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About one in three childhood fractures 
involve the distal radius (1). The 
incidence of these fractures is highest 
around the time of peak height velocity 
(2). Several investigators have reported 
that growth in the length of the radius 
reaches its peak velocity before mineral 
accrual reaches its peak and have 
suggested that this dissociation between 
longitudinal growth and mineral accrual 
contributes to bone fragility during 
growth (3). The structural consequences 
of this dissociation were explored 
recently by Kirmani et al. (4). These 
investigators report that there is a 
transitory increase in intracortical 
porosity and cortical thinning during the 
pubertal growth spurt, features likely to 
contribute to the transitory increase in 
skeletal fragility in peripubertal children. 
On the other hand, there were few 
differences in trabecular structure across 
the stages of pubertal maturation.   
 
The tempo of growth of the axial and 
appendicular skeleton varies before and 
during puberty. Growth velocity in crown-
heel length is most rapid shortly after birth 
and slows precipitously during the first year 
of life. During the prepubertal years 
appendicular growth in length is similar in 
boys and girls and proceeds at twice the 
velocity of axial growth (5). At puberty, 
appendicular growth decelerates while axial 
growth accelerates (6). This deceleration in 
appendicular growth occurs earlier in girls 
than boys because of their earlier puberty 
and accounts for the shorter appendicular 
(arm and leg) length in girls than boys (7). 
The sex differences in appendicular length 

are thus largely the result of the longer 
duration of prepubertal growth rather than 
sex differences in the velocity of growth and 
reflect the differing regulation of growth of 
the axial and appendicular skeleton, a 
neglected area of research. 
 
A fascinating aspect of growth is that 
lengthening of a long bone does not occur 
equally at each growth plate (8;9). At the 
radius, growth is more rapid at the distal 
than at the proximal growth plate. About 
90% of the longitudinal growth of the radius 
occurs at the distal growth plate, while the 
remaining 10% occurs at the proximal 
growth plate. At the tibia, growth is more 
rapid at the proximal than at the distal 
epiphysis; the distal growth plate contributes 
only 30% of tibial elongation during puberty 
(8;9). 
 
The apparent volumetric bone mineral 
density (vBMD) of a bone is determined by 
the external volume as defined by the 
periosteal envelope and the amount of bone 
mass within it (10). Both the absolute 
increase and relative increase in these two 
traits contribute to the apparent vBMD. If the 
external volume of a bone increases (by 
periosteal apposition) more rapidly than the 
net amount of bone deposited within the 
expanding periosteal diameter (by periosteal 
apposition and endocortical apposition or 
resorption), the apparent vBMD will decline. 
This occurs at the rapidly growing distal end 
of the radius (11).  
 
Kirmani et al. report that total cross-sectional 
area of the radius increased rapidly with 
advancing age in both sexes but cortical 
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Fig. 1. Comparison of fluorescent histomorphometry, in the rabbit femur (left), between the cortices at the 
metaphyseal (top right) and diaphyseal (bottom right) regions. The cortices at the metaphyseal region are 
formed by trabecular coalescence leaving unfilled pores between trabeculae and increasing cortical porosity 
during rapid growth. In contrast, the cortices at the diaphyseal region are formed by periosteal apposition, 
with no pores left unfilled. From Cadet et al. Mechanisms responsible for longitudinal growth of the cortex: 
coalescence of trabecular bone into cortical bone. J Bone Joint Surg Am. 2003 Sep;85-A(9):1739-48, used 
with permission (12). 
 
thickness decreased in girls and remained 
unchanged in boys from Tanner stage I to III 
and then increased in both sexes while 
trabecular thickness and number changed a 
little, if any, in both sexes during puberty (4). 
As a result, the total volume of the 
metaphysis of the distal radius occupied by 
cortex, and thus the proportion of load borne 
by the cortex decreased transiently during 
mid- to late puberty in both sexes. In 
addition, cortical porosity increased in mid-

puberty, more so in boys than girls, although 
not significantly so.  
 
The mechanism responsible for the 
transitory increase in porosity has been 
examined by Cadet et al. (12). In this 
illuminating study of the longitudinal 
development of cortical bone in rabbits, the 
cortex at the metaphyseal region was shown 
to be formed by coalescence of trabeculae 
arising from the growth plate (Fig. 1). This 



IBMS BoneKEy. 2009 November;6(11):429-433 
http://www.bonekey-ibms.org/cgi/content/full/ibmske;6/11/429 
doi: 10.1138/20090408 
 

    431 
         
    Copyright 2009 International Bone & Mineral Society   

condensation of trabeculae occurs as bone 
formation on their surfaces causes them to 
coalesce to form cortex.   
 
At sites of rapid longitudinal and radial 
growth, we suggest that apposition on 
trabecular surfaces does not ‘keep up,’ 
resulting in intracortical porosity (13). The 
porosity and fragility is transient because 
growth in length slows, allowing trabecular 
consolidation by bone formation to go to 
completion and thus to ‘catch up’. Using 
micro-CT, Tanck et al. have reported higher 
cortical porosity in the metaphyseal region 
nearer the growth plate than what is 
observed more proximally adjacent to the 
diaphysis (14). As trabeculae adjacent to the 
endocortical surface coalesce, periosteal 
resorption produces cortical thinning and in-
wasting to allow the metaphysis and 
diaphysis to ‘fit’ together. By contrast, 
cortical bone at the diaphyseal region is 
formed by periosteal apposition.     
 
The pattern of growth of trabecular bone 
was different by sex. Trabecular vBMD 
remains unchanged from 5 years of age to 
young adulthood at the metaphyses of the 
distal radius and tibia in girls but increases 
in boys during puberty (15;16). The increase 
is the result of thickening of existing 
trabeculae in boys but not in girls. 
Trabecular number remained unchanged (4). 
The factors regulating trabecular thickness 
in boys and girls remain uncertain.   
  
While transitory bone fragility is likely to be 
determined by this temporary dissociation in 
growth during puberty, the structural 
features present before puberty are likely to 
contribute as well. Children with upper limb 
fractures have reduced total vBMD of the 
distal radius before, during and after puberty, 
and this difference in vBMD in children with 
and without fractures is detected before the 
fracture as well as in young adulthood, 
suggesting the deficit in bone structure in 
children may be present before puberty and 
is exacerbated by the dissociation between 
longitudinal growth and mineral accrual 
during puberty (17).   
   
Kirmani et al. also report that PINP and CTX 
correlated inversely with cortical vBMD and 
positively with cortical porosity, suggesting 

that rapid bone turnover produced an 
unfavorable bone structure. Slemenda et al. 
have reported that high levels of tartrate-
resistant acid phosphatase (TRAP) were 
associated with low aBMD of the spine, 
proximal femur and radius throughout 
puberty and explained the difference in 
aBMD between Caucasians and Blacks (18). 
Evidence from twin studies suggests that 
genetic factors influence the variance in 
rates of bone remodeling (19;20), the 
purpose of which is two-fold, one being to 
assemble a bone of appropriate size but the 
second to excavate that bone to minimize its 
mass from very early in life (21). 

Region-specificity of growth and 
development of bone structure exists 
elsewhere. In the transiliac bone biopsy, 
cortical and trabecular thickness increases 
while trabecular number remains constant 
from 1.5 years of age to young adulthood.  
Lateral modeling drift of the iliac inner cortex 
(enlarging pelvis) is produced by the 
coalesced trabeculae at the endocortical 
surface, while the cortical trabeculization 
occurs at the endocortical surface of the 
outer cortex moving the medullary cavity 
outward (22).  
 
Kirmani et al. now provide the structural 
basis of the transitory bone fragility 
accompanying growth and this partly 
explains the increased fracture incidence of 
the distal radius during puberty. Decreased 
cortical thickness and increased cortical 
porosity despite enlargement of bone size 
produce a transitory deficit in cortical bone 
strength at the metaphyseal region at a time 
when vigorous activity of youth predisposes 
to falls. The transitory cortical deficit is due 
to delayed coalescence of trabeculae at the 
endocortical surface at the metaphyseal 
region, especially at sites of rapid growth, 
which probably is the result of dissociated 
longitudinal growth and bone mass accrual 
adding to the early established bone deficit.    
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