PERSPECTIVES

Chronic Kidney Disease-Mineral Bone Disorder (CKD-MBD)

Krawiporn Kiattisunthorn¹ and Sharon M. Moe²,³

¹Siriraj Medical School, Mahidol University, Bangkok, Thailand
²Indiana University and ³Roudebush VAMC, Indianapolis, Indiana, USA

Abstract

Chronic kidney disease-mineral bone disorder (CKD-MBD) is a new term to describe the complex interplay of abnormal mineral metabolism, increased bone fragility and impaired linear bone growth, and vascular calcification in patients with CKD. These abnormalities are more common, and the natural history accelerated, in the setting of CKD. All components of CKD-MBD are associated with increased morbidity and mortality. The pathophysiology of CKD-MBD is just beginning to be understood, offering hope for new therapies to reduce the burden of fractures and cardiovascular disease in patients with CKD. IBMS BoneKEy. 2010 December;7(12):447-457.

Chronic kidney disease (CKD) is a worldwide health problem, affecting 13-25% of the population (1-3). Disturbances in mineral metabolism are common complications of CKD, beginning early in the course of progressive CKD. CKD staging is based on estimated glomerular filtration rate (eGFR): CKD stage 3 = eGFR of 60 to 30 ml/min; CKD stage 4 = eGFR of 30-15 ml/min; CKD stage 5 = eGFR < 15 ml/min; and CKD stage 5D are patients on dialysis (4). Beginning in stage 3 CKD, the damaged kidney is unable to fully excrete a phosphorus load nor can it convert vitamin D into its active metabolite 1,25(OH)₂D (calcitriol), leading to a compensatory secondary hyperparathyroidism. Elevated PTH and decreased calcitriol levels are found in 40% of patients with an eGFR between 40 and 50 ml/min and in 80% of patients with an eGFR below 20 ml/min (5). In addition, an elevation in FGF23 is also apparent early in the course of CKD (6,7). These mineral and endocrine functions disrupted in CKD are critically important in the regulation of bone remodeling. As a result, bone abnormalities (altered remodeling and loss of bone volume) are found almost universally in patients with CKD requiring dialysis and in the majority of patients with CKD stages 3-5 (8-10). These skeletal changes result in an increased prevalence of hip fracture compared to the general population across the entire range of CKD stages 3-5 and in dialysis patients (11-20). Dialysis patients in their 40s have a relative risk of hip fracture 80-fold that of age- and sex-matched controls (13). In patients with stage 4 CKD, the risk of hip fracture was nearly 4-fold that of the general population without CKD even at advanced ages (17). Furthermore, a hip fracture in patients with a GFR < 45 ml/min or on dialysis is associated with a doubling of the mortality observed in non-dialysis patients with a hip fracture (14;19;21).

Derangements in mineral metabolism are also associated with cardiovascular disease and all-cause mortality (22-26). Cardiovascular disease accounts for 70% of all deaths in patients with CKD, with an overall mortality of 20% per year in patients on dialysis (27). In individuals with kidney failure on dialysis, cardiovascular mortality rates are 10- to 500-times higher than in the general population, even after adjustment for gender, race, and the presence of diabetes (12). Importantly, individuals at earlier stages of CKD not yet on dialysis (stages 3-4) are up to 17-times more likely to die of cardiovascular disease than they are of progressing to dialysis (25). Multiple cross-sectional studies in dialysis patients...
have found that disordered mineral metabolism, including hyperphosphatemia and hyperparathyroidism, increases the risk of cardiovascular and all-cause mortality (22; 28; 29). One mechanism by which abnormal mineral metabolism may increase cardiovascular risk is by inducing or accelerating arterial and valvular calcification. Patients on dialysis have 2- to 5-fold more coronary artery calcification than age-matched individuals with angiographically-proven coronary artery disease (30). In patients not yet on dialysis, there is also increased coronary artery calcification compared to matched controls (31; 32). Peripheral artery calcification can lead to claudication and systolic hypertension, and this in turn can lead to increased cardiac afterload resistance and left ventricular hypertrophy. Coronary artery calcification can lead to cardiac ischemia and sudden death and the latter is the leading cause of cardiovascular death in patients on dialysis (33).

In patients with CKD, there is emerging evidence to support an interrelationship between bone, vascular disease and disordered mineral metabolism. These advances in science led to an initiative in 2006 by KDIGO (Kidney Disease: Improving Global Outcomes) to clarify and update nomenclature. As a result, the new term "Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD)" was put forth to describe a clinical syndrome composed of mineral metabolism abnormalities, renal osteodystrophy and extra-osseous calcification including vascular calcification (Table 1) (34). The older term, renal osteodystrophy, was then defined to specifically indicate abnormal bone resulting from impaired kidney function. Furthermore, a new classification for renal osteodystrophy, the TMV system (T = bone turnover/remodeling, M = mineralization, and V = volume), was developed to standardize the international description of bone histology in CKD patients.

Table 1. Definition of Chronic Kidney Disease-Mineral Bone Disorder (CKD-MBD)

<table>
<thead>
<tr>
<th>A systematic disorder of mineral and bone metabolism due to CKD manifested by either one or a combination of the following:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Abnormalities of calcium, phosphorus, PTH or vitamin D metabolism</td>
</tr>
<tr>
<td>2. Abnormalities of bone turnover, mineralization, volume, linear growth or strength</td>
</tr>
<tr>
<td>3. Vascular or other soft tissue calcification</td>
</tr>
</tbody>
</table>

Note: From (34), with permission.

Prior to this new classification system of the bone component of CKD-MBD, the primary emphasis of bone had been on turnover (34), and the majority of the literature on bone in CKD focuses on turnover. High turnover bone disease due to secondary hyperparathyroidism results in abnormal bone ranging from mild resorptive changes to more advanced ostitis fibrosa cystica. Mixed uremic osteodystrophy is seen when there are features of high turnover disease and mineralization defects. Low turnover renal osteodystrophy was formally due to aluminum-induced osteomalacia, but now adynamic bone disease is the predominant cause of low turnover bone disease, characterized by a paucity of both osteoblasts and osteoclasts (35-37). The etiology of this disorder is unclear, but may be due to abnormal differentiation of osteoblasts and osteoclasts. The proportion of dialysis patients with adynamic bone disease has increased over the past 20 years to 37-50%, whereas the proportion of patients with high bone turnover is quite stable at 40-50% (38-40). Aluminum bone disease is now rarely found. In patients not yet on dialysis, bone biopsy series yield different results depending on the GFR level, and the country in which the study was done (36; 41-46). However, it is clear from these data that histologic abnormalities of bone begin very early in the course of CKD. Non-invasive tests of bone, including DXA and CT, also demonstrate marked abnormalities across the spectrum of CKD.

Copyright 2010 International Bone & Mineral Society
However, no studies have demonstrated that any assessment of bone predicts future fractures in CKD patients (11;47-49).

A major component of CKD-MBD is vascular calcification, which is highly prevalent in CKD patients. Calcification can occur in intimal plaques and atheroma and also in the medial layer, especially in elastic-containing arteries (50;51). In patients starting dialysis, 60-70% of patients have significant coronary artery calcification by CT-based imaging (52). Pathologically on autopsy studies, the medial layer of coronary arteries is thicker in CKD patients than in controls, and medial coronary calcification is found in 20% of patients with CKD stages 4 and 5 (50). Calcification is also very common in the peripheral arteries, with 50-80% of dialysis patients demonstrating evidence of calcification by radiographic imaging (53-55) with histology demonstrating both intimal and medial calcification (56). Both coronary artery (23) and peripheral artery calcification (53-55) are associated with increased mortality in patients on dialysis. The risk factors associated with arterial calcification detected by imaging (ultrasound or CT) across multiple series include advanced age, diabetes, obesity, hypertension, dyslipidemia, inflammatory markers, hypoalbuminemia, use of calcium-containing phosphate binders and disordered mineral metabolism (38;54;57-61).

Vascular calcification was previously thought to be a passive process, due to the elevations in calcium and phosphorus observed in patients with advanced CKD. Recent evidence confirms this is an active process due to a series of events (Fig. 1). The initial step is thought to be a transformation or de-differentiation of vascular smooth muscle cells (VSMCs) to osteo/chondrogenic-like cells. These cells can then form matrix vesicles or apoptotic bodies that mineralize on an extracellular matrix, presumably in a manner similar to bone. The existence of abnormal bone remodeling in CKD may accelerate the process by providing excess calcium and phosphate for the matrix vesicles. The overall pathogenesis is regulated by a balance of pro-calcifying factors and inhibitors. Unfortunately in CKD, the pro-calcifying factors including hyperphosphatemia and hyperparathyroidism are common, and inhibitors such as fetuin-A and matrix gla protein are reduced.

The phenotypic transformation of VSMCs into osteoblast-like cells is demonstrated by the increased expression of Runx2/Cbfa1 and decreased expression of the smooth muscle cell marker Sm22α (62). There is evidence of the presence of Runx2 and bone matrix proteins (e.g., bone sialoprotein, osteopontin, type I collagen) in areas of medial calcification in patients with and without CKD (63;64). Jono et al. first demonstrated that VSMCs are induced to express Runx2 and calcify by phosphate in vitro, a process dependent on the type III sodium phosphate co-transporter (type III NPC) or Pit-1 (65). Our group further demonstrated that VSMCs also express Runx2/Cbfa1 when incubated with serum from dialysis patients, and this effect was above that induced by phosphate and not inhibited with phosphonoformic acid (63). Therefore, elevated phosphate and the other abnormal factors in CKD work together to initiate and enhance calcification. There are several additional factors in CKD that may play a role, such as parathyroid hormone (66-68), calcitriol (69), and leptin (70;71). However, hyperphosphatemia and secondary hyperparathyroidism are the most consistent factors in animal and human studies.

Neves et al. evaluated the role of PTH in the pathogenesis of vascular calcification using nephrectomized rats given a continuous infusion of PTH to achieve supraphysiologic levels. They demonstrated arterial calcification with hyperphosphatemia regardless of PTH, but also arterial calcification with hyperparathyroidism even with low phosphate levels (67). Gracioli and colleagues performed similar experiments, and found that uremic rats with supraphysiologic PTH levels fed a high or low phosphate diet had vascular calcification and increased expression of Runx2 and type I collagen on calcified vessels, while
Fig. 1. Hypothesized pathogenesis of vascular calcification. Normally, mesenchymal stem cells differentiate into adipocytes, osteoblasts, chondrocytes, and vascular smooth muscle cells (VSMCs). In the setting of chronic kidney disease (CKD), diabetes, aging, inflammation and multiple other toxins, these VSMCs can de-differentiate or transform into chondrocyte/osteoblast-like cells by upregulation of transcription factors such as Runx2 and Msx2. These transcription factors are critical for normal bone development and thus their upregulation in VSMCs is indicative of a phenotypic switch. These osteo/chondrocytic-like VSMCs then become calcified in a process similar to bone formation. These cells lay down collagen and non-collagenous proteins in the intima or media and incorporate calcium and phosphorus into matrix vesicles to initiate mineralization and further grow the mineral into hydroxyapatite. The overall positive calcium and phosphorus balance of most dialysis patients feeds both the cellular transformation and the generation of matrix vesicles. In addition, the extremes of bone turnover in CKD (low and high or adynamic and hyperparathyroid bone, respectively) will increase the available calcium and phosphorus by altering the bone content of these minerals. Ultimately, whether an artery calcifies or not depends on the strength of the army of inhibitors standing by in the circulation (fetuin-A) and in the arteries. MGP = matrix gla protein; OP = osteopontin; PPI = pyrophosphate. Reprinted with permission from (76).

uremic rats fed a high phosphate diet and having normal PTH levels only expressed Runx2 (72). These data suggest that hyperparathyroidism may have a direct effect on vascular calcification. In addition, PTH may induce high bone turnover by increasing net bone resorption, releasing phosphate and calcium into the bloodstream, thereby increasing extraskeletal calcification. Supporting this is a study demonstrating that coronary and carotid artery calcification are significantly decreased after subtotal parathyroidectomy (73). Furthermore, low turnover bone disease also increases the risk of coronary artery calcification. Barreto and colleagues performed bone biopsies and CT scans of coronary arteries at baseline and one year later. They found an inverse correlation between bone turnover and progression of
arterial calcification in hemodialysis patients (74). The bones of patients with adynamic bone disease are less able to take up a calcium infusion (75), therefore increasing available calcium substrate for extra-skeletal calcification. Thus, both hyperphosphatemia and secondary hyperparathyroidism are important contributors to vascular calcification in CKD patients, and both extremes of bone turnover (high and low) increase the risk.

Interestingly, some dialysis patients do not have vascular calcification and continue to be calcification-free on follow-up despite similar risk factors (77). This implies the presence of inhibitors of calcification and/or genetic protection. Fetuin-A (α 2-Heremans-Schmid glycoprotein) is a liver-produced protein that circulates in the blood, binding to calcium and phosphate particles. It is a reverse acute-phase reactant, such that levels are low in the presence of inflammation. Fetuin-A null mice have diffuse extra-osseous calcification, albeit the majority is in soft tissue and not in the vasculature (78). Low levels of fetuin-A are associated with mortality and arterial calcification in patients on dialysis (79-81). In animals, fetuin A inhibits, but may not reverse calcification. Westenfield and colleagues (82) induced vascular calcification in fetuin A/apolipoprotein E (ApoE)-deficient mice, comparing them to ApoE(-/-) and wild-type mice. Both uremic and non-uremic double knockout mice and ApoE(-/-) mice developed intimal atherosclerotic lesions in comparable degree to ApoE(-/-) mice but intimal vascular calcification was exhibited more extensively in double knockout mice. In vitro, adding fetuin-A back to uremic serum from dialysis patients can prevent calcification of VSMCs (81).

Another important inhibitor is the locally produced matrix gla protein (MGP), as mice null for MGP have severe medial artery calcification (83). Carboxylation of MGP to its active form, via vitamin K-dependent processes, may be abnormal in CKD patients. The levels of undercarboxylated MGP increase with deterioration of renal function. Furthermore, undercarboxylated MGP was found in the medial layer of calcified atherosclerotic carotid arteries. In addition, serum levels were positively correlated with arterial calcification scores in both nondialysis and ESRD patients (84). A third important inhibitor is pyrophosphate. Levels are inversely correlated with the prevalence and progression of arterial calcification in late stages of CKD (85). Thus, the presence or absence of calcification is in part due to the balance of the promoters and inhibitors of calcification. The factors maintaining and disturbing this balance are not fully elucidated.

In conclusion, CKD-MBD is a new term for a common clinical entity observed in patients with CKD that involves abnormal mineral metabolism, bone disease and vascular calcification. These derangements are known to be associated with increased morbidity and mortality, but the precise inter-relationship between these three factors is not yet known. The pathogenesis remains an active area of research. However, it is likely that correction of some of these inciting factors, such as hyperparathyroidism and hyperphosphatemia, may at least stabilize extra-osseous calcification and improve bone although definitive clinical trials are not available. Another approach would be to enhance the amount and/or type of calcification inhibitors, but this has not been tested in humans. It is hoped that the development of the new term CKD-MBD will encourage increased awareness of, and research into, this complex systemic disease.

Acknowledgment

Dr. Moe is supported by NIH grant NIH K24 DK002775 and the Veterans Administration.

Conflict of Interest: Dr. Moe reports that she is a consultant and/or has grant support from Genzyme, Amgen, and Shire. Dr. Kiattisunthorn: none reported.

Peer Review: This article has been peer-reviewed.
References


45. Coen G, Mazzaferro S, Ballanti P, Sardella D, Chicca S, Manni M, Bonucci E, Taggi F. Renal bone disease in 76 patients with varying degrees of


Copyright 2010 International Bone & Mineral Society


