer Inc.) and Biostite (Vebas S.r.l.) 
(92). Given that collagens are dominant and 
an important matrix component in bone 
tissues, it makes sense that the scaffold has 
biocompatibility as well as activity to 
facilitate osteogenesis or cell proliferation. 
However, two major concerns, disease 
transmission from other species and its poor 
mechanical properties, remain to be solved. 
 
Hydroxyapatite- and beta-tricalcium 
phosphate-based scaffolds are widely used 
in bone tissue engineering, and several 
different bioceramics have been developed 

in order to improve their properties (93-96). 
In particular, calcium phosphates are the 
most popular materials for artificial bones 
(97;98). As approximately 70% of bone in 
the body is made of calcium phosphates 
(99), their biocompatibility and biosafety 
were, in a sense, already tested in the living 
body. Calcium phosphates are naturally 
osteoconductive (99) and metabolized and 
degraded by the endogenous system for 
bone remodeling, although the speed of 
degradation varies depending on particle 
size and form. Thus, artificial bones made of 
calcium phosphates are superior to autograft 
and allograft in terms of biosafety, quantity 
(unlimited), and invasiveness (low).  
Furthermore, they are made from limestone 
and mineral phosphates, thus being free 
from contamination by pathogens and free 
of donor site problems that occur with bone 
collection (100). However, the artificial 
bones used thus far in clinical settings 
usually require a post-fabrication sintering 
process to increase their mechanical 
properties, which causes contraction in size 
and often decreases biodegradability, as 
well as shape adjustment during surgery 
(100-103).   
 
Therefore, novel artificial bones that have 
better shape compatibility to deformities, 
appropriate mechanical strength without 
post-fabrication sintering, and 
biodegradability are needed. We have 
focused on the vital role of the dimensional 
compatibility of the scaffolds. By controlling 
the 3D shape of the scaffolds, there has 
been significant improvement in the 
performance of the artificial bones, which 
have good dimensional compatibility, 
resultant reduction in operation time and 
corresponding invasiveness, and resultant 
speedy union with host bone tissues 
(104;105). 3D shape control is vital to the 
performance of the scaffolds, and it is worth 
attempting to control the 3D shape of the 
scaffold by optimizing the design and 
fabrication method before resorting to 
expensive and high-risk growth factors and 
cells. 
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Fig. 2. Schema of proposed flow chart of decision-making; bone tissue engineering is used as an example. 
The majority of patients with irreversible bone defects can be treated with high-performance scaffolds alone. 
A minority will be treated with scaffolds in combination with osteogenic factors to induce host cell 
regenerating abilities. The rest, representing a very small fraction, will truly require cell transplantation in 
combination with scaffolds and osteogenic factors. It is crucial to justify and optimize the use of each pillar 
for individual cases. Representative clinical applications are shown, corresponding to each step. 
 
Scaffolds for Cartilage Tissue 
Engineering 
 
Scaffolds for cartilage tissue engineering are 
classified into three groups: protein-based, 
polysaccharide-based, and synthetic 
biomaterials. Among protein-based 
scaffolds, bilayer collagen type I and III 
membranes are clinically available for 
autologous chondrocyte implantation (ACI), 
including MACI® (Matrix-induced ACI, 
Verigen, Leverkusen, Germany), Maix® 
(Matricel, Hezoenrath, Germany) and 
Chondro-gide® (Geistlich Biomaterials, 
Wolhusen, Switzerland) (6). Atelocollagen® 
(Koken Co. Ltd, Tokyo, Japan) is a type I 
collagen gel, from which telopeptide causing 
antigenecity is removed. The material has 
an advantage in generating a 3D structure of 
the implant. However, when implanted, the 
ateloacollagen-cell composites should be 
covered with periosteum not to be detached 
from implantation sites (106). In addition, 
fibrin glue (Tissucol®, BAXTER, Austria) has 

been used for cartilage repair, and its 1-year 
clinical results have been reported (107). 
 
Polysaccharide-based materials include 
alginate, chitosan, cellurose, and hyaluronic 
acid (6). Hyalograft® C is a combination of a 
hyaluronic acid-based matrix HYAFF-11® 
(Fidia Advanced Biopolymers, Abano 
Terme, Italy), and autologous chondrocytes. 
The efficacy of Hyalograft® C in clinical 
settings has been reported (108). 
 
Bio-Seed®-C (BioTissue Technologies, 
Freiburg, Germany) is a synthetic material 
that is clinically available. In the use of the 
material, a porous 3D scaffold consisting of 
PGA, PLA and polydioxanone is combined 
with autologous chondrocytes embedded 
within fibrin gel (109). Bio-Seed1-C was 
reported to induce the formation of hyaline 
cartilage and a significant clinical 
improvement of joint function. Poly(ethylene 
glycol) (PEG) is a synthetic polymer used to 
create synthetic-based hydrogels. Two 
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groups have reported that chondrocytes 
remained viable and synthesized cartilage-
specific ECM, even when they were 
encapsulated in a PEG hydrogel under a 
compressive modulus (i.e., 260-900 kPa) 
similar to that of human cartilage (i.e., 
790±360 kPa) (110;111). 
 
Conclusions and Future Perspectives 
 
In the late 1990s, investigators applauded 
the isolation, expansion, and 
characterization of human multipotent MSCs 
(112) with enthusiasm. Since then, both 
researchers and physicians working on bone 
and cartilage defects have explored suitable 
ways to apply the cells to bone and cartilage 
regeneration. As a result, a large number of 
preclinical and clinical studies were 
performed with several promising results, 
but also provided us with an important 
indication: stem cells are not necessarily a 
panacea. No one disputes that stem cells 
are a promising cell source for tissue 
regeneration. However, in reality, the field 
still struggles with finding ways to utilize 
stem cells more safely and effectively. It is 
probably time to stop and think whether the 
use of stem cells is really required for all 
cases with irreversible skeletal defects. In 
some cases with bone defects, for example, 
it appears possible to repair such defects 
without cell transplantation by acting on host 
cells and inducing host tissues’ regeneration 
abilities. Therefore, it seems advisable to 
start by considering simple strategies using 
scaffolds and then some signaling factors 
before resorting to complicated strategies 
using cells (Fig. 2). We believe that in tissue 
engineering, using stem cells is not an end, 
but a means that must be justified and 
optimized for individual cases. 
 
To advance this field more steadily and 
rapidly than ever before, we should keep our 
eyes on progress in every field related to 
tissue engineering – medicine, biology, 
engineering, pharmaceutical science, 
medical economics, and medical ethics – 
and attempt to build multi-disciplinary 
collaboration, which will open a new avenue 
for the realization of tissue engineering-
based therapies.  
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